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Abstract*

TCP currently recalculates the state of each connection
from a fixed set of initial parameters; this recalculation
occurs over several round trips, during which the con-
nection can be less than efficient. TCP control block
sharing is a technique for reusing information among
connections in series and aggregating it among connec-
tions in parallel. This paper explores the design space of
a modified TCP stack that utilizes these two ideas, and
one possible design (E-TCP) is presented in detail. E-
TCP has been designed so that the network transmission
behavior of group of parallel E-TCP connections
closely resembles that of a single TCP/Reno connection.
Simulated web accesses using HTTP/1.0 over E-TCP
show a significant performance improvement compared
to TCP/Reno connection bundles. This paper is first to
evaluate performance using four different intra-ensem-
ble schedulers for different workloads. In one scenario
simulating a common case, E-TCP is 4-75% faster than
Reno for transmitting the HTML parts of various pages,
and 17-61% faster transmitting the whole pages. In the
same scenario, reusing cached state speeds up repeated
E-TCP page accesses by 17-53% for the HTML parts
and 10-28% for the whole pages, compared to the initial
access. E-TCP can also be integrated with other pro-
posed TCP extensions (such as TCP/Vegas or
TCP/SACK), to further improve performance.

1. Introduction

About 95% of all bytes and around 85-95% of all pack-
ets on the Internet [18] are transmitted using TCP [5],

which is layered on top of IP [4] and provides a reliable
byte-stream between two applications. World-Wide Web
(WWW) transactions cause the largest fraction (65-
75%) of all TCP traffic [18]. They are transmitted using
the Hypertext Transport Protocol (HTTP) layered on top
of TCP.

Most web pages consist of several objects (e.g. text and
images). A web client will retrieve each object using a
separate HTTP transaction. Usually, a client starts some
of these transactions in parallel (as opposed to sequen-
tially) to improve user-perceived page rendering time.
Parallel transactions allow faster page transmission and
avoid head-of-line blocking.

HTTP/1.0 [10] will start a separate, dedicated TCP con-
nection for every web transaction. Thus, during page
retrieval, abundle of concurrent TCP connections is
active between client and server. Persistent-connection
HTTP (P-HTTP) [24], which has been included in
HTTP/1.1 [9] since being proposed, allows multiple
HTTP transactions to take place sequentially over one
TCP connection. However, most clients still open more
than one persistent connection to a server to speed up
initial page rendering.

Due to the nature of the TCP congestion control algo-
rithms, a bundle ofN connections is roughlyN times as
aggressive as a single connection between the same
hosts [6, 35]. While this behavior pays off during the
first few round-trip times by transmitting more packets
than a single connection would, it often overloads the
network later, forcing individual connections to go
through slow-start restart phases if packet loss becomes
substantial. Over-aggressiveness can also be unfair
towards other traffic in the network.

Touch [1] has proposed sharing TCP state among simi-
lar connections to improve the behavior of a connection
bundle and to improve slow-start for repeated, similar
connections. In this paper, we explore the design space
for a state-sharing TCP. Ensemble-TCP (E-TCP) is one
possible design for such a modified TCP stack and
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described in detail, focusing on integrated congestion
control and ensemble scheduling.

E-TCP has been designed so that the aggregate network
transmission behavior of an ensemble closely resembles
that of a single TCP/Reno connection. Thus, using an E-
TCP ensemble instead of a Reno connection bundle for
transmission of some data is equivalent to multiplexing
all data over a single Reno connection. In essence, E-
TCP is transport-layer multiplexing.

Our work presents the first comparison of performance
simulations across a range of different traffic workloads,
and the first to consider different scheduling policies for
different kinds of traffic using common congestion
information. A comparison of E-TCP against HTTP/1.1
with persistent connections shows that while HTTP/1.1
addresses some of the larger performance problems of
HTTP/1.0, E-TCP has additional benefits. Several other
proposed extensions (including TCP/Vegas,
TCP/SACK, TCP/FACK and ECN) can improve TCP
performance, and E-TCP works together with most of
them to further improve performance.

2. Ensemble-TCP Design

TCP is layered on top of IP (a simple protocol that
offers a connection-less, best-effort packet-delivery ser-
vice) and provides a reliable byte-stream between two
applications. TCP connections are independent; most
TCP stacks keep state on a per-connection basis in a
structure calledTCP control block(TCB) or an equiva-
lent construct. Some of the information in a per- TCB is
not application-pair-based but depends on host-pairs (or
even subnet-pairs). One example is round-trip time
(RTT). If there are multiple connections between the
same hosts, each will independently monitor its trans-
missions to estimate the RTT between the two hosts,
starting with a conservative default value. An alternative
scheme is to share RTT information between such paral-
lel connections. Transient performance would improve,
because individual connections do not have to redis-
cover information.

Braden [7, 8] first described how caching TCB state
gathered by a previous connection instance can be used
to avoid inefficiencies when opening a similar new con-
nection. Touch named this casetemporal sharing[1]
and extended the idea of TCB caching by suggesting
that TCB state can be aggregated and shared across sim-
ilar concurrent connections. This isensemble sharing,
and a bundle of concurrent connections sharing TCB
information anensemble. E-TCP implements both these
ideas to improve TCP service, similar to TCP-INT [6]
(see Section 7) which was the first implementation of
ensemble sharing.

In the remainder of this section, the design space for a
state sharing and caching TCP is explored. Design
choices include:

• which state to share/cache
• which connections share state
• how to divide shared state among the connections
• how to maintain cached state
• update policy for shared state

A first design issue is which state E-TCP ensembles will
share. Information that is costly to obtain is prime candi-
date for sharing. For TCP, RTT and congestion control
information (a measure of available path bandwidth) are
difficult to obtain for new connections: A new TCP con-
nection needs to spend the first few RTTs measuring
both, during this phase its performance is usually not
efficient, because the initial default values are conserva-
tive. Other pieces of end-to-end information for which
caching has been proposed are T/TCP’s connection
counters and the allowed maximum-segment-size
(MSS) for connections between a host pair. The path
maximum transmission unit (PMTU) proposal [23] sug-
gests caching PMTU values (which the MSS is derived
from) based on end point pairs, the E-TCP cache is a
suitable place for this. Consequently, E-TCP caches all
these values (Figure 1).

