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Abstract1 
 

The X-Bone dynamically deploys and manages Internet 
overlays to reduce configuration effort and increase 
network component sharing. The X-Bone discovers, 
configures, and monitors network resources to create 
overlays over existing IP networks. Overlays are useful 
for deploying overlapping virtual networks on shared 
infrastructure and for simplifying topology. The X-Bone 
extends current overlay management by adding dynamic 
resource discovery, deployment, and monitoring, and 
allows network components (hosts, routers) to participate 
simultaneously in multiple overlays. Its two-layer IP in IP 
tunneled overlays support existing applications and 
unmodified routing, multicast, and DNS services in 
unmodified host operating systems. This two-layer scheme 
uniquely supports recursive overlays, useful for fault 
tolerance and dynamic relocation. The X-Bone uses 
multicast to simplify resource discovery, and provides 
secure deployment as well as secure overlays. This paper 
presents the X-Bone architecture, and discusses its 
components and features, and their performance impact.  
 

1. Introduction 

The X-Bone [31] is a system for the dynamic 
deployment and management of Internet overlay 
networks. Overlay networks are used to deploy 
infrastructure on top of existing networks, to isolate tests 
of new protocols, partition capacity, or present an 
environment with a simplified topology. Current overlay 
systems include commercial virtual private networks 
(VPNs) [27], IP tunneled networks (M-Bone [10], 6-
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Bone), and emerging research systems providing quality-
of-service guarantees. The X-Bone system provides a 
high-level interface where users or applications request 
DWIM (do what I mean) deployment, e.g.: create an 
overlay of 3 hosts connected to each of 6 routers in a 
ring. The X-Bone automatically discovers available 
components, configures, and monitors them.  

Other overlay systems require OS and/or application 
modifications, restrict the number of overlays a router or 
host can participate in, or require manual component 
configuration. The X-Bone provides automated 
deployment of overlays, coordinates their sharing of 
network components, and monitors deployed overlays. 
The X-Bone requires no specific OS or application 
modifications and only basic IP in IP encapsulation, and 
uses existing implementations of dynamic routing, name 
service, and other infrastructure. Finally, the X-Bone is a 
uniform extension of the network to support overlays, and 
supports stacking (recursion) of overlays for fault 
tolerance and capacity sub-provisioning for experiments.  

The X-Bone uses a two-layer tunnel mechanism, rather 
than the single layer used in conventional overlays. It is 
this two-layer scheme which supports stacked overlays, as 
well as permitting use of unmodified applications and 
network services inside a deployed overlay. It also 
permits network resources (hosts, routers) to participate 
multiple times in a single overlay, and is the only known 
overlay system that integrates both IPsec support and 
dynamic routing. 

This paper presents an overview of the X-Bone 
architecture, and discusses the particular techniques 
required to provide an IP layer overlay using existing 
protocols to support existing implementations of host and 
router operating systems, applications, or network 
services. The paper builds on our earlier discussion of the 
coarse architecture and goals [31] by presenting the 
details of the X-Bone’s two-layer encapsulation, and 
includes performance analysis measurements. It also 
presents an extended and updated discussion of related 
work and our vision of the utility of the X-Bone to 
support networking research, networking education, 
dynamic service deployment, and fault tolerance. 
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1.1. What is an overlay? 

An overlay network is an isolated virtual network 
deployed over an existing network. It is composed of 
hosts, routers, and tunnels. Tunnels are paths in the base 
network, and links in the overlay network. Hosts are 
packet sources or sinks, and routers are packet transits, as 
in conventional networks. Individual components (routers 
or hosts) can participate in more than one overlay at a 
time or in multiple ways (router, host) in a single overlay. 
Figure 1 shows an IP network (left); on that network, the 
X-Bone can deploy a ring (center) or star (right), by using 
various subsets of the nodes of the base network, 
connected by a set of tunnels. These tunnels determine the 
overlay topology, and may traverse multiple links in the 
base network, or a single link multiple times. 

Ring-ovl Star-ovlIP Base Network  
Figure 1. A ring (center) and a star (right) overlay 

deployed on a base network (left) 

Overlays have three primary uses: containment, 
provisioning, and abstraction. Containment is the ability 
of an overlay to restrict the visibility of its contents. 
Tunneling encapsulates the packets of new protocol so it 
can be tested in a controlled environment. Containment 
was one of the first uses of overlays in the early 1980's 
[20], and motivated their re-emergence in the early 1990's 
for the M-Bone and later 6-Bone [10]. Tunnels allow 
incremental deployment, where (primarily) routers 
lacking new protocol capabilities can be skipped over (or 
through), avoiding the need for contiguous availability. 

Provisioning uses reservation of components and 
capacity along tunnels to provide service guarantees to the 
overlay. Provisioned overlays can be used during 
emergencies to create virtual infrastructure when it is not 
feasible to deploy new physical resources. They can also 
limit the scope and impact of network experiments, e.g., 
limiting them to nominal use of surplus capacity. 

