

OCS: An Open Communicating System

Joe Touch Postel Center Director USC/ISI Research Associate Professor USC CS & EE/Systems

Network Research

- Past progress = point solutions
 - Channels (sockets)
 - Resource discovery
 - Resource reservation
 - Programmability
 - Virtualization
- Current obstacle?
 - More point solutions

- Operating Systems
 - Virtual memory
 - Abstract machine
 - Multiprocessing
- File Systems
 - Storage model
 - Coordinated access
 - Coherency/consistency control

A Communicating System

- Open, BSD-style program
 - Integrate and cooperate
 - Based on research \$\$
- Real ideas for research
 - New work starts with new *ideas*

Communicating System

	OS	CS
Context space	VM	Overlays
Context ptrs	Page table	Clonable Stacks
Time slice	Scheduler	Packet mux.
Protection, Resource mtg.	Kernel	X-Bone NetFS
API	system calls	xb-api
?	?	?

Why an Open CS?

OS research:

- Open hardware: PCs, PCI cards
- Open apps: Mozilla, XFree86, OpenOffice
- Closed OS MS, Apple
- Open OS BSD, Linux
- Network research:
 - Open hardware: Emulab, Gigabit Kits
 - Open applications: P2P
 - Open CS: ?

Key Steps to an OCS

- Reference implementation
 - Integrate components
- Incremental evolution
 - Simple version first
 - Augment with full capabilities later
- Leverage existing playgrounds
 - Kernel-based protocol design
 - Netgraph extensions, KLMs

OCS Relation to...

NSF OS-FIND:

- OCS extends the Internet architecture
 - Adding dimensions to a model > incremental
- OCS integrates orphan network pieces
 - Configuration, coordination, management
- NSF GENI:
 - Testbeds motivate OCS capabilities
- DARPA:
 - ?

Some of the Other Q's

- Need new archs, paradigms?
 - We have some, we need more.
 - We need to *fund* research in a few too.
- Where's the control plane?
 - In the OCS ;-)
 - It should be automatic and adaptive; if that *looks* like cognition, it's accidental

What Way Forward?

- Stop answering the questions before us
 - Start questioning the assumptions
- Less is more
 - Less mechanism
 - Less automation
 - More emergent behavior

E.g.: Network Configuration

- Current assumptions:
 - Global address coordination
 - Blind configuration
- New assumptions:
 - Revocable decisions
 - Try things: ask forgiveness rather than permission
 - Be aware of surroundings

Instant Infrastructure

- Current solutions:
 - Renumber
 - Requires coordination infrastructure
 - Multihome transport protocols
 - Requires coordination protocol
- Instant Infrastructure solutions
 - Renumbering creates new context
 - Old numbering becomes overlay; avoids renumbering
 - All connections stay with context
 - No restarting or multihoming needed

- Current assumptions:
 - All-or-none security levels
 - Full authentication of parties
 - "One level" of protection / performance
- New assumptions:
 - Something is better than nothing
 - Speed, CPU load kill deployment
 - Predeployed infrastructure kills deployment

Better Than Nothing Sec.

Current solutions

- Assumes authentication
- Requires preshared key, CA infrastructure, or key ID brokerage
- Automate CAs (PKI4IPsec)
- Embed keys (Opportunistic Encrypt.)
- New solution
 - Allow authentication-free IPsec