Grouping connections into ensembles based on host
pairs (as mentioned above) is only one possibility.
Deciding which connections belong to an ensemble and
thus share state is another design choice. Ideally, this
should be based on the type of information shared. For
example, RTT information depends on the network path
between the two endpoints. Thus, it should be shared by
all connections between a host pair. Under the assump-
tion that LAN transmission delays are negligible, this

Variable Origin Description
t_rtt TCB round trip time

t_srtt TCB smoothed round-trip time

t_rttvar TCB variance in round-trip time

snd_cwnd TCB congestion-controlled window

snd_ssthresh TCB snd_cwnd size threshold for slow start
exponential to linear switch

tao_cc T/TCP latest CC in valid SYN

tao_ccsent T/TCP latest CC sent to peer

tao_mssopt T/TCP peer’s cached MSS

members E-TCP list of member TCBs

osegs E-TCP list of unacknowledged segments of all
members in chronological send order

rbp_mode E-TCP rate-based pacing flag

Figure 1. Per-ensemble state variables maintained in an
ensemble control block (ECB), with description
and place of origin (TCP control block, T/TCP
cache or new E-TCP variable).
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may even be extended to sharing between all connec-
tions between a subnet pair. Congestion control infor-
mation, on the other hand, is bottleneck-dependent. Ide-
ally, it should be shared among all connections (on all
hosts in a network) sharing a particular network bottle-
neck. The group of connections causing and/or suffering
from congestion could then coordinate their transmis-
sions. This becomes difficult if these hosts are widely
dispersed, as the overhead of sharing state may intro-
duce intolerable delays and even increase congestion on
the bottleneck. One can also imagine a grouping scheme
that places all connections belonging to local or remote
applications, users or services in ensembles; even
though the immediate usefulness of such schemes
remains questionable. E-TCP groups connections based
on host pairs.

After deciding which connections share state and what
information is shared, a third design decision is how to
divide the aggregate state between the ensemble mem-
bers. Some of that state is in fact a shared resource, such
as congestion control information: If one connection
uses more, less will be available for others. Many differ-
ent schedulers for shared resources have been proposed.
For E-TCP, a priority scheduler with four different pri-
ority assignment policies was implemented for sharing

congestion control information. Other pieces of the
shared state are not resources but measure properties of
the network link, such as RTT and MSS information. No
scheduling is required to share them. (See Section 8.)

A less obvious design choice is the degree of state shar-
ing among ensemble members. One possible scheme is
to only initialize a new TCB from shared state, then let
normal TCP algorithms manage the connection, and
update shared state when a connection closes. Small
changes to existing TCP stacks can implement this
scheme. However, it provides only very limited ongoing
sharing, as concurrent connections are still isolated.
Thus, E-TCP implements a scheme to continuously
share state by aggregating it into a per-ensemble struc-
ture and removing it from the individual TCBs alto-
gether (Figure 2).

Temporal sharing (i.e. caching ensemble state over time)
requires additional design choices to be made, like how
cached state should be maintained while it is not in use.
Some state is likely to become invalid relatively quickly
as the network environment changes, for example, con-
gestion control parameters. Other state may be more sta-
ble and change only if routes between host pairs change,
such as RTT and MSS information. For both kinds,
older cached connection state is likely to be inaccurate,
even if timescales vary for different pieces of informa-
tion. If cached state overestimates the current network
situation, a new connection using it may be too aggres-
sive in its transmission behavior before it can update the
state with new measurements. To avoid this problem,
cached state should age over time (see Section 7). The
specifics of such a cache management scheme are out-
side the scope of this paper.

3. Ensemble-TCP Operation

As mentioned before, standard TCP maintains all state
on a per-connection basis, while E-TCP aggregates
some of it per ensemble. This state is kept in anensem-
ble control block(ECB). There are two kinds of ECBs:
active ones and cached ones. Anactive ECBhas at least
one open connection associated with it. Acached ECB
has no open connections associated with it. Figure 1 lists
the state kept in an ECB: RTT and congestion control
state are simply aggregated from the individual TCBs.
The T/TCP connection cache has been integrated into
the ECB, holding connection counters to speed up the
initial handshake, as well as MSS information. A list of
outstanding (i.e. unacknowledged) packets is main-
tained in send order for all connections of the ensemble;
this enables the integrated congestion control described
below. Another list contains pointers to the TCBs of all
member connections. Finally, a flag that specifies if rate-
based pacing should be done is included in the ECB.

Figure 2. Top diagram: Two concurrent standard TCP con-
nections, each using a separate TCB.
Bottom diagram: Two concurrent E-TCP connec-
tions sharing state maintained in a central per-
ensemble ECB.
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The TCBs of individual connections are stripped of RTT
and congestion control variables. Instead, they simply
contain a reference to the ECB of the ensemble they are
part of. They also contain a new field that specifies the
relative priority of a connection; this is used to allocate a
proportional share of the send rate to a connection.

Note that all changes proposed here are sender-side-
only, except for the T/TCP-like handshake-avoidance
scheme, which requires receiver support. However,
since this mechanism interoperates with non-E-TCP
peers (by falling back to the standard handshake scheme
if a peer does not understand the “connection count”
TCP option), receivers need not be updated to deploy E-
TCP. The remainder of this section will not discuss
operation of mechanisms inherited from T/TCP, these
are described elsewhere [7, 8].

3.1. Connection Open

Whenever a connection is opened, E-TCP checks if the
new connection can be associated with either an active
or cached ECB based on its destination. There are three
cases:

1.no active or cached ECB can be found
2.a cached ECB is found
3.an active ECB is found

In the first case, a new ECB is created, and the new con-
nection is associated with it. The fields of the new ECB
are initialized to the same values they would have for a
new standard TCB. Pacing is turned off, and the list of
outstanding packets is empty.

In the second case, the ECB already holds state that was
gathered during a prior incarnation of the ensemble.
That state is likely to be more accurate than the conser-
vative default values, so it will be reused for the new
connection. Slow-start will be skipped; to avoid bursting
the network at line-rate due to a large cached congestion
window, E-TCP will pace the first packets until the

acknowledgment (ACK) clock is going; a technique
originally designed to overcome the slow-start restart
problem [2]. (E-TCP will also use pacing during slow-
start restart). The list of outstanding packets is empty.

