
Preprint of version in Computer Networks, July 2001, pp. 117-135.
A previous version appeared in Proc. ICNP 2000, Osaka Japan, pp. 59-68.

Dynamic Internet Overlay Deployment and Management Using the X-Bone

Joe Touch
USC / Information Sciences Institute

touch@isi.edu

Abstract1

The X-Bone dynamically deploys and manages Internet
overlays to reduce configuration effort and increase
network component sharing. The X-Bone discovers,
configures, and monitors network resources to create
overlays over existing IP networks. Overlays are useful
for deploying overlapping virtual networks on shared
infrastructure and for simplifying topology. The X-Bone
extends current overlay management by adding dynamic
resource discovery, deployment, and monitoring, and
allows network components (hosts, routers) to participate
simultaneously in multiple overlays. Its two-layer IP in IP
tunneled overlays support existing applications and
unmodified routing, multicast, and DNS services in
unmodified host operating systems. This two-layer scheme
uniquely supports recursive overlays, useful for fault
tolerance and dynamic relocation. The X-Bone uses
multicast to simplify resource discovery, and provides
secure deployment as well as secure overlays. This paper
presents the X-Bone architecture, and discusses its
components and features, and their performance impact.

1. Introduction

The X-Bone [31] is a system for the dynamic
deployment and management of Internet overlay
networks. Overlay networks are used to deploy
infrastructure on top of existing networks, to isolate tests
of new protocols, partition capacity, or present an
environment with a simplified topology. Current overlay
systems include commercial virtual private networks
(VPNs) [27], IP tunneled networks (M-Bone [10], 6-

1 This work is partly supported by the Defense Advanced Research
Projects Agency (DARPA) and Air Force Research Laboratory, Air
Force Materiel Command, USAF, under agreement number F30602-98-
1-0200. The U.S. Government is authorized to reproduce and distribute
reprints for Governmental purposes notwithstanding any copyright
annotation thereon. The views and conclusions contained herein are
those of the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either expressed or
implied, of the Defense Advanced Research Projects Agency (DARPA),
the Air Force Research Laboratory, or the U.S. Government.
This is an extended and reorganized version of a paper of the same title

that appears in the Proceedings of ICNP, Osaka, pp. 59-68, Nov. 2000.

Bone), and emerging research systems providing quality-
of-service guarantees. The X-Bone system provides a
high-level interface where users or applications request
DWIM (do what I mean) deployment, e.g.: create an
overlay of 3 hosts connected to each of 6 routers in a
ring. The X-Bone automatically discovers available
components, configures, and monitors them.

Other overlay systems require OS and/or application
modifications, restrict the number of overlays a router or
host can participate in, or require manual component
configuration. The X-Bone provides automated
deployment of overlays, coordinates their sharing of
network components, and monitors deployed overlays.
The X-Bone requires no specific OS or application
modifications and only basic IP in IP encapsulation, and
uses existing implementations of dynamic routing, name
service, and other infrastructure. Finally, the X-Bone is a
uniform extension of the network to support overlays, and
supports stacking (recursion) of overlays for fault
tolerance and capacity sub-provisioning for experiments.

The X-Bone uses a two-layer tunnel mechanism, rather
than the single layer used in conventional overlays. It is
this two-layer scheme which supports stacked overlays, as
well as permitting use of unmodified applications and
network services inside a deployed overlay. It also
permits network resources (hosts, routers) to participate
multiple times in a single overlay, and is the only known
overlay system that integrates both IPsec support and
dynamic routing.

This paper presents an overview of the X-Bone
architecture, and discusses the particular techniques
required to provide an IP layer overlay using existing
protocols to support existing implementations of host and
router operating systems, applications, or network
services. The paper builds on our earlier discussion of the
coarse architecture and goals [31] by presenting the
details of the X-Bone’s two-layer encapsulation, and
includes performance analysis measurements. It also
presents an extended and updated discussion of related
work and our vision of the utility of the X-Bone to
support networking research, networking education,
dynamic service deployment, and fault tolerance.

Preprint of version in Computer Networks, July 2001, pp. 117-135.
A previous version appeared in Proc. ICNP 2000, Osaka Japan, pp. 59-68.

1.1. What is an overlay?

An overlay network is an isolated virtual network
deployed over an existing network. It is composed of
hosts, routers, and tunnels. Tunnels are paths in the base
network, and links in the overlay network. Hosts are
packet sources or sinks, and routers are packet transits, as
in conventional networks. Individual components (routers
or hosts) can participate in more than one overlay at a
time or in multiple ways (router, host) in a single overlay.
Figure 1 shows an IP network (left); on that network, the
X-Bone can deploy a ring (center) or star (right), by using
various subsets of the nodes of the base network,
connected by a set of tunnels. These tunnels determine the
overlay topology, and may traverse multiple links in the
base network, or a single link multiple times.

Ring-ovl Star-ovlIP Base Network
Figure 1. A ring (center) and a star (right) overlay

deployed on a base network (left)

Overlays have three primary uses: containment,
provisioning, and abstraction. Containment is the ability
of an overlay to restrict the visibility of its contents.
Tunneling encapsulates the packets of new protocol so it
can be tested in a controlled environment. Containment
was one of the first uses of overlays in the early 1980's
[20], and motivated their re-emergence in the early 1990's
for the M-Bone and later 6-Bone [10]. Tunnels allow
incremental deployment, where (primarily) routers
lacking new protocol capabilities can be skipped over (or
through), avoiding the need for contiguous availability.

Provisioning uses reservation of components and
capacity along tunnels to provide service guarantees to the
overlay. Provisioned overlays can be used during
emergencies to create virtual infrastructure when it is not
feasible to deploy new physical resources. They can also
limit the scope and impact of network experiments, e.g.,
limiting them to nominal use of surplus capacity.

Abstraction is a new use of overlay networks. Both
provisioning and containment imply the interim the use of
overlays that are supplanted by advanced hierarchical
reservation in the former case, or more sophisticated
dynamic service deployment in the latter [28]. In these
cases, overlays are a way to provide such capabilities
without requiring contiguous deployment; once a new
protocol or service is ubiquitous, tunnels (and thus
overlays) can be avoided. However, abstraction remains a
useful tool for education (networking classes), deploying

testbeds, and simplifying applications. For example, a
single lab can support a large number of concurrent
experiments, each using a different topology. A testbed
can be configured using a graphical user interface, in do
what I mean style. Applications can request a deployed
topology (e.g., ring) without needing to incorporate
network management. In each case, manual intervention
by a network manager is avoided, and applications and
tools can be simplified.

1.2. Deploying an overlay

Conventional overlay deployment is a multi-stage
process, involving manual intervention at every step.
Components in the network (routers, hosts) are selected
according to some criteria, e.g., operating system,
protocol capability, or permissions. The desired topology
(e.g., ring) must be mapped to the available components
and parameters such as addresses, network masks, and
routes determined. For each component, secure remote
access is required, typically via SSH/telnet, and then each
component is manually configured. This includes setting
tunnel endpoints, configuring interfaces, setting link
encryption or authentication keys, and configuring routes.
Each of these steps is manual, often requiring out-of-band
communication (telephone, e-mail) to locate available
resources or initiate access. Each of these steps also
requires external mechanisms for coordination, such as a
reservation web page or e-mail system.

Once an overlay is deployed, there is no assurance it
remains available. Both in-band (over the overlay) and
out-of-band (in the base network, or via telephone or e-
mail) methods may be required to confirm the state of the
overlay. Current overlays lack mechanisms for
monitoring, for repairing an erroneous component, or for
signaling for attention. Modern dynamic routing protocols
are typically not available within an overlay, so they are
susceptible to single-tunnel failures. When an overlay is
no longer of use, it must be dismantled. This is requires a
tedious recapitulation of installation steps in reverse.