Abstraction is a new use of overlay networks. Both 
provisioning and containment imply the interim the use of 
overlays that are supplanted by advanced hierarchical 
reservation in the former case, or more sophisticated 
dynamic service deployment in the latter [28]. In these 
cases, overlays are a way to provide such capabilities 
without requiring contiguous deployment; once a new 
protocol or service is ubiquitous, tunnels (and thus 
overlays) can be avoided. However, abstraction remains a 
useful tool for education (networking classes), deploying 

testbeds, and simplifying applications. For example, a 
single lab can support a large number of concurrent 
experiments, each using a different topology. A testbed 
can be configured using a graphical user interface, in do 
what I mean style. Applications can request a deployed 
topology (e.g., ring) without needing to incorporate 
network management. In each case, manual intervention 
by a network manager is avoided, and applications and 
tools can be simplified. 

1.2. Deploying an overlay 

Conventional overlay deployment is a multi-stage 
process, involving manual intervention at every step. 
Components in the network (routers, hosts) are selected 
according to some criteria, e.g., operating system, 
protocol capability, or permissions. The desired topology 
(e.g., ring) must be mapped to the available components 
and parameters such as addresses, network masks, and 
routes determined. For each component, secure remote 
access is required, typically via SSH/telnet, and then each 
component is manually configured. This includes setting 
tunnel endpoints, configuring interfaces, setting link 
encryption or authentication keys, and configuring routes. 
Each of these steps is manual, often requiring out-of-band 
communication (telephone, e-mail) to locate available 
resources or initiate access. Each of these steps also 
requires external mechanisms for coordination, such as a 
reservation web page or e-mail system. 

Once an overlay is deployed, there is no assurance it 
remains available. Both in-band (over the overlay) and 
out-of-band (in the base network, or via telephone or e-
mail) methods may be required to confirm the state of the 
overlay. Current overlays lack mechanisms for 
monitoring, for repairing an erroneous component, or for 
signaling for attention. Modern dynamic routing protocols 
are typically not available within an overlay, so they are 
susceptible to single-tunnel failures. When an overlay is 
no longer of use, it must be dismantled. This is requires a 
tedious recapitulation of installation steps in reverse.  

The key problems with the current method of overlay 
deployment are manual intervention, the excessive need 
for out-of-band communication, the lack of monitoring, 
and the necessity of separate dismantling procedures. The 
X-Bone is designed to reduce deployment effort, 
involving manual interaction only at the initial request 
phase, e.g., in a graphical user interface, or programmatic 
API. Resource discovery is automatic, such that any 
sufficient available resources can be used to satisfy a 
request. Resource sharing is managed so many overlays 
can simultaneously share the use of a single component. 
An X-Bone overlay can use features of the existing 
Internet, including dynamic addressing (DHCP), dynamic 
routing, and diagnostic tools (traceroute, ping, etc.) 
without modification. The X-Bone also supports existing 
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host operating systems and applications, assuming only 
basic support for IP in IP encapsulation. 

The X-Bone extends the current Internet network 
architecture to include support for overlay networks. It 
supports stackable overlay networks, where control can be 
via a web-based GUI (Figure 2) or a program-controlled 
API. An X-Bone overlay is an integrated end-to-end 
solution, including host configuration, router 
configuration, and support for DNS.  

 
Figure 2. X-Bone graphical user interface 

This paper presents the X-Bone and discusses its 
components and features, their performance impact, and 
the effect of overlays on the Internet architecture. The 
architecture section presents the X-Bone’s components 
and features, including its use of two-layer tunnels to 
avoid OS and application customization and to support 
recursion. The evaluation section discusses the system's 
new capabilities, security, and performance. Related 
efforts and future work are discussed, including 
extensions for fault tolerance and the merging and 
splitting of deployed overlays. 

Before proceeding, it is important to address 
capabilities outside the scope of the X-Bone. The primary 
purpose of the X-Bone is to examine the capability of 
automated overlay deployment. As such, a number of 
optimizations are not addressed, trading completeness for 
expedience. The X-Bone maps overlay components to 
available network components using a replaceable, 

arbitrary algorithm. Optimization of component 
placement, e.g., to avoid redundant tunnels, or to match 
the overlay topology to the base network topology is 
computationally intractable, and not the focus of this 
effort. Similarly, the X-Bone provides hooks to reserve 
network resources, including capacity, but QoS, network 
bandwidth, and router queues are not currently reserved. 
The current Internet architecture for reserving such 
resources, RSVP, has only preliminary support for a 
single layer of tunnels, and does not support reservations 
on multi-layer tunnels. OS modifications for such QoS 
support are part of other projects; the X-Bone focuses on 
using existing host and router operating systems. 