Figure 3 shows the packet trace of a scenario where state
generated by a previous connection instance (on the left)
is reused by a later instance (on the right). Both connec-
tions transmit the same number of packets. Note that the
first four packets of the later connection are paced based
on the previously measured RTT and congestion win-
dow, until the connection’s own ACK clock takes over.
This graph also demonstrates the performance gain
achieved by E-TCP’s temporal sharing: The later con-
nection needs about 0.18 seconds less than the previous
one to transmit the same amount of data.

In the third case mentioned above, an active ECB is
found. The new connection is then simply associated
with it and will start sending packets when notified by
the ensemble scheduler (see section 3.4). The pacing
flag and the list of outstanding segments of the active
ECB are not changed.

3.2. Connection Close

When a connection closes, there are two possibilities: If
it is the last active connection of the ensemble, the ECB
associated with the connection will be cached. If it is
not, the connection simply stops sending and releases its
TCB. Other active connections will continue to use the
ECB.

3.3. Ensemble Congestion Control

In standard TCP, the send rate is controlled on a per-
connection basis: Each connection has its ownconges-
tion window(cwnd) andslow-start threshold(ssthresh).
The congestion window controls the number of packets
the connection may have outstanding, while ssthresh
controls how long a connection will remain in the slow-

Figure 3. Example of E-TCP temporal sharing.

packets

acks

Packets [seqno]

Time [sec]0

10

20

30

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4



5

start phase. E-TCP aggregates these values per ensem-
ble. An incoming ACK on any connection increases the
aggregate cwnd, while lost packets and lost ACKs will
decrease the aggregate cwnd. The additive-
increase/multiplicative-decrease algorithm of standard-
TCP is kept but applied to the aggregate cwnd and
ssthresh. Thus, an ensemble will only be as aggressive
as a single standard TCP connection, independent of
how many connections are part of it. A single E-TCP
connection (if it is part of an ensemble) will thus be less
aggressive than a Reno connection, or (if it is the only
ensemble member) exactly as aggressive as a Reno one.

As mentioned above, an ensemble maintains a sorted list
of sent but unacknowledged packets, each having an
associatedskipped ACKcounter. E-TCP adopts this
scheme from TCP-INT [6], for which it was originally
designed. When a packet is sent, it is appended to the
end of the list, and its skipped ACK counter is set to
zero. Whenever an acknowledgment (ACK) for any con-
nection of an ensemble is received, E-TCP increases the
skipped ACK counters of all packets in the list that were
sent before the ACK’ed packet by one. For all packets
that have had their counters increased, E-TCP will
increase the duplicate ACK counter of the packet’s con-
nection by one. All ACK’ed packets are then removed
from the list. Standard TCP per-connection ACK rules
are performed, which may trigger retransmits or close
the congestion window.

Normally, the scheduler determines which connection
may send a packet according to the ticket distribution of
the ensemble members. However, if a connection needs
to retransmit a packet, it is given priority, because it may
not have used its assigned share due to packet loss. (Not
having to wait to be scheduled might also avoid a costly
retransmission time-out in some cases.) The retransmit-
ted packet is moved from its original spot in the list to
the end, and its skipped ACK counter is reset to zero. If
a retransmission timer expires, all packets are removed
from the list.

Note that this congestion control scheme only works
well with immediate ACKs. With delayed ACKs,
unnecessary retransmissions are scheduled (because of
skipped ACKs), hurting performance. TCP-INT [6] has
a more elaborate retransmission variant that supports
delayed ACK receivers and can be adopted for E-TCP.

3.4. Ensemble Scheduling

The previous section explained how the aggregated con-
gestion control state is being managed. Since E-TCP
maintains the ACK clock per-ensemble, a new mecha-
nism to schedule send operations for connections is
needed. Each ensemble has a priority-based scheduler

based on stride scheduling [3], allowing clients to hold a
number of tickets determining the relative share of a the
congestion window that will be allocated to them. The
scheduled quantum has a granularity of one packet.

Figure 4 shows an example of an ensemble using fair
scheduling (described in Section 4). The first connection
starts at 0 seconds and uses the whole congestion win-
dow since it is the only ensemble member at that time.
Note that the transmission pattern looks exactly like a
standard TCP connection. When the second connection
starts at 0.5 seconds into the trace, the two ensemble
members immediately split up the aggregate congestion
at a ratio of 1:1. This is illustrated by the decline in
slope of the first connection’s curve. The third connec-
tion starts at 0.8 seconds, and each connection now uses
a third of the congestion window. After the third con-
nection finishes (at 1.24 seconds), the first and second
again split the congestion window at a ratio of 1:1; after
the second one finishes (at 1.41 seconds), the first con-
nection uses all of the congestion window.

4. Ensemble Sharing Evaluation

E-TCP was implemented for a beta version of the ns-2.1
network simulator [11], and its performance was evalu-
ated by measuring web accesses using HTTP/1.0 over
both E-TCP and TCP/Reno to the following five web
pages (modeled after real pages found on the web in
summer 1997):

Text Page:
• 1 large HTML part (29K)
• 3 medium images (7-13K)

Figure 4. Example of E-TCP ensemble sharing using fair
scheduling.
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Map Page:
• 1 small HTML part (5K)
• 3 small images (1-3K)
• 1 large image (67K)

Graphics Page:
• 1 medium HTML part (7K)
• 9 small images (1-3K)
• 4 medium images (9-12K)

Frames Page:
• 4 small HTML parts (1-2K)
• 1 medium HTML part (7K)
• 1 large HTML part (83K)
• 14 small images (1-3K)
• 7 medium images (5-19K)

Java Page:
• 1 medium HTML part (8K)
• 7 small images (1-2K)
• 3 medium images (4-11K)
• 14 small Java parts (1-3K)
• 11 medium Java parts (4-18K)

The main performance criterion during these experi-
ments isHTML transmission time. The HTML parts of a
page are important for two reasons: First, they normally
contain the content the user requested (embedded graph-
ics are often used for presentation purposes only). Sec-
ond, HTML parts drive the page rendering process,
since all links are contained within them. Thus, a client
cannot request embedded objects before (at least part of)
the HTML parts of a page have been received. In Figure
5, the solid bars plotted in the foreground depict HTML
transmission times. A secondary performance criterion
is total transmission time, which is plotted using striped
bars in Figure 5. (For cases without a striped bar, an
HTML-carrying connection finishes last and the HTML
delivery time is also the total transmission time).