The key problems with the current method of overlay
deployment are manual intervention, the excessive need
for out-of-band communication, the lack of monitoring,
and the necessity of separate dismantling procedures. The
X-Bone is designed to reduce deployment effort,
involving manual interaction only at the initial request
phase, e.g., in a graphical user interface, or programmatic
API. Resource discovery is automatic, such that any
sufficient available resources can be used to satisfy a
request. Resource sharing is managed so many overlays
can simultaneously share the use of a single component.
An X-Bone overlay can use features of the existing
Internet, including dynamic addressing (DHCP), dynamic
routing, and diagnostic tools (traceroute, ping, etc.)
without modification. The X-Bone also supports existing

Preprint of version in Computer Networks, July 2001, pp. 117-135.
A previous version appeared in Proc. ICNP 2000, Osaka Japan, pp. 59-68.

host operating systems and applications, assuming only
basic support for IP in IP encapsulation.

The X-Bone extends the current Internet network
architecture to include support for overlay networks. It
supports stackable overlay networks, where control can be
via a web-based GUI (Figure 2) or a program-controlled
API. An X-Bone overlay is an integrated end-to-end
solution, including host configuration, router
configuration, and support for DNS.

Figure 2. X-Bone graphical user interface

This paper presents the X-Bone and discusses its
components and features, their performance impact, and
the effect of overlays on the Internet architecture. The
architecture section presents the X-Bone’s components
and features, including its use of two-layer tunnels to
avoid OS and application customization and to support
recursion. The evaluation section discusses the system's
new capabilities, security, and performance. Related
efforts and future work are discussed, including
extensions for fault tolerance and the merging and
splitting of deployed overlays.

Before proceeding, it is important to address
capabilities outside the scope of the X-Bone. The primary
purpose of the X-Bone is to examine the capability of
automated overlay deployment. As such, a number of
optimizations are not addressed, trading completeness for
expedience. The X-Bone maps overlay components to
available network components using a replaceable,

arbitrary algorithm. Optimization of component
placement, e.g., to avoid redundant tunnels, or to match
the overlay topology to the base network topology is
computationally intractable, and not the focus of this
effort. Similarly, the X-Bone provides hooks to reserve
network resources, including capacity, but QoS, network
bandwidth, and router queues are not currently reserved.
The current Internet architecture for reserving such
resources, RSVP, has only preliminary support for a
single layer of tunnels, and does not support reservations
on multi-layer tunnels. OS modifications for such QoS
support are part of other projects; the X-Bone focuses on
using existing host and router operating systems.

2. Architecture

The X-Bone is a distributed system composed of
daemons and control processes, much like SNMP. The
components of the X-Bone system are discussed in
Subsection 2.1. The system architecture is enabled by the
use of two layers of tunnels, and by transport-mode IPsec
over these tunnels. These techniques are described later in
this section, in Subsections 2.2 and 2.3, respectively.

2.1. X-Bone system components

The X-Bone is a distributed system composed of
Resource Daemons (RDs) and Overlay Managers (OMs) ,
with a graphical user interface (GUI) and a more direct
API. These components are shown in Figure 3.

OMs deploy overlays. A user creates an overlay by
sending a request to an OM, either via a web-based GUI
(Figure 2) or by sending a message directly to the OM
API. Each overlay is coordinated by a single OM. Large
overlays can be created by divide-and-conquer, where a
single OM will fork sub-overlay requests to other OMs.
Fault tolerance can be achieved by replicating state in
multiple backup OMs. Both of these latter capabilities
(recursion, fault tolerance) are supported in the X-Bone
architecture, though not implemented in current releases.

link

web
GUI

RD

host

RD

OM

API

router
Figure 3. X-Bone architectural components

Preprint of version in Computer Networks, July 2001, pp. 117-135.
A previous version appeared in Proc. ICNP 2000, Osaka Japan, pp. 59-68.

An OM creates an overlay in phases, using multicast to
discover available resources and TCP/SSL [16] to
configure and monitor resources. The overlay request is
translated to an invitation, and the invitation is multicast
using UDP. An invitation indicates a set of simple
conditions, e.g., a specific set of host operating systems,
bandwidth requirements, etc. Invitations currently fit in a
single IP packet; where they do not, IP’s automatic
fragmentation and reassembly is utilized. Invitations are
repeated with increasing TTLs2 until a sufficient number
of invitees respond, or until a preset search limit is
exceeded: i.e., an expanding ring search (Figure 4) [21].

This search over a well-known multicast address
replaces rendezvous or registry systems. The invitation-
based system promotes privacy and security, because
participating components (hosts and routers) need not
publicly post their availability or configuration. The
invitation itself is public, signed (authenticated), or
encrypted to be private to a pre-arranged subset of
components. Components each decide for themselves
whether to respond, based on a match between their
capabilities, availability of resources, and permissions.

OCD

CCDs

Multicast
Invitation

low TTL
finds 1

larger TTL
finds 4

largest TTL
finds 6

Figure 4. Resource discovery via expanding-ring
search

RDs are daemons that configure and monitor the
resources of routers and hosts. RDs listen for multicast
UDP invitations, and respond when their capabilities,
available resources and permissions match. The RDs
respond with unicast UDP messages, indicating their
willingness to participate in an overlay, and their
capabilities (protocol version, OS type, etc.). The OM
selects a (currently arbitrary) subset from among the
responding RDs3, and opens TCP/SSL (X.509 encrypted)
connections to each chosen RD. The OM determines
configuration information, such as tunnel endpoint
addresses and routing table entries, and sends specific
configuration information to each RD. Once an overlay is
deployed, the TCP/SSL connections are released and the
overlay is up. Subsequent overlay actions initiated by the
OM include keep-alive pings, liveness and status requests,
and modifying or dismantling configurations.

2 TTLs are the IP 'time-to-live' field, a hopcount that

limits how many routers a packet passes through.
3 An arbitrary selection algorithm again replaces an

intractable optimization that is outside X-Bone’s scope.

TCP/SSL [16] is used for secure configuration to take
advantage of TCP's reliable channel, and reduce the
number of different security schemes required. The X-
Bone uses a web-based GUI; web browsers already
support SSL, so the user's request is secure on the path to
the OM. For simplicity, the same mechanism is used
between the OMs and RDs. Other schemes, such as PGP,
would require multiple solutions.

TCP/SSL secures the reliable configuration channel
only; other mechanisms are needed to secure the multicast
UDP invitations and unicast UDP responses. The X-Bone
is currently applying S/MIME authentication to
invitations, and S/MIME encryption to invitation
responses to secure these UDP messages.

6 connect
via TCP/SSL

Pick 5
for overlay

Configure

Figure 5. Responding to invites, selecting, and

configuring the overlay

This architecture utilizes a single, well-known
multicast channel for invitation announcements, and
separate secure, reliable channels for configuration and
monitoring. It is based on the multicast announcements in
M-Bone teleconferencing; in fact, the X-Bone deploys an
overlay as if it were a teleconference between its OM and
the RDs of its router and host components.

