

An Optically Turbocharged Internet Router CCW 2001, Charlottesville, VA, Oct. 15

Joe Touch Director, Postel Center for Experimental Networking Computer Networks Division USC/ISI

Outline

- Optical vs. Internet
- Goals of an Internet optical router
- Architecture
- Benefits and Issues
- Simulation results
- Remaining work

Motivation

Need Tbps true routers, but...

- Routing tables growing exponentially
- Lack of scaling (past 15 years):
 - Links increased 1,000,000x
 - CPUs increased 1,000x
 - RAM access increased 10x

Internet vs. Optical

Internet

- Longest-prefix search of 200,000 entries
- Decrement TTL
- Update checksum (IPv4)
- Buffering for statistical muxing
- Optical
 - Too little time to do full lookup (160ps/pkt@1Tbps)
 - Per-packet switch setup maybe
 - Can't compute checksum
 - No storage

Current optical focus

WDM as a bonus

- Needed to overcome dispersion
- Can be used to partition (benefit?)
- Can be used to route (benefit?)
- Connection-based/-like traffic
 - ATM/MPLS flow-based setups (MPλS, SWAP)
 - BUT: Setup doubles connection latency
 - Packet-train setup on-the-fly (OBS, TBS)
 - BUT: Setup requires large gap after first packet
 - BUT: Both expect long flows or flow aggregation

Goal - Optical Internet

(the rest of this talk)

- IP over light
 - No setup
 - Single terabit channels (*no WDM*)
 - Works for short flows, or for single packets

Inside current routers

Forwarder + switch fabric

Optical Assist

Optics as 'fast path'; electronics as backup

Bypass Design

Bypass decision tree

Key components

- Accelerator lookup
 - All-optical via correlators
 - Electronic via CAM
- Electronic backup path
 - Full lookup when correlator/CAM fails
 - Queue when output port is busy
- Optical switch
 - LiNbO₃ elements

Benefits of Accelerator

 Incremental deployment No "cloud" required Partial solution Electronic is full backup Lower latency ns per hop, not ms Higher throughput Offloads electronic path

Optical correlator

- Sequence of Bragg filters
- Tuned to match 0,1,X
 - 0,1 requires pairs, X is pass-through

Some limits

- Correlators
 - ~8 correlators
 - ~8 bits per correlator
- CAM
 - 1-8K entries, 1ns lookup (7x pipeline)
- Switch
 - LiNbO₃ at 1ns currently (parallelize?)

How useful?

Switching gain

Latency

Cost

Packet reordering

- Two separate paths, each path non-reordering, but together can reorder
- HOL blocking
 - Optical has priority on outputs
 - Use second-best paths

Reordering

Partition function

- Take advantage of optics
 - Easier to match 0's than 1's
 - Hard to match all 24 bits, easy to pick movable subset
- Incomplete function is OK
 - Avoid false positives
 - False negatives just reduce efficiency

Missing links

TTL decrement-and-test

- Trivial in electronics
- All-optical design underway with USC
- Checksum
 - Update via optical header replacement
 - "Deferred maintenance" approach
 - Use IPv6? ☺

High-speed traces and routing tables

Optical TTL

- LSB first encoding
- Electrical:

Optical:
Packet_____
Data
1's 0's

Current status

- Simulation analysis
 - What percent of traffic will be optically switched?
 - How much reordering?
- Optical correlator design
 - Implemented at USC campus
- Partition algorithm
 - Under development

For more info:

- http://www.isi.edu/pow
 - Joe Bannister, Joe Touch
 - GRAs Purushotham Kamath, Aatash Patel
 - GRA Stephen Suryaputra (alumnus)

Papers:

- An Optical Booster for Internet Routers, J. Bannister, J. Touch, P. Kamath, A. Patel, Invited Paper, Proc. Eighth International Conference on High Performance Computing, Hyderabad, India, Dec. 2001.
- Simple Wavelength Assignment Protocol," S. Suryaputra, J. Touch, J. Bannister, in Terabit Optical Networking: Architecture, Control, and Management Issues, John M. Senior, Sudhir Dixit, Chunming Qiao, Editors, Proceeding of SPIE Vol. 4213, pp. 220-233 (2000) (Proc. Photonics East).
- How Many Wavelengths Do We Really Need? A Study of the Performance Limits of Packet Over Wavelengths, J. Bannister, J. Touch, A. Willner, S. Suryaputra, Optical Networks, April 2000, pp. 17-28.
- Dynamically Reconfigurable All-Optical Correlators to Support Ultra-fast Internet Routing, M. Hauer, J. McGeehan, J. Touch, P. Kamath, J. Bannister, E.R. Lyons, A. Willner, submitted to OFC 2002.

Advance Q&A

- Why accelerate in parallel vs. pipelined?
 - Most current caches are in parallel
 - May ease incremental add if pipelined
- Why not correlate in electronics?
 - Electronic path can't run at 1 Tbps
 - Still need accelerator