We measured one simulated page download to obtain
HTML and total transmission times for each page and
scenario. Since the setup does not contain any random
elements, repeating a simulation run always yields the
exact same result - thus, no error bars or confidence
intervals are included in the graphs.

The simulated link between the client and server has a
latency of 50ms, a bandwidth of 800Kb/s and an MSS of
512 bytes. A simple FIFO queue is used to model aggre-
gate router behavior, queue buffer space was a parame-
ter (unlimited and 10 packets). There is no other traffic
present, all losses are thus due to self-interference.

When this work was begun, the ns simulator did not
support true two-way TCP traffic and also did not
include connection setup (SYN) and teardown (FIN)
packets when simulation TCP. Thus, 1.5 RTT are added

to the measured times to reflect the initial handshake.
Another 0.5 RTT is added to the results to compensate
for not sending the request message. (Requests typically
fit in one packet [19], so their transmission time is negli-
gible.) This implicitly assumes request messages are
never dropped, and server-side processing time is zero.

To compare the performance of TCP/Reno and E-TCP,
page accesses for all five test pages over each of the two
transport protocols are simulated. Two parameters are
modified: minimum path queue limit (10 packets and
unlimited) and transactional concurrency (4 parallel
connections, because a widely-used browser uses that
number, and unlimited), resulting in four distinct config-
urations:

• Model Scenario: unlimited path queue, unlimited
concurrency

• Realistic Client Scenario: unlimited path queue, con-
currency limit of 4 connections

• Realistic Network Scenario: path queue of 10 pack-
ets, unlimited concurrency

• Realistic Scenario: path queue of 10 packets, concur-
rency limit of 4 connections

The first case simulates page accesses over an model
network using a model client - the baseline case. The
second case limits the concurrency of the client, which
most real clients do, modeling the best network situation
a realistic client could encounter. The third case simu-
lates a model client over a realistic network having a
limited path buffer. The final configuration is closest to
the real-world case, where a concurrency-limited client
issues requests over a network with a path queue limit.

Four different scheduling policies are simulated for E-
TCP; all are based on the priority scheduler described
previously:

• Content-dependent: Tickets are assigned to connec-
tions based on the content of the response message
they transmit. This ticket distribution was chosen:
HTML 12, Java 6, image 3, FTP 1.

• Ticket decay: Connections start with 16 tickets. After
sending the 5th, 10th, 20th and 40th packet, half of a
connection’s tickets decay.

• Fair: Each connection holds one ticket.

• HTML-pre: A variation of content-dependent sched-
uling. HTML-carrying connections hold an infinite
number of tickets, thus preempting all non-HTML
connections. Other connections hold tickets accord-
ing to the content transmitted over them, as described
above.
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4.1. Model Scenario

In the “model” scenario, the network has unlimited buff-
ering capacity, meaning no packets are ever dropped.
The model client simulated is not limited in issuing con-
current requests. This scenario rewards aggressive
behavior, so the Reno bundle is expected to outperform
E-TCP. It is the baseline scenario, showing maximum
obtainable performance for each case.

The solid bars in the top chart of Figure 5 show that E-
TCP using HTML-pre scheduling is fastest in delivering
HTML for all five pages; the improvements over Reno
range between 6% and 46% for the five pages. E-TCP’s
other three scheduling mechanisms from 2% to 60%
slower than Reno in all but one case (graphics page
transmitted by E-TCP with content-dependent schedul-
ing) - even there, the improvement is a minor 3%.
HTML-pre performs well, because even though no
packets are dropped, all other scheduling mechanisms
(and Reno) send non-HTML packets interleaved with
HTML ones as requests arrive at the server. Perfor-
mance differences are thus due to queueing delay only.

Looking at total transmission times (striped bars), note
that E-TCP needs from 2% to 26% more time than a
Reno bundle for four pages, regardless of the scheduling
employed. Even for the fifth page (map page), the Reno
bundle is only 4% slower than E-TCP. Reno’s aggres-
siveness clearly pays off in a scenario with unlimited
resources.

Also note that all E-TCP scheduling mechanisms have
the same total delivery time for the same page. This
illustrates E-TCP’s integrated scheduling.

4.2. Realistic Client Scenario

This scenario (second graph in Figure 5) models a real-
istic client that limits the number of parallel requests it
will issue. Clients use multiple connections to increase
transmission throughput. A concurrency limit bounds
the aggressiveness of such a connection bundle, thus
lowering the chance of substantial losses as the other-
wise overaggressive bundle saturates the bottleneck.
Since the network still has unlimited buffering in this
scenario (rewarding aggressiveness) but the Reno bun-
dles are now less aggressive, they are expected to take
longer for total transmission times compared to the pre-
vious scenario. Compared to the first scenario, the per-
formance impact of an unnecessary connection limit can
be observed.

An E-TCP ensemble will (by design) always be as
aggressive as a single Reno connection. Thus, an exter-
nal scheme to control aggressiveness (like the concur-
rency limit) is not necessary to improve E-TCP’s behav-

ior (also see Section 4.3). Nevertheless, a concurrency
limit of four connections was also enforced for E-TCP
in the interest of keeping the experiment simple.

As in the previous scenario, the network has unlimited
queuing capacity and there are no packet losses. Perfor-
mance differences for the same combination of TCP fla-
vor and scheduling mechanism compared to the previ-
ous scenario are thus due to changes in transmission
delay only. A good example is the (now concurrency-
limited) Reno bundle’s HTML delivery time for the java
page: It is about twice as fast compared to the previous
experiment. This is due to the fact that at most three
other connections (carrying non-HTML data) will be
sending while HTML is being transmitted (and so pre-
empt it), while tens of them were active during the pre-
vious experiment. Thus, the server will send less non-
HTML packets interleaved with HTML ones, and so
HTML transmission times will be reduced. Also, each
connection ends faster - but later connections may start
later, since they have to wait for one of the four “con-
nection slots” in the bundle to become available. The
frames page, on the other hand, is a special case: It con-
sists of many objects, but by far the largest ones are
HTML. Throughput plays a larger role here, and the
gains due to improved delay are only minor (12%).