2.2. Two-level tunnels

The X-Bone uses two levels of IP encapsulation
tunnels for each level of overlay, resulting in a total of
three IP headers for an overlay on the base network
(Figure 6). Each overlay IP packet is wrapped in two
additional IP headers for each overlay layer; the first is
the overlay link, and the next is for the endpoint of the
next layer ‘down’. The innermost header indicates the
endpoints in the overlay. The next layer acts as a link
layer in the overlay, and indicates the endpoints of the
tunnel over which the packet is currently traversing.
Overlay link addresses are a separate set of IP addresses,
also internal to the overlay. The final header indicates the
tunnel endpoints in the base network. The base network
can itself be an overlay, providing stacking (recursion), as
also shown in the figure.

The additional layers of encapsulation are required to
allow multiple overlay links between the two components,
within the same overlay. This allows network components
to participate multiple times in a single overlay (Figure 7).
Such multiply-connected components are useful to

Preprint of version in Computer Networks, July 2001, pp. 117-135.
A previous version appeared in Proc. ICNP 2000, Osaka Japan, pp. 59-68.

emulate systems with larger numbers of components, i.e.,
50-node rings simulated by using 10 router nodes.

DATA

DATA Base-Src, Base-Dst

DATA OvlSrc2-OvlDst2 OLinkS2-OLinkD2Ovl-Src, Ovl-Dst

Ovl-Src, Ovl-Dst OLink-Src, OLink-Dst Base-Src, Base-Dst

Base-Src, Base-Dst OLink-Src, OLink-Dst
Figure 6. Double tunneling results in three headers.

Shown (top to bottom) are packets on the base
network, an overlay, and an overlay on an overlay.

In Figure 7, an overlay is created that passes from host
A → router B → router C → router B → router C →
router B → host D, thus router B is visited three times.
Consider a packet addressed from A to D, as shown. The
packet enters B three different times – once via link U,
once via link W, and once via link Y. All these addresses
are overlay addresses. The difficulty occurs in
distinguishing entry via link W and entry via link Y. In
both cases, the base source and destination addresses are
the same – the base network addresses of routers C and B.
The overlay endpoint addresses do not change (from A to
D). Without additional overlay link addresses, router B
cannot determine whether to forward over link X (if
entering from link W) or over link Z (if entering from link
Y). Existing Internet routing lacks the context of received
link; packets are routed solely on their IP addresses. The
overlay link addresses encode these link contexts, and
suffices in cases of multiple visitation.

HOST D HOST A ROUTER B

ROUTER C

Link U

V W

Link Z

Packet from A to D

X Y

Figure 7. A single component (router B)

participates multiple times, using multiple overlay
links between the same two components

The additional layer also permits the use of multicast,
dynamic routing algorithms, and IPsec inside the overlay,
because such systems effectively operate on the link IP
layer. Without that layer, it would be impossible to
decouple intra-overlay routing from base-layer routing.
Again, the context of link address is critical, and the
additional IP encapsulation layer provides this context.

It is also desirable for an overlay to secure its links.
Link-level security in an overlay protects the routing and
management of the overlay itself, as well as providing
some protection when neither applications nor the base
network provides security. In this case, the additional IP
layer provides a place for overlay link IPsec, independent
of base network IPsec (which may be incomplete) or

application IPsec (which may not be available). Further,
by providing a different header where overlay IPsec
occurs, the X-Bone’s IPsec allows either (or both) base or
application IPsec independent of overlay IPsec. Figure 8
shows these three places for IPsec – the dashed indicator
shows where X-Bone deploys IPsec, when requested.

 DATA Ovl-Src, Ovl-Dst OLink-Src, OLink-Dst Base-Src, Base-Dst

Application IPSEC
(overlay endpoints)

Virtual network IPSEC
(overlay links)

Base network IPSEC
(base endpoints)

Figure 8. Three headers = three places to do IPsec

The two layers of the encapsulation change at every
overlay hop, as shown in Figure 9. Note the hosts,
indicated by their single overlay endpoint and overlay link
addresses, and the router, indicated by its pair of overlay
endpoint and overlay link addresses. In this case, because
the router is not an endpoint for overlay communication,
its overlay endpoint addresses are shown in dashed ovals.
Each component is shown as using a single, canonical
base address for base-layer routing; this can be relaxed for
multihomed systems. The X-Bone requires that routers
are multihomed inside the overlay (having multiple
overlay link and endpoint addresses), according to the
standard Internet practice, though this can be supported
even through a single (as shown) or multiple base
interfaces.

Ovl-D

OLink-T

Base-Z

Ovl-A

OLink-Q

Base-X

Ovl-C

OLink-S

Ovl-B

OLink-R

Base-Y

DATA A to D Q to R X to Y DATA A to D S to T Y to Z

HOSTHOST ROUTER
Figure 9. A single packet traverses the overlay –

modifying both outer IP headers at each hop

The X-Bone is currently implemented using separate
IP address spaces both for the overlay endpoint addresses
and the overlay link addresses. The use of separate
address spaces effectively encodes the overlay identifier
inside the IP addresses, allowing conventional dynamic
routing and forwarding at the routers, and conventional IP
demultiplexing at the destination host. This can be relaxed
to allow address reuse, provided the decapsulation steps
in routers (for forwarding) and end hosts (for
demultiplexing) keep sufficient context of the discarded
layers of IP headers. Current implementations discard this
state, requiring global addresses4. Overlay addresses can

4 Again favoring design simplicity over efficiency.

Preprint of version in Computer Networks, July 2001, pp. 117-135.
A previous version appeared in Proc. ICNP 2000, Osaka Japan, pp. 59-68.

be reused among overlays that do not overlap, as can be
determined during the negotiation process.

The X-Bone adds two IP headers for each overlay
layer. The use of IP at both layers supports the use of
unmodified host operating systems, user applications, and
network services. The X-Bone could equivalently add a
new overlay identifier layer that could combine these two
headers, e.g., as in the VPN-ID [11], requiring substantial
programming without additional benefit.

2.3. IPsec Issues

The X-Bone supports IPsec in the overlay [19]. The X-
Bone uses transport-mode IPsec, rather than tunnel-mode
IPsec, as would be expected in an overlay. The
combination of transport mode IPsec and an IPIP link
tunnel allows the X-Bone to support dynamic routing over
IPsec’d links, which requires extraordinary coordination
of key databases and routing tables if done in
conventional (tunnel-mode) IPsec overlays. This section
discusses the X-Bone’s use of IPsec to secure the overlay
links, and describes its use of transport mode IPsec on
IPIP tunnels in detail.

The use of two layers of IP encapsulation simplifies
IPsec support. The overlay IPsec parameters are attached
to the overlay link IP header, according to the IPsec
protocol. This allows separate IPsec associations to exist
between base network hosts (or in the underlying overlay,
if the base is itself an overlay), as well as allowing IPsec
end-to-end by applications in the overlay, as shown in
Figure 8. It also allows applications to benefit from a
secure overlay network without requiring specific
application support for IPsec, assuming the components
(hosts, routers) in the overlay are reasonably secure. This
security comes at the expense of hop-by-hop IPsec, whose
performance is shown in Section 4.

IPsec in an X-Bone overlay is configured out-of-band,
via the OM using TCP/SSL. Keys are generated by the
OM, and sent to the RDs over these secured channels,
rather than via IPsec key exchange protocols. The X-Bone
uses explicit key distribution for simplicity, but can use
in-band key exchange (e.g., IKE) when available; such in-
band key exchange mechanisms are not currently used
because they are not widely available, and because they
are currently in a high state of flux. The X-Bone uses
transport mode IPsec on an IP in IP encapsulated overlay
link packet, then wraps the result with the outermost base
layer IP in IP encapsulation. This is simpler to manage,
because tunneling is independent of whether IPsec is
enabled on a particular overlay hop.