Limiting concurrency is only effective if a page consists
of many objects. The text and map pages do not, and
performance (both HTML transmission and total time)
is identical to the previous scenario. These two cases
will not be addressed further below. For the remaining
three pages (frames, graphics, java), E-TCP with
HTML-pre scheduling outperforms all other scheduling
mechanisms and the plain Reno bundles for HTML per-
formance. It is between 4% and 21% faster than a Reno
bundle (depending on the page). E-TCP’s three other
scheduling schemes are from 2% to 27% slower than
Reno in all but one case: E-TCP with content-dependent
scheduling is 4% faster than Reno for the frames page.

Note that HTML delivery times for E-TCP with HTML-
pre scheduling are unchanged from the previous experi-
ment. Since HTML-pre scheduling lets HTML traffic
preempt other content, the concurrency limit is mean-
ingless during the HTML delivery phase.

For the three pages (graphics, frames, java) affected by
the concurrency limit (because they consist of many
parts), E-TCP ensembles transmit the whole page from
8% to 29% faster than Reno bundles in this scenario. E-
TCP benefits from sharing state, because connections
starting later during the page retrieval period can take
advantage of a wider congestion window opened by
prior ensemble members, while later Reno connections
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Figure 5. Comparison of HTML (solid bars) and total (striped bars) transmission times for five different pages (text, map, graph-
ics, frames, java) over TCP/Reno and E-TCP, the latter with four scheduling mechanisms. Plotted for four combinations
of concurrency limit and path queue limit. Bars with numbers above were cut off but continue to that value. Black trian-
gles indicate fastest total transmission time for each page, white triangles indicate fastest HTML transmission time.
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have to slow-start. In other words, the aggregate E-TCP
congestion window is larger than the aggregate Reno
congestion window during later phases of a page
retrieval.

Reno total transmission times (striped bars) are between
22% and 80% higher (for the three pages affected by the
concurrency limit) than in the previous scenario, but
only up to 10% for E-TCP. This is expected, because the
concurrency limit causes a Reno bundle to be less
aggressive, and thus slower. For E-TCP, the difference is
due to the interaction between limiting concurrency and
rate-based pacing: E-TCP turns on pacing for an ensem-
ble when all its connections are half-closed (i.e. have
sent all data and are waiting for the last ACK). This
mechanism prevents a situation where a new connection
will burst the network with one congestion window’s
worth of packets when all other ensemble members are
half-closed. Pacing slows down the first few packets of
the new connection, thus causing the performance dif-
ferences seen in the diagram. Another interesting obser-
vation is that total transmission times for E-TCP is no
longer identical for the different scheduling mecha-
nisms. Again, this is due to the interaction described
above, because different scheduling schemes cause a
different number of packets to be paced at different
times, and thus transmission times change slightly. As
mentioned before, a concurrency limit is not needed for
E-TCP, so both these anomalies can easily be elimi-
nated.

4.3. Realistic Network Scenario

Here (third graph in Figure 5), a model client issues
requests over an realistic network. As in Section 4.1, the
model client has no concurrency limit and will issue
requests as it encounters links while parsing the HTML
parts of a page. This scenario illustrates that a concur-
rency limit is essential for TCP/Reno to achieve accept-
able performance in the presence of finite router buffer-
ing, especially for pages which consist of many parts. E-
TCP, on the other hand, should perform much better
than Reno in all cases, as a concurrency limit is not nec-
essary. In fact, a concurrency limit may lower E-TCP’s
performance by interfering with the integrated schedul-
ing mechanism by delaying requests.

The results for the map page are unchanged from the
two previous scenarios, illustrating that for pages con-
sisting of a few number of parts, a Reno bundle can
sometimes achieve good performance. Thus, the map
page will not be discussed further. On the other hand,
for the text page, which also consists of few parts, Reno
takes almost three times as long, because of multiple
losses. This shows that for some pages, even a concur-
rency-limited Reno bundle is still too aggressive.

E-TCP with HTML-pre scheduling is again 6-73%
faster than Reno in transmitting the HTML parts of the
pages. It is also always faster compared to the other
three scheduling schemes, which perform from 27%
worse to 65% better than Reno.

For total transmission times, Reno fares much worse,
being 2.5-20timesslower than E-TCP. This difference
in performance between HTML and total times is
caused by Reno’s extreme aggressiveness during later
phases of a page retrieval period, which leads to exten-
sive losses (14% for the java page) and retransmission
time-outs.

Note that E-TCP times are unchanged from the first sce-
nario (Section 4.1). As explained above, E-TCP does
not require a concurrency limit to perform well. In fact,
a concurrency limit sometimes decreases E-TCP’s per-
formance, as can be seen be comparing the total trans-
mission times of E-TCP with HTML-pre scheduling to
the previous case: it is now up to 10% worse for the dif-
ferent pages.

4.4. Realistic Scenario

The last scenario (bottom graph in Figure 5) shows
transmission times for a case where the router queue
was limited to 10 packets (as in the previous scenario)
and the client enforced a concurrency limit of 4 connec-
tions for both Reno bundles and E-TCP (as in the sec-
ond scenario).

As in the three previous scenarios, E-TCP with HTML-
pre scheduling outperforms all other scheduling mecha-
nisms and plain Reno bundles for HTML transmission
of all five pages. It is from 4% to 75% faster than Reno
bundles (depending on the page). E-TCP’s other sched-
ulers do not perform as well, they are in the range of 2%
to 27% slower than Reno; except for the text page,
where the Reno connections had multiple losses during
the transmission of the HTML part, here the three
schedulers are 61% to 65% faster than Reno (but still
slower than HTML-pre). For total delivery times, E-
TCP is between 17% and 61% faster than a Reno bun-
dle, depending on the page transmitted.