Dynamic routing in an overlay network can interfere
with the traditional use of IPsec to secure overlay links
[30]. IPsec authenticates or encrypts links in an X-Bone
overlay. IPsec can interfere with forwarding decisions in
overlay routers, however. Consider a packet P entering

router A, destined ultimately for host Z (Figure 10). There
are two possible paths to Z, one through B, the other
through C. The B path begins with an overlay link keyed
with K1; the C path, with K2. Per-link keys are required
for robustness, to avoid needlessly compromising keys. In
an implementation where IPsec processing precedes
forwarding decisions, Router A must decide which key to
use (K1 or K2) before it has decided which path to take
(via B or via C). Some of the forwarding decisions (i.e.,
routing table) must then be represented in the IPsec rule
base, so that packets destined for Z are tagged to use K1.
The IPsec rules must reflect the current routing table,
imposing configuration and synchronization effort on the
routing protocol implementation. Current routing
protocols do not support synchronous IPsec rule updates.

A

B

C

Z

K1

K2
Figure 10. Dynamic routing interferes with per-hop

IPsec

IPsec relies on policy databases to determine key usage
and requires that keying precedes forwarding [19]. This is
not consistent with the use of per-hop keys and dynamic
routing protocols. An alternative to binding keys to rules
is to bind keys to virtual interfaces, as in the NIST Linux
implementation. Keys are bound to links by conventional
routing rules, rather than policy-based rules in a separate
key database. This allows the key decision to come after
forwarding. A forwards via B by using virtual interface
V1; everything from V1 is encrypted with K1, then sent
to B (Figure 11).

A

B

C

Z

K1

K2 V2

V1

Figure 11. Binding keys to virtual interfaces allows

per-hop IPsec

The X-Bone takes advantage of this scheme, even in
systems that bind keys to IPsec rule bases. In the X-Bone,
tunneling is decoupled from keying, and tunneling is
always performed first [30]. E.g., V1 performs the link-
layer encapsulation, and K1 would add the link key. This
allows the IPsec rules to remain static, as in “encrypt
everything wrapped in this overlay link header.” Dynamic
routing algorithms update the routing table, and determine
which virtual interface, and, by consequence, which key.

Preprint of version in Computer Networks, July 2001, pp. 117-135.
A previous version appeared in Proc. ICNP 2000, Osaka Japan, pp. 59-68.

The X-Bone is the only known overlay system that
integrates both IPsec support and dynamic routing.

This example highlights the issue of lost context, as
shown earlier in Figure 7. When an encapsulated packet is
received, it is unwrapped, and forwarded by the router or
demultiplexed to endpoint connections in the host.
Forwarding and demultiplexing decisions do not depend
on the state of the additional encapsulation headers; this
state is discarded as it is removed, so is not available
anyway. This means that the interior packet addresses
must be globally unique, unless host kernel and router
firmware modifications are made to support retaining this
state. Uniqueness is per-component. Addresses can be
reused on overlays that do not share components, i.e., that
participate in both overlays. Routers that provide
tunneling only (i.e., intermediate on the tunnel path) do
not count as part of an overlay.

3. Features of X-Bone Overlays

The X-Bone exhibits unique overlay capabilities,
largely due to a combination of its focus on IP, and the
use of two IP in IP encapsulation tunnels for each overlay
link. It allows overlays to be selected on a per-application
basis and it supports recursive overlays (overlays on
overlays). It also enables dynamic routing inside an
overlay and provides fault recovery. Finally, its
architecture supports private and secure overlays, both in
the invitations and in the configured overlays. These
features are discussed in this section.

3.1. Overlay selection

The X-Bone allows applications to be used unmodified
inside overlays. On a host, an overlay is selected either
directly by IP address, or indirectly by overriding the
DNS resolver parameters of a process environment. A
deployed overlay includes dynamically configured DNS
entries for variants of the names of the participating
components. For example, if blue.abc.com belongs to an
overlay called apple, then a DNS near the OM (part of the
X-Bone deployment) is updated with the name
blue.apple.xbone.net as part of the overlay configuration.

Both FreeBSD and Linux support the use of per-
process overrides to the resolver default suffix; setting the
process environment parameter LOCALDOMAIN allows
the name blue to resolve to either blue.abc.com or
blue.apple.xbone.net, depending on the whether
LOCALDOMAIN is set to abc.com or apple.xbone.net.
The DNS resolver uses LOCALDOMAIN as a per-
process override to the default suffix in its system-wide
configuration, so different processes on the same host can
easily refer to different overlays, even using the same
endpoint prefix names (e.g., blue). An example of how

the overlays and base network from Figure 1 would
appear is shown in Figure 12.

Base component names (here only hosts are shown
named) remain the same; the DNS suffix of
LOCALDOMAIN in each window differs. A standard
network mapping utility can thus show different network
views in different windows. The use of LOCALDOMAIN
to set overlay-specific suffixes, and the DNS to
subsequently determine IP addresses, allows unmodified
applications to select either the base address or an overlay
address for a given name prefix.

star-ovl

A
B

DC

ring-ovl

A
B

DC

IPv4

A
B

DC

Figure 12. User views of a network mapping utility;

different views in different windows

3.2. Ability to recurse

The X-Bone’s version of tunneling supports layering
an overlay on an overlay, also known as recursion or
stacking. These recursive overlays are useful for
managing groups of experiments on a shared
infrastructure. The shared components are gathered as a
single overlay, and individual experiments performed on
overlays on top of that overlay. This allows the resources
of the shared components to be subdivided among
experiments.

Recursive overlays are also useful for managing fault
tolerance. A single overlay provides a layer of indirection,
in which individual components can be replaced or
renamed without affecting the superior or inferior overlay
layers. A set of overlays at this middle layer can be
exchanged to swap sets of resources.

The ability to support recursive overlays relies on a
recursive tunneling mechanism; the X-Bone’s two-layer
tunnels have been tested in several recursive layers. It also
relies on the X-Bone’s preservation of true IP packet
formats; because it relies on an IP substructure and
presents IP as the overlay network, X-Bone overlays can
be stacked without modification. Finally, recursion
depends on isolation of the overlay management
components; in the X-Bone, only the IP addresses inside
an overlay are visible to processes on the overlay, so OMs
and RDs at one overlay layer are not visible to other

Preprint of version in Computer Networks, July 2001, pp. 117-135.
A previous version appeared in Proc. ICNP 2000, Osaka Japan, pp. 59-68.

layers. This latter capability, of X-Bone systems at
various overlay levels, is currently under development.

3.3. Dynamic routing

The X-Bone's dual-layer tunnels allow existing
dynamic routing (RIP, via gated or mrtd), multicast (via
mrouted) and network diagnostic tools to be used inside
an overlay, transparent to the base network. This has been
used to deploy dynamic routing across non-cooperating
administrative domains, where only the hosts involved
need participate in the routing algorithms.

Addresses of an overlay are visible only at the network
components (router, host) attached to the overlay, and are
unique at those points. The X-Bone can configure gated
or mrtd to exchange RIP messages only among sets of
interfaces belonging to an overlay. For example, assume
that a router has three interfaces, A, B, and C, and that it
already has a gated configuration file indicating what
routing protocols to use on those interfaces.

When the X-Bone deploys a new overlay, it allocates
addresses for that overlay to be used at that router, e.g., X
and Y. It updates the gated configuration file to indicate
that addresses A, B, and C should ignore routing
information relating to X and Y, and vice-versa. Then it
indicates that interfaces X and Y run RIP.

The result is that A, B, and C exchange messages as if
the overlay were not there, and the overlay exchanges
messages as if the base network (A, B, C) were not there.
Multiple overlays are handled by somewhat more
complicated but corresponding rules. In each case, a set of
interfaces is configured to ignore messages relating to all
except members of that set.

The benefit of dynamic routing is that routing message
exchanges are no longer limited to sets of routing peers in
the base network. A telecommuter can utilize redundant
network connections with dynamic route selection, e.g.,
between a cable modem path and DSL to his work
network, without requiring complicated peering
agreements between multiple ISPs and his work network.

3.4. Robustness

The X-Bone has a variety of fault detection and
recovery mechanisms. Each X-Bone action (interface
configuration, adding routes, configuring tunnels) has
rollback recovery, and all state changes are logged to a
state recovery file.

The OM emits periodic heartbeat pings to refresh the
state of the RD components. When a RD no longer hears
from an OM (after several beats), all overlays of that OM
are released from the RD state. Both RD and OM state are
kept on disk and reloaded after reboots or restarts.

As a result, components used in the X-Bone are
failsafe. When disconnected, their overlay configuration

state is removed, and when reconnected, it is restored.
The current implementation has only single-component
fault tolerance; the entire overlay is removed only when
the OM fails or is disconnected. This level of fault
tolerance can easily be extended to support hot-backup
OMs (becoming ‘hot’ when failing to hear primary OM
heartbeats), or to support piece-wise recovery.

3.5. Privacy and security

The X-Bone achieves secure invitation-based
configuration, the use of secure configuration channels,
and the ability to deploy IPsec’d overlays.

Invitations keep the configuration and availability of
individual network components private. In a bulletin
board or registry system, components would advertise
their properties and reservation status. Configuration
requests would still expose the intention to create an
overlay, at least to the components advertised as
available. The X-Bone uses multicast invitations, where
the invitations are somewhat more public, but only the
components available and capable of participating in an
invitation respond.

The use of multicast for invitations provides avoids the
need for preconfiguration of the OMs or RDs. A single
channel can be used for all invitations, because invitations
are not expected to produce significant traffic. Resources
in the current implementation are centered on the OM,
where the multicast invitation packet originates from the
OM. Alternately, loose source route [22] or an explicit
proxy to a remote OM can center the invitation wherever
useful, providing proxy resource discovery. Invitations
can be general (5 routers and 15 hosts), system or
capability specific (FreeBSD/KAME, IPsec/3DES),
permission-based (userid=jones), or specific down to the
site (loc=blue.abc.com). Topologies can be selected from
a generic set (ring, line, and star are currently
implemented), or provided by a netlist to the API.

Secure configuration channels are provided by
TCP/SSL using X.509 keys, as used for secure Internet
web transactions [16]. The OM sends interface, route,
IPsec, and tunnel configuration via these channels, which
are opened only to RDs responding to the multicast
invitations. The invitations and invitation responses use
UDP, and cannot be secured with SSL; instead, S/MIME
is used. Multicast invitations are typically only
authenticated, whereas unicast responses are encrypted.

IPsec secures the data (IP packets) of the deployed
overlay. This prevents packets from non-overlay
components from interfering with an overlay, and ensures
that overlay components can trust network-level packets,
such as routing protocols and ICMP messages.

Preprint of version in Computer Networks, July 2001, pp. 117-135.
A previous version appeared in Proc. ICNP 2000, Osaka Japan, pp. 59-68.

4. Performance

The performance of the X-Bone has been measured in
a lab testbed using 300 MHz Pentium II and 733 Mhz
Pentium III PCs running FreeBSD 3.2 with KAME IPsec
extensions, FreeBSD 2.2.8 with CAIRN IPsec extensions,
and Linux RedHat 6.0 with NIST IPsec extensions
[4][18]. These PCs were connected using a private,
switched 100 Mbps Ethernet, and measurements were
made between a single source host and destination host.

The primary focus of overlay deployment is
connectivity, but it is useful to consider the performance
of this implementation using untuned tunneling and IPsec
code. The primary performance impacts are an increase in
per-hop latency and a decrease in end-to-end bandwidth.
The X-Bone’s two-layer tunneling adds 30% to per-hop
latency and decreases bandwidth similarly, compared to
the base network. Compared to M-Bone-style single-layer
tunnels, the X-Bone’s additional tunnel layer adds 6% to
the per-hop latency, and 20% to the end-to-end bandwidth
decrease. Limited processing capability of our current
hosts likely results in this substantial bandwidth impact.

Figure 13 shows the per-hop latency increases,
measured using ICMP ping messages for the 300 Mhz
PCs. The first three bars (from the left) indicate the per-
hop latency in the base network with a single-layer tunnel,
and with the X-Bone’s two-layer tunnel. Subsequent pairs
compare the base network and two-layer solutions for
IPsec authentication (AH), encryption (ESP), and
combined (AH/ESP) processing. Where IPsec is used, it is
performed on only the overlay link tunnel layer.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

La
te

nc
y

(m
s)

Latency 0.2032 0.2485 0.26485 0.3791 0.46895 0.42335 0.52435 0.6269 0.74225

Clean 1L 2L AH 2L/AH ESP 2L/ESP AH/ESP 2L/AH/ESP

Figure 13. Per-hop increases in latency using single

and two-level tunnels

Figure 14 compares end-to-end throughput of TCP and
UDP streams, in similar three- and two-way comparison.
Here both 300 Mhz (foreground, striped) and 733 Mhz
(background, solid) PCs are measured. Note that the
effects of multiple tunnels are masked where encryption is
used, because encryption processing dwarfs the overhead
of additional encapsulation and decapsulation processing.

Figure 14 shows how IPsec processing can result in
substantial throughput penalties. Use of hop-by-hop IPsec
in the overlay is the only way to ensure that packets from
outside the overlay cannot encroach the overlay. It also
protects network control inside the overlay, and provides

a moderate level of protection to applications that do not
use end-to-end IPsec.

The X-Bone also decreases the effective MTU
(maximum transmission unit) or packet size in the overlay
network. On multihop paths in the base network an MTU
of 576 bytes is required by IP, of which 20 bytes are the
IP header and another 20 bytes are the transport layer
header (typically TCP or UDP). This leaves 536 bytes for
application data, although many implementations round
this down to a power of two (512 bytes), for data
manipulation efficiency. This leaves a slack of 24 bytes of
available packet space that can be used by additional
encapsulation layers without changing the typical data
payload. Such a change could affect applications not fully
tested with limited packet payloads.

0
1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0

1 0 0

Clea
n 1L 2L AH

2L
/AH

ESP

2L
/ESP

AH/ESP

2L
/AH/ESP

B a n d w i d t h (M b p s)

U D P 8 8 . 0 4 8 3 3 3 8 6 . 3 8 7 9 . 1 1 8 8 . 2 5 6 4 . 1 2 1 . 2 4 1 8 . 8 1 1 8 .9 3 1 5 . 7 6 5
T C P 7 1 . 7 4 1 6 6 7 6 4 . 3 5 5 2 . 7 7 5 6 4 . 6 7 5 4 5 . 2 1 1 8 . 2 7 1 6 . 1 7 5 1 5 . 1 1 5 1 3 . 4 5 5

C le a n 1 L 2 L A H 2 L /A H E S P 2 L / E S P A H / E S P 2 L / A H / E S P

Figure 14. End-to-end decrease in throughput using

single and two-level tunnels

Even if the application is written to accommodate
varying payload sizes, an MTU of 576, minus 40 for first
IP and transport, leaves room for only a few levels of
additional two-level tunnels (at 40 bytes each) before
performance is severely compromised. These limits can
be overcome using path MTU discovery (P-MTU), which
both potentially increases the MTU, and stress-tests
applications to deal with varying payload sizes.
Successful P-MTU depends on contiguous deployment of
MTU discovery support, which is not typically the case.