For Reno, two interesting observations can be made:
First, for the frames page, HTML delivery time is lower
than during the second scenario (which had no path
queue limit). A packet trace shows that this is because
several image connections have multiple losses, which
cause fewer image packets to become interleaved with
HTML packets in the router queue. Second, for the text
page, delivery time is unchanged from the previous sce-
nario (where no concurrency limit is enforced.) This
shows that for some pages, a concurrency limit alone is
not sufficient to improve Reno’s performance.
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5. Temporal Sharing Evaluation

To quantify the performance improvements of temporal
sharing, a repeated access to a page (see Figure 6) is
simulated. The pages and network configurations are
unchanged from the ensemble sharing experiments
(Section 4). However, the simulation now consists of
two consecutive accesses to each page to model a situa-
tion where a user requests multiple pages from one
server. HTML and total delivery times are measured for
both accesses. One assumption is that the network
parameters will not change between the accesses, thus
the cached state is reused for the later connection with-
out being aged or validated. This means the perfor-
mance gains we measured are an upper bound; perfor-
mance may be different if the network characteristics
have changed. Another limitation is that only repeated
accesses to the same page are simulated. More extensive
experiments should include repeated accesses to differ-
ent pages, as well as varying background traffic (see
Section 8).

The ensemble experiments have shown that HTML-pre
is the best of the four simple E-TCP scheduling schemes
proposed. Thus, only E-TCP with HTML-pre will be
compared against plain Reno in this section.

For each page, the graphs show HTML and total deliv-
ery times for the initial and the repeated access. Because
TCP/Reno does not share state, the two times are always
identical, and the diagram includes only one Reno
access.

In the “model” scenario (top graph of Figure 6), the
repeated page access using E-TCP is from 48% to 82%
faster than a Reno bundle in delivering HTML for the
five pages simulated, and between 4% and 72% faster
overall. This means that even in an ideal Reno scenario
(aggressiveness is rewarded), repeated page accesses to
the same server are faster using E-TCP. The benefits of
temporal sharing alone are demonstrated when compar-
ing the first E-TCP access to the repeated one, the latter
is 17% to 53% faster (depending on the page) in deliver-
ing HTML, and between 11% and 28% faster overall.
Also, the repeated E-TCP access avoids the three-way
handshake, reducing the user-perceived idle time at the
beginning of the retrieval by 1 RTT. Thus, the system
feels more responsive to a user.

In the “realistic client” scenario (second graph in Figure
6), a concurrency limit of four connections is enforced,
but the network still has unlimited buffering. E-TCP’s
repeated access is between 35% and 55% faster than
Reno for HTML (depending on the page) and from 17%
to 37% faster overall. Temporal sharing benefits alone
are illustrated by the increase in performance between
E-TCP’s first and repeated access, which lies between

17% and 53% (depending on the page) for HTML trans-
mission time, and 10% to 28% overall.

For the “realistic network” scenario which has no con-
currency limit, but a limit path queue, the repeated page
access using E-TCP is 63% to 87% faster than a Reno
bundle in delivering HTML and between 27% and 96%
faster overall. Looking at benefits achieved by temporal
sharing alone, E-TCP’s repeated access is between 15%
and 53% faster than the initial one for HTML, and from
8% to 28% faster overall, depending on the page
accessed.

For the “realistic” scenario (bottom graph in Figure 6),
the network had a path queue limit of 10 packets, and
only four concurrent connections were allowed. Here,
E-TCP’s repeated access is between 30% and 82%
faster than a Reno bundle for HTML parts, and from
32% to 72% faster overall. Temporal sharing speeds up
the repeated E-TCP access between 17% and 53% for
HTML, and from 10% to 28% overall, compared to the
initial one.

These results show that repeated E-TCP accesses (with
HTML-pre scheduling) are faster in transmitting HTML
and the total pages for all simulated scenarios both com-
pared to the initial E-TCP request and a Reno bundle
transmitting the same data. This indicates that temporal
sharing of connection state can substantially increase
performance of web accesses, at least in some scenarios.

6. Discussion

The results presented in the previous two sections show
that E-TCP with HTML-pre scheduling is fastest in
transmitting HTML in all simulated scenarios, even
ones that reward aggressiveness and thus cater to Reno
bundles. In scenarios with limited network buffering, E-
TCP also outperformed Reno for total page transmission
times.

Recall that the performance differences between the
four E-TCP schedulers (in the second and fourth graph
in Figure 5) are caused by an interaction between pacing
and the concurrency limit. The limit was enforced to
simplify the simulation, but which in fact slightly
decreases E-TCP performance for some cases. Without
it, HTML-pre scheduling is also fastest for total delivery
transmission times (E-TCP performance will then be as
shown in the third graph of Figure 5).

From both these observations follows that HTML-pre
scheduling is clearly the best choice according to the
performance criteria defined at the beginning of Section
4. However, other schedulers may perform better for
other traffic patterns. One of the novel features of E-
TCP is that different schedulers can be easily imple-
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Figure 6. Comparison of HTML (solid bars) and total (striped bars) transmission times for repeated accesses for five different
pages (text, map, graphics, frames, java) over TCP/Reno and E-TCP with HTML-pre scheduling. Plotted for four com-
binations of concurrency limit and path queue limit. Bars with numbers above were cut off but continue to that value.
Black triangles indicate fastest total transmission time for each page, white triangles indicate fastest HTML time.
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mented, because congestion control has been decoupled
from packet scheduling.

The third and fourth graph of Figure 5 illustrate that a
concurrency limit is vital to achieve acceptable Reno
performance when transmitting pages with many parts.
Without one (third graph), performance is substantially
degraded. Even with a concurrency limit, performance
cannot be improved in all cases (one example for this is
the text page in the fourth graph). One reason is that
even with a limit of four concurrent connections as dur-
ing some of our simulations, a Reno bundle is still
roughly four times as aggressive as a single Reno con-
nection, and can thus overload the network.

Results in Section 5 show that E-TCP’s temporal shar-
ing can substantially improve performance for repeated
accesses to the same server, compared to both an initial
E-TCP request, and more importantly, a Reno bundle.

As mentioned in the introduction, the network transmis-
sion behavior of an E-TCP ensemble closely resembles
that of a single Reno connection. Using E-TCP for web
traffic is very similar to using HTTP/1.1 (see Section
6.1). Thus, even though our simulations were limited in
scope (five pages, four network scenarios, no back-
ground traffic) there is strong indication that the idea of
TCP state sharing can substantially increase perfor-
mance under a more varied set of conditions. While
more extensive experiments are certainly useful, E-
TCP’s behavior in other scenarios can be extrapolated
from well-understood TCP/Reno behavior.

6.1. Interaction with HTTP/1.1

All experiments have used HTTP/1.0 to transmit web
transactions. Many of its performance problems are due
to the mapping of one web transaction to one TCP con-
nection. The more recent HTTP/1.1 includes support for
persistent TCP connections that can be reused for sev-
eral web transactions. The connection reuse of
HTTP/1.1 is very similar to E-TCP’s ensemble sharing.
The largest difference is that E-TCP allows multiple
web transactions to occur in parallel, while HTTP/1.1
responses must complete only in the order requested.
Thus, E-TCP offers packet-scale scheduling, while
HTTP/1.1 allows only transaction-scale scheduling. A
similar effect to packet-scale scheduling can be pro-
duced with HTTP/1.1: Clients need to issue several
requests for parts of an object, instead of one request for
the whole object. If the requested parts are small enough
and clients issue them in similar ways to E-TCP, the
effect could be comparable. Drawbacks of this tech-
nique are changes required to clients (E-TCP is mostly
sender-side) and additional load put on servers (most
spawn a new process per request).

Overall transmission times of HTTP/1.1 and E-TCP
should be exactly equal: Both will use one connection (a
logical connection in E-TCP’s case) to transmit a page,
reusing it to transmit all components. However, multiple
HTTP/1.1 connections are not integrated (and thus more
aggressive) than multiple E-TCP connections, which
will always cooperate. Thus, HTTP/1.1 aggressiveness
may be higher than E-TCP’s if clients use multiple per-
sistent connections.

Another advantage of E-TCP is that it is a transport-
level improvement: all TCP traffic will benefit.
HTTP/1.1 will only work for web traffic, because it is an
application-level protocol.

Furthermore, HTTP/1.1 does not have temporal sharing,
which improves transmit times for repeated transac-
tions. Instead, it allows to speculatively keep a connec-
tion open after a transaction finishes, with the intent to
reuse it for possible future accesses. This triggers bursti-
ness in TCP’s slow-start restart algorithm after idle time
[26]. Several proposed TCP extensions (including rate-
based pacing employed by E-TCP) address this known
issue.

6.2. Comparison with other TCP Extensions

A number of modifications have been proposed to
TCP/Reno to improve its performance, including:

• TCP/Vegas [15], which replaces Reno’s RTT man-
agement with a finer-grained scheme and modifies its
congestion control algorithms to make decisions
based on throughput rates

• TCP Selective Acknowledgments (TCP/SACK) [17],
which improves retransmissions by explicitly notify-
ing a sender about segments which were received

• TCP Forward Acknowledgments (TCP/FACK) [13],
which builds on TCP/SACK to more accurately esti-
mate the amount of data outstanding in the network

• Explicit Congestion Notification (ECN) [14], which
uses a router-set flags in IP headers to indicate net-
work congestion, and proposes algorithms on how
TCP should do congestion control if segments with
set ECN flags are encountered

• Allman et. al. [28] propose to increase TCP’s initial
congestion window to more than one packet

• Rate-halving [29] is a technique to space transmis-
sions after an indication of congestion to avoid bursts

E-TCP is orthogonal to these improvements - except for
TCP/SACK (see below). The idea of state sharing does
not depend on specific algorithms to manage shared
state. We chose to implement standard Reno algorithms,
causing an ensemble to behave like one Reno connec-
tion. However, this can easily be changed to implement
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different state management algorithms for the aggregate
ensemble state, e.g. TCP/Vegas’ RTT algorithms, or any
combination of the algorithms above.

TCP/SACK receivers provide more detailed feedback
about received segments to their senders using TCP
options. It is possible to integrate TCP/SACK with E-
TCP’s retransmission scheme: One idea is to more care-
fully manage an ensemble’s list of outstanding segments
based on the additional information provided by
TCP/SACK. However, the details of this integration
need to be carefully studied.

7. Prior and Related Work

7.1. Integrated Congestion Management

TCP extensions for transactions (T/TCP) have been
designed to improve (handshake) performance for
repeated connection instances by caching limited TCP
state (connection counters). Braden [7, 8] also briefly
mentions how caching other state (RTT, MSS, conges-
tion window) may further improve T/TCP performance.

Touch generalized the idea of TCP state sharing [1] and
differentiated between temporal sharing (caching over
time, as done by T/TCP) and ensemble sharing (concur-
rent use of aggregate state). In addition to the fully inte-
grated sharing scheme implemented for E-TCP, he
describes read-on-open and write-on-close semantics
for the aggregate state, leading to less coupling among
the members of an ensemble. E-TCP builds on both
Braden’s and Touch’s proposals.

Balakrishnan et. al. [6] have implemented TCP-INT, an
extension to TCP that integrates congestion control over
a bundle of TCP connections. E-TCP reuses their con-
gestion control scheme (based on skipped ACKs). TCP-
INT does not support temporal sharing, so each new
connection will go through the standard handshake and
slow-start phase, while E-TCP caches ECBs and reuses
them when a new ensemble instance is created. This
allows E-TCP to avoid both the handshake and slow-
start phase, resulting in improved performance for
repeated connections. TCP-INT does also not support
multiple scheduling schemes.

A more recent proposal by Balakrishnan et. al. [25] is
the per-host Congestion Manager, which maintains net-
work statistics on a per-receiver basis, performs conges-
tion avoidance and control and schedules transmissions.
It is similar to E-TCP’s ensemble cache in that network
parameters are cached and aged over time, but offers an
API for applications and application-level protocols. It
also supports congestion management for both UDP and
TCP, however it requires a new packet header between
IP and the transport layer.