Even discounting the effect on MTUs, the increased
headers consume network bandwidth. Each layer of
tunneling adds an additional IP layer, which consumes 8-
20 bytes, when using minimal-encapsulation [26] or
standard IP in IP encapsulation tunnels [25]. The X-Bone
uses the standard IP in IP tunnels in the FreeBSD/CAIRN,
FreeBSD/KAME, and Linux/NIST stacks. As a result, our
effective MTU is 576-40-40 = 496 bytes. The additional
two headers increase packet overhead by 7%.

5. Related Work

The X-Bone is related to other overlay networks and
overlay deployment systems, as well as to the abstraction
of network components. Other manually deployed overlay
systems include the M-Bone [10], which first used IP in
IP encapsulation for tunnels and the more recent 6-Bone

Preprint of version in Computer Networks, July 2001, pp. 117-135.
A previous version appeared in Proc. ICNP 2000, Osaka Japan, pp. 59-68.

(for IPv6), both used to test new protocols. The X-Bone is
currently implemented and available, and is being
deployed in a number of regional and national testbeds, as
well as used in several networking courses. Many other
proposals, such as MORPHnet [1], VON [23], and
Genesis [6] are only at the planning stages thus far.

The following are further discussions of the particular
distinguishing characteristics of the X-Bone and how they
relate to ongoing and earlier work. The primary features
of the X-Bone are its use of IP tunnels and its support for
fully automated deployment and management of overlays.
The X-Bone avoids OS modifications and provides a
complete, end-to-end solution for overlay deployment.
Finally, the X-Bone is compared to VPNs, the dominant
commercial variant of overlay networks.

5.1. IP tunnels

The M-Bone was developed to incrementally deploy a
testbed for multicast IP. Not all systems under test were
directly connected; tunnels were used to avoid this need
for contiguity. The first M-Bone tunnels used IP's loose
source route (LSR) option [22], but this was replaced by
IP in IP tunneling [25], because the former is more
computationally intensive and requires contiguous
deployment of loose source routing in intermediate
routers along a tunnel path, as noted in Section 4. IP in IP
tunneling presents a conventional IP packet to
intermediate router hops, so takes the fast path, and does
not stress these routers' implementation of infrequently
used options. IP in IP tunneling requires new software at
both tunnel endpoints, whereas LSR needs encapsulation
software only at the source end of the tunnel, but also
relies on proper option processing at all intermediate
steps, as well as at the destination end of the tunnel.

The X-Bone presents an IP overlay built on an IP base
network, and is intended to be recursive, or stackable.
Stackability is a feature of the X-Bone and VONs, though
VONs use of global identifiers, e.g., the IETF's VPN ID
[11] limits the scope of the recursion. The X-Bone differs
from the IETF's VPN and VONs by allowing non-
overlapping reuse of global addresses, rather than
requiring VPN ID [11] and protocol modifications [13] to
support their use. This contrasts to inherently single-level
solutions, such as the M-Bone and A-Bone, where
recursion is not feasible due to the tunneling mechanisms
used. Genesis supports a retrograde variant of recursion –
deploying parent overlays, where each parent can spawn
multiple child overlays. Genesis goes up two levels, and
back one, allowing testbed overlays to deploy subset
overlays to coordinate and separate multiple concurrent
experiments in each testbed. The X-Bone supports
arbitrary recursion, due to its use of two-level tunnels,
thus allowing testbeds on testbeds ad infinitum.

The X-Bone uses two-level tunneling and global
address spaces to abstract its hosts and routers. Address
partitioning allows a single routing table to contain non-
interfering entries for multiple overlays as well as a base
network. Preprocessed routing configuration scripts
provide partitioned dynamic routing and multicast without
OS or router modification. Competing proposals support
partitioned routing tables without modification, including
policy routing, multi-table gated and mrtd host-based
router routing protocol systems. The X-Bone explicitly
configures both ends of a tunnel; this can be replaced with
single-ended tunnel deployment mechanisms, such as
Ascend's Tunnel Management Protocol (TMP) [15].
Future versions of the X-Bone are expected to replace
scripting with advanced variants of automated
configuration, such as MPLS, DHCP, and SNMP. MPLS
[5] will allow fine-grained control over the path a tunnel
uses. DHCP will allow standard configuration of an end-
host, but must be modified to allow the DHCP server to
initiate the reconfiguration of the host, rather than
supporting only client-initiated transactions. SNMP is a
reasonable replacement to our explicit scripting
mechanism, but was not necessary for a proof-of-concept.

5.2. Automation

Both M-Bone and 6-Bone are manually-deployed
overlays, requiring network managers to design, deploy,
and monitor network configuration. There are a number
of systems for automatic deployment of overlays as well.
Argonne's MORPHnet [1] is an overlay system that
supports virtual networks at all layers, from virtual
physical, to link, to network, on up to application.
MORPHnet was designed for use in supercomputer
networks, where performance requirements necessitate
low- and multi-layer solutions. CRATO's Supranet [8]
extends this multi-layer notion with multi-layer
optimizations. Columbia's Virtual Active Networks
(VANs) are part of the Netscript project [32] and deploy
link-layer virtual networks. These systems focus on multi-
layer or low-layer virtual network support; the X-Bone
[31] has more in common with Cornell's VON [23],
focusing on IP. The X-Bone’s IP focus supports stackable
networks and the use of standard network protocols and
applications within an overlay. It differs from application
solutions, e.g., Yallcast [12], and pseudo-network
overlays, e.g., the A-Bone [2]. In both cases virtual
networks exist inside application environments
interconnected by UDP or TCP tunnels.

The X-Bone uses multicast for resource discovery,
avoiding explicit configuration. Yallcast [12] and some
other overlay systems (e.g., USC/ISI and SRI's A-Bone
[2]) rely on central registries or rendezvous points, which
must be configured explicitly. Zeroconf [14], a recent
IETF effort at specifying zero-configuration network

Preprint of version in Computer Networks, July 2001, pp. 117-135.
A previous version appeared in Proc. ICNP 2000, Osaka Japan, pp. 59-68.

deployment, focuses on the base network, and relies on
broadcast. This limits Zeroconf to a single LAN, as with
BOOTP and DHCP protocols. The X-Bone uses
multicast, which is not limited to a single network.

5.3. QoS support and OS requirements

Several overlay systems focus on QoS support for
overlay deployment, e.g., Supranet and DARWIN [7], the
latter of which includes a component called VNS [8],
addressing dynamic overlay deployment. The X-Bone
does not require QoS support, though there are hooks to
use standard QoS mechanisms, such as RSVP [33] and
tunnel mode RSVP [29], where available.

The X-Bone avoids OS and application modifications,
and supports the use of existing dynamic network
services, such as routing, multicast, and nameservers,
inside the overlay. Supranet, MORPHnet, VONs and
VNS require OS modifications for custom tunneling and
QoS. VANs push these modifications to an application
layer emulation of the OS, in an Active Networks
environment. In each case some network services can be
reimplemented to operate within the overlay, though only
VONs and VANs purport to support dynamic routing.

5.4. End-to-end overlays

The X-Bone focuses on end-to-end deployment of an
entire overlay, including end host configuration, router
configuration, and network services such as DNS. There
is a trade-off between the X-Bone’s end-to-end overlays
and backbone overlays as provided by Darwin/VNS and
Detour. Complete overlays allow endpoints to participate
simulatenously in multiple overlays, and avoid the need
for manual coordination to supplement the backbone
deployment. Complete overlays also require software
deployment at the endpoints, which places additional
constraints on the types of participants in an overlay. The
X-Bone acknowledges the level to which endpoints are a
key component of an overlay, and thus includes them in
overlay management. Backbone overlays include routers
only implicitly; such implicit participation is much more
difficult to monitor, control, and coordinate.

The X-Bone’s complete overlays are similar to VONs,
but differ from the partial deployment of Darwin/VNS
[7], Detour [24], and VANs [32]. In Darwin/VNS, the
overlay is deployed among a set of routers via tunnels,
and end hosts are attached via filter-based translators,
stationed upstream of the end-hosts. This supports
unmodified end-host applications, even though VNS
requires OS modifications (i.e., DARWIN) in the
remainder of its deployment. Detour [24] deploys
individual tunnels to override inefficient or inoperative
routing, rather than deploying an entire overlay network.

VANs [32] deploy only links, inside an active networks
layer. Even VONs [23], though end-to-end, do not
address the issue of automation of the deployment
process. Both the X-Bone and VONs allow access of
different overlays via dynamic, partitioned namespaces,
but in VONs the namespace is per-login, whereas in the
X-Bone it is per-process.

5.5. VPNs

The X-Bone differs from commercial VPNs [27] by
supporting components being shared by multiple
overlays, and multiple times in a single overlay. VPN
components are typically a member of only one VPN at a
time, and VPN deployment is an increment to an existing,
deployed network. VANs and VONs support components
shared in multiple overlays, but do not address single
components appearing multiple times in a single overlay.
This latter use enables testbeds to emulate larger
networks, such as 5 routers emulating a 50-router ring,
enabling large-scale experiments using limited resources.

The X-Bone system shares much in common with the
IETF's emerging VPN framework, and with the goals of
VONs. All three abstract network infrastructure for the
purposes of simplicity, scalability, provisioning, and
containment. Like VONs [23] (and Detour [24]), the X-
Bone supports fault tolerance. The X-Bone uniquely uses
the ability to deploy existing dynamic routing protocols to
support fault tolerance within an overlay, and its
capability to support stackable overlays to support more
advanced fault tolerance (see future work, below).

The X-Bone supports security at multiple levels,
allowing encrypted or authenticated invitations with
private response, using TCP/SSL for configuration, and
supporting existing IPsec to secure the deployed overlay
links. IPsec is supported, but not strictly required. There
may be cases where, for performance reasons, a secure
tunnel is neither required nor desired, such as for lab
testbeds. Other overlay systems do not address security,
or use custom integrated packet security, e.g., VONs [23].

6. Status and Future work

The X-Bone is an ongoing effort at USC/ISI, currently
in its fourth public release. The following section outlines
its current status in detail, and discusses ongoing work to
address optimizations, recursive (stacked) overlays,
multihoming issues, and fault tolerance.

6.1. Current status

We released our first distribution of the X-Bone,
including source code, in Feb. 2000; it’s most recent
release is v1.3.1 (Dec. 2000). The latest distribution

Preprint of version in Computer Networks, July 2001, pp. 117-135.
A previous version appeared in Proc. ICNP 2000, Osaka Japan, pp. 59-68.

supports FreeBSD 4.2 and Linux RedHat 6.2/NIST
(kernel 2.2.5) (some earlier versions are also supported).
The NIST patches (and KAME on FreeBSD prior to 4.x
[18]) are optional and required only to support IPsec.
Without KAME IPsec patches, FreeBSD pre-4.x also
requires use of available DIVERT sockets together with a
user-level IP in IP tunnel daemon (ip-tun [30]), developed
as part of the project [9][17]. Our current release uses
non-encrypted multicast invitations and unicast responses,
and configures components securely via TCP/SSL. It
supports dynamic DNS with per-overlay namespaces, and
currently requires configuration via the GUI from among
a fixed set of topologies, including ring, star, and line
backbones. The current release also supports static intra-
overlay routing, either via conventional static routes or
via explicit entries in the gated or mrtd configuration of
the dynamic routing of the base network. The X-Bone has
multiple levels of logging, and includes heartbeat refresh
and timeout, as well as state recovery on restart or reboot.
Support for dynamic intra-overlay routing via gated or
mrtd using RIPv2 and support for intra-overlay multicast
have been developed and are being tested for robustness.

Future releases over the next year are expected to
include richer topologies and the explicit API. A system
for deploying applications, e.g., Squid proxy cache or
anetd (Active Nets) daemons, is also under current
testing. We are also developing an explicit recursive X-
Bone, deploying OMs and RDs inside an overlay. The X-
Bone's out-of-band configuration will eventually be
replaced with emerging standards for in-band control,
such as tunnel configuration (TMP, including MPLS
tunnel pinning), IPsec key exchange, dynamic DNS, and
SNMP. Security of the invitations is also under
investigation, including authentication, privacy, and
traffic confidentiality of invitation activity.

The X-Bone is currently used for networking research
and networking education. Various research groups are
using the X-Bone to facilitate concurrent overlapping
virtual testbeds on a shared, interdomain infrastructure
(CAIRN, including a total of 30 nodes [4]). The X-Bone
is being augmented to assist in the deployment of the A-
Bone, and is being deployed in several advanced
showcase testbeds. It is also being used for USC’s
graduate networking laboratory class (a 24 node lab), for
overlapping concurrent student experiments.

6.2. Optimizations

The X-Bone makes no attempt to optimize the
mapping of overlay resources to base network resources.
The X-Bone also does not currently use network resource
reservation, e.g., RSVP. This is largely due to RSVPs
limited (and currently experimental) support for
tunneling, and lack of support for multi-level tunnels.

We are investigating other extensions for fault
tolerance and optimization. It would be useful to avoid
deploying multiple overlays over the same physical link,
or to provide redundant links within a single overlay. It
would also be useful to map requested ring overlays onto
rings in the base network, somewhat matching topologies.
Strictly, such overlay optimizations are graph embedding
problems, which are difficult to optimize efficiently. The
Internet's strict layering further complicates redundancy
detection; even purchasing separate physical links from
different networks providers can result in unintentional
fate-sharing. We are investigating protocols for voluntary
labeling to enable automated fate-sharing detection.

6.3. Recursive (stacked) overlays

We are investigating many of the features described in
the architecture as possibilities, such as proxy-based
resource discovery, and divide-and-conquer deployment.
These features determine the scale of an overlay that the
X-Bone can deploy; the current system has been tested for
tens of nodes, and while larger scale tests are underway, it
is not realistic to expect a single OM to coordinate
thousands or tens of thousands of nodes. A related issue is
fusion and fission, the ability to split an existing overlay,
or merge two overlays into a single meta-overlay, which
are useful for policy-based coordination, where
organizations create their own overlays and subdivide
them for internal use (ala Genesis), or merge them for
inter-organization testbeds (e.g., CAIRN).

In divide-and-conquer, each overlay will have a master
OM, which delegates a portion of the overlay to other
slave OMs and then combines the results of their
deployment. OMs will discover each other using the same
multicast mechanism as OMs use to discover RDs.

6.4. Further multihoming extensions

The X-Bone has been especially affected by the dearth
of support for multihoming. Hosts in an overlay system
are necessarily multihomed [3], belonging to both the
base network and perhaps several overlays. Multihoming
requires context-sensitive demultiplexing, such that
daemons not attach to every incoming packet addressed to
a particular protocol's port. While this is supported in
current host operating systems, most protocol daemons
are not written to bind to a subset of addresses. In
addition, applications need control of the source IP
address of a packet, i.e., to indicate which of a host's
multiple addresses is to be used as the source (not
currently implemented). Multihomed hosts often require
support for an internal, virtual router, such as support for
dynamic routing protocols, support for proxy ARP, etc.