TCP Fast Start [30] utilizes a cache of TCP state infor-
mation (containing congestion window and RTT infor-
mation), much like E-TCP temporal sharing does, to
improve the start-up performance of new connections.
TCP Fast Start sends more packets than slow-start
would but marks those extra packets with a drop-prefer-
ence flag. This avoids bursting the network, but requires
router support - unlike E-TCP, which uses pacing to
achieve a similar effect. Also, TCP Fast Start does not
address ensemble sharing, i.e. how cached information
is utilized by concurrent connections.

7.2. Other Prioritizing Systems

Crowcroft and Oechslin [12] propose MulTCP, which
allows users to assign weights (priorities) to different
connections, which will then receive a proportional
share of the available bandwidth along a congested path.
A MulTCP connection of weightN is madeN times
more aggressive than a standard Reno connection by
introducingN as a factor into TCP’s congestion control
and slow-start algorithms. In a sense, MulTCP is the
inverse of E-TCP: A single E-TCP connection is 1/Nth
as aggressive as a single Reno connection (withN being
the number of connections in its ensemble).

At the network-level, several proposals have been made
to prioritize traffic. One such proposal is to extend IP for
integrated services [32]. In this scheme, receivers ini-
tiate a resource reservation request to receive a guaran-
teed service commitment with the Resource Reservation
Protocol (RSVP) [33]. A second proposal is to extend IP
to support differentiated services [34]. This approach
allows high priority traffic to take precedence over exist-
ing traffic on a per-packet basis. Compliant routers will
respect priorities in their queueing and forwarding deci-
sions. Both these systems may not interact well with E-
TCP in some situations: One of the basic assumptions of
state sharing is that the network characteristics are simi-
lar for all ensemble members. If members of an E-TCP
ensemble fall into different service classes, this is no
longer true and aggregating their different views of the
network will most likely lead to less than efficient
behavior. Additional work is needed to integrate net-
work-level scheduling with transport-level scheduling.

7.3. Application-Level Multiplexing Systems

Several proposed mechanisms allow application-level
multiplexing of byte-streams onto a single connection:
The Transaction Internet Protocol (TIP) [20] includes
the TIP Multiplexing Protocol (TIP/TMP). SCP [22] is a
similar proposal from Spero, as is SMUX [21]. All three
schemes add a layer of indirection to TCP by wrapping
chunks of data from different logical connections with a
demultiplexing header (subdividing the sequence num-
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ber space). E-TCP does not incur the overhead of these
extra headers, as connections remain separate entities at
the application level. Also, E-TCP does not require the
application to be modified to support the multiplexing
effect.

7.4. Congestion Window Management Systems

The problem of reusing and adjusting the congestion
window of a connection that has been idle for some time
[31] is similar to the issue of managing cached ensemble
state: In both cases, reuse of state possibly outdated
information needs to be addressed. Pacing has been pro-
posed as a means of minimizing burstiness [2] and is
used in E-TCP, while Handley et. al. [27] propose a sim-
ple scheme that ages the congestion window by halving
it once for every RTT that a connections is idle. This
solution could be adopted to manage a cached ensem-
ble’s congestion window. However, E-TCP also requires
solutions to manage cached RTT and MSS state, which
is not addressed in Handley’s paper.

8. Future Work

E-TCP caches measured network properties over time.
Simply reusing cached state after an idle period may be
problematic if those network properties (e.g. available
path bandwidth) have changed. The current design of E-
TCP does not address this critical issue yet (see Section
2). The impact of different cache management strategies
(e.g. ageing state) on other network traffic must be care-
fully studied in real network configurations to better
understand E-TCP’s network dynamics.

Section 2 described different ways of grouping connec-
tions into ensembles. A possible extension of the group-
ing scheme would be to place connections in ensembles
per piece of shared information. For example, a connec-
tion could share RTT information with some ensemble
of other connections, and congestion control informa-
tion with another ensemble of connections. While this
approach is more general, its benefits compared to the
simpler scheme we chose needs to be investigated.

Reno’s RTT measurement algorithm uses one measure-
ment per round-trip to estimate the RTT for a connec-
tion. E-TCP in its current form simply aggregates all
measurements member connections take for an ensem-
ble. This means that for an ensemble withN members,
aboutN RTT measurements will be taken during one
round-trip. The implications of this change need to be
investigated in more detail.

The current design of E-TCP does not aggregate retrans-
mission timers, each member connection has one and
manages it independently of the others. Also, E-TCP
implements the Nagle algorithm on a per-connection

basis only. Additional research is needed to determine if
and how E-TCP would benefit if these techniques were
extended to the whole ensemble.

Ensemble sharing works under the assumption that all
connections receive a similar network service. Section
7.2 described how proposals for establishing different
levels of network service will conflict with this. Another
case where connections between the same hosts may
encounter different network service is if one (or both) of
the end hosts lies behind router that does network
address translation (NAT). To its peer, all connections
leaving the NAT router will look like they originate at
one host (the NAT router), while in fact they may origi-
nate at different physical machines. If the network
behind the NAT router has sections with widely differ-
ent characteristics, E-TCP operation will be affected.

9. Conclusion

This paper shows how a modified TCP stack can utilize
the ideas of caching and reusing TCP state information
for repeated connection instances, and share such infor-
mation among concurrent flows to improve perfor-
mance. The design space of such a TCP variant was
explored and one possible design (E-TCP) was
described in detail.

Simulated web accesses using HTTP/1.0 over E-TCP
(and four different intra-ensemble schedulers) show a
significant performance improvement compared to stan-
dard TCP/Reno connection bundles for four different
network scenarios. In one scenario simulating a com-
mon case, E-TCP is 4-75% faster than Reno for trans-
mitting the HTML parts of various pages, and 17-61%
faster transmitting the whole pages. In the same sce-
nario, reusing cached state speeds up repeated E-TCP
page accesses by 17-53% for the HTML parts and 10-
28% for the whole pages, compared to the initial access.
E-TCP can also be integrated with other proposed TCP
extensions (such as TCP/Vegas or TCP/SACK), to fur-
ther improve performance.

We have also discussed how the results compare against
HTTP/1.1 as well as several proposed TCP extensions
(TCP/Vegas, TCP/SACK, etc.) and find that most of
those proposals could be integrated into E-TCP.
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