Routers are similarly multirouted (our term for a
multihomed router), needing similar partitioning. In a

Preprint of version in Computer Networks, July 2001, pp. 117-135.
A previous version appeared in Proc. ICNP 2000, Osaka Japan, pp. 59-68.

router, this translates to context-sensitive forwarding, and
context-sensitive routing algorithms. Packet processing
and routing packet exchanges need to be predicated on the
address of the incoming packet and its interface. In both
routers and hosts this context is both address, and overlay
identifier specific. For overlays, this means that the IP
decapsulation must retain portions the outer headers, to be
used as context for further processing. Other host
services, such as DNS resolution, require this context to
differentiate namespaces among overlays. Our future
work includes these extensions.

6.5. Fault tolerance

Fault tolerance is a specific focus of future
development. The X-Bone's support of stackable overlays
supports dynamic relocation of a running overlay, without
renumbering that overlay, which can remap a faulty
underlying overlay to a working overlay. Fault
replacement is intended to provide a dynamic alternative
to manual relocation, but not to replace dynamic routing.
Dynamic relocation is expected to operate at timescales
much larger than that of dynamic routing, i.e., tens of
minutes, hours, or even days. Conventional dynamic
routing can provide fault tolerance within an overlay;
when that overlay loses too many links to be considered
viable (e.g., K-connected), it is replaced with a different
overlay. Partial (component-wise) and incremental
replacement can minimize the effect on overlay traffic.

Consider our first example, of a base network on
which various overlays are deployed (Figure 1). The X-
Bone can deploy stacked overlays, such as three ring
networks on the base network, and a star on one of those
rings (Figure 15). When a fault is detected in one ring, the
star can be remapped to a different ring. The challenge is
deploying multiple rings that are known not to share
physical resources. The X-Bone's layering provides a
level of indirection to IP addressing in the star overlay,
which allows it to be renumbered with respect to the base
network, without renumbering within the star (the virtual
network equivalent of virtual memory paging).

Figure 15. Multi-layered overlays allows dynamic

re-mapping, supporting fault tolerance

7. Acknowledgements

Current members of the X-Bone project include
Gregory G. Finn and graduate students Amy S. Hughes,
Lars Eggert, Yu-Shun Wang, Ankur Sheth, and Osama
Dosary. The author wishes to acknowledge Steve Hotz,
Anindo Banerjea, Wei-Chun Chao, Oscar Ardaiz, and
Stephen Suryaputra for their earlier contributions, as well
as Ted Faber, the anonymous reviewers of ICNP and
Computer Networks for their feedback.

8. References

[1] Aiken, R., et al., “Architecture of the Multi-Modal
Organizational Research and Production Heterogeneous
Network (MORPHnet),” ANL-97/1, Argonne National Lab, IL,
Jan. 1997.
[2] Braden, B., “A Plan for a Scalable ABone - A Modest
Proposal,” (work in progress), July 1999.
[3] Braden, R., ed. “Requirements for Internet Hosts --
Application and Support,” RFC-1123, Oct. 1989.
[4] CAIRN IPsec patches, http://www.cairn.net
[5] Callon, R., Viswanathan, A., Rosen, E. “Multiprotocol
Label Switching Architecture,” RFC-3031, Jan. 2001.
[6] Campbell, A., et al., “Spawning Networks,” IEEE Network,
July/Aug. 1999, pp. 16-29.
[7] Chandra, P., et al., “Darwin: Resource Management for
Value-Added Customizable Network Service,” Sixth IEEE Int’l
Conference on Network Protocols (ICNP'98), Austin, Oct. 1998,
pp. 177-188.
[8] Delgrossi, L., Ferrari, D., “A Virtual Network Service for
Integrated-Services Internetworks,” 7th Int’l Workshop on
Network & OS Support for Digital Audio & Video, May 1997,
pp. 291-295.
[9] Divert sockets man pages, FreeBSD
http://www.freebsd.org
[10] Eriksson, H., “MBone: The Multicast Backbone,”
Communications of the ACM, Aug. 1994, pp.54-60.
[11] Fox, B., Gleeson, B., “Virtual Private Networks Identifier,”
RFC-2685, Sept. 1999.
[12] Francis, P., “Yallcast: Extending the Internet Multicast
Architecture,” (work in prog.) Sept. 1999.
[13] Gleeson, B., et al., “A Framework for IP Based Virtual
Private Networks,” RFC-2764, Jan. 2000.
[14] Hattig, M. (ed), “Zeroconf Requirements,” (work in prog.),
Mar. 2001.
[15] Hamzeh, K., “Ascend Tunnel Management Protocol -
ATMP,” RFC-2107, Feb. 1997.
[16] Hickman, Kipp, “The SSL Protocol,” Netscape
Communications Corp., Feb. 1995.
[17] Ip-tun man pages http://www.isi.edu/xbone
[18] KAME IPsec patches, http://www.kame.net

Preprint of version in Computer Networks, July 2001, pp. 117-135.
A previous version appeared in Proc. ICNP 2000, Osaka Japan, pp. 59-68.

[19] Kent, S., Atkinson, R., “Security Architecture for the
Internet Protocol,” RFC-2401, Nov. 1998.
[20] MacGregor, W., Tappan, D., “The Cronus Virtual Local
Network,” RFC-824, Aug. 1982.
[21] Moy, J., “Multicast Extensions to OSPF,” RFC-1584,
March 1994.
[22] Postel, J., “Internet Protocol,” RFC-791, Sept. 1981.
[23] Rodeh, O., Birman, K., Hayden, M., Dolev, D., “Dynamic
Virtual Private Networks,” TR98-1695, Dept. of Computer
Science, Cornell University, Aug. 1998.
[24] Savage, S., Anderson, T., et al., “Detour: a Case for
Informed Internet Routing and Transport,” IEEE Micro, V19,
N1, Jan. 1999, pp. 50-59.
[25] Perkins, C., “IP Encapsulation within IP,” RFC-2003, Oct.
1996.
[26] Perkins, C., “Miminal Encapsulation within IP,” RFC-
2004, Oct. 1996.
[27] Scott, C., Wolfe, P., Erwin, M., Virtual Private Networks,
O'Reilly & Assoc., Sebastapol, CA, 1998.
[28] Tennenhouse, D., et al., “A Survey of Active Network
Research,” IEEE Comm. Mag., Jan. 1997, pp. 80-86.
[29] Terzis, A., Krawczyk, J., Wroclawski, J., Zhang, L.,
“RSVP Operation Over IP Tunnels,” RFC-2746, Jan. 2000.
[30] Touch, J., Eggert, L., “Use of IPsec Transport Mode for
Virtual Networks,” (work in progress), Nov. 2000.
[31] Touch, J., Hotz, S., “The X-Bone,” Proc. Global Internet
Mini-Conference at Globecom, Nov. 1998, pp. 59-68.
[32] Yemini, Y., da Silva, S., “Towards Programmable
Networks,” IFIP/IEEE International Workshop on Distributed
Systems: Operations & Management, L’Aquila, Italy, Oct. 1996.
[33] Zhang, L., Deering, S., Estrin, D., Shenker, S., and
Zappala, D., “RSVP: A New Resource ReSerVation Protocol,”
IEEE Network, Sept. 1993, pp. 8-18.