2. Architecture 

The X-Bone is a distributed system composed of 
daemons and control processes, much like SNMP. The 
components of the X-Bone system are discussed in 
Subsection 2.1. The system architecture is enabled by the 
use of two layers of tunnels, and by transport-mode IPsec 
over these tunnels. These techniques are described later in 
this section, in Subsections 2.2 and 2.3, respectively. 

2.1. X-Bone system components 

The X-Bone is a distributed system composed of 
Resource Daemons (RDs) and Overlay Managers (OMs) , 
with a graphical user interface (GUI) and a more direct 
API. These components are shown in Figure 3.  

OMs deploy overlays. A user creates an overlay by 
sending a request to an OM, either via a web-based GUI 
(Figure 2) or by sending a message directly to the OM 
API. Each overlay is coordinated by a single OM. Large 
overlays can be created by divide-and-conquer, where a 
single OM will fork sub-overlay requests to other OMs. 
Fault tolerance can be achieved by replicating state in 
multiple backup OMs. Both of these latter capabilities 
(recursion, fault tolerance) are supported in the X-Bone 
architecture, though not implemented in current releases. 

link 

web 
GUI 

RD 

host 

RD 

OM 

API 

router  
Figure 3. X-Bone architectural components 
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An OM creates an overlay in phases, using multicast to 
discover available resources and TCP/SSL [16] to 
configure and monitor resources. The overlay request is 
translated to an invitation, and the invitation is multicast 
using UDP. An invitation indicates a set of simple 
conditions, e.g., a specific set of host operating systems, 
bandwidth requirements, etc. Invitations currently fit in a 
single IP packet; where they do not, IP’s automatic 
fragmentation and reassembly is utilized. Invitations are 
repeated with increasing TTLs2 until a sufficient number 
of invitees respond, or until a preset search limit is 
exceeded: i.e., an expanding ring search (Figure 4) [21].  

This search over a well-known multicast address 
replaces rendezvous or registry systems. The invitation-
based system promotes privacy and security, because 
participating components (hosts and routers) need not 
publicly post their availability or configuration. The 
invitation itself is public, signed (authenticated), or 
encrypted to be private to a pre-arranged subset of 
components. Components each decide for themselves 
whether to respond, based on a match between their 
capabilities, availability of resources, and permissions.  

OCD

CCDs

Multicast
Invitation

low TTL
finds 1

larger TTL
finds 4

largest TTL
finds 6  

Figure 4. Resource discovery via expanding-ring 
search 

RDs are daemons that configure and monitor the 
resources of routers and hosts. RDs listen for multicast 
UDP invitations, and respond when their capabilities, 
available resources and permissions match. The RDs 
respond with unicast UDP messages, indicating their 
willingness to participate in an overlay, and their 
capabilities (protocol version, OS type, etc.). The OM 
selects a (currently arbitrary) subset from among the 
responding RDs3, and opens TCP/SSL (X.509 encrypted) 
connections to each chosen RD. The OM determines 
configuration information, such as tunnel endpoint 
addresses and routing table entries, and sends specific 
configuration information to each RD. Once an overlay is 
deployed, the TCP/SSL connections are released and the 
overlay is up. Subsequent overlay actions initiated by the 
OM include keep-alive pings, liveness and status requests, 
and modifying or dismantling configurations.  

                                                           
2 TTLs are the IP 'time-to-live' field, a hopcount that 

limits how many routers a packet passes through. 
3 An arbitrary selection algorithm again replaces an 

intractable optimization that is outside X-Bone’s scope. 

TCP/SSL [16] is used for secure configuration to take 
advantage of TCP's reliable channel, and reduce the 
number of different security schemes required. The X-
Bone uses a web-based GUI; web browsers already 
support SSL, so the user's request is secure on the path to 
the OM. For simplicity, the same mechanism is used 
between the OMs and RDs. Other schemes, such as PGP, 
would require multiple solutions.  

TCP/SSL secures the reliable configuration channel 
only; other mechanisms are needed to secure the multicast 
UDP invitations and unicast UDP responses. The X-Bone 
is currently applying S/MIME authentication to 
invitations, and S/MIME encryption to invitation 
responses to secure these UDP messages.  

6 connect
via TCP/SSL

Pick 5
for overlay

Configure

 
Figure 5. Responding to invites, selecting, and 

configuring the overlay 

This architecture utilizes a single, well-known 
multicast channel for invitation announcements, and 
separate secure, reliable channels for configuration and 
monitoring. It is based on the multicast announcements in 
M-Bone teleconferencing; in fact, the X-Bone deploys an 
overlay as if it were a teleconference between its OM and 
the RDs of its router and host components. 

2.2. Two-level tunnels 

The X-Bone uses two levels of IP encapsulation 
tunnels for each level of overlay, resulting in a total of 
three IP headers for an overlay on the base network 
(Figure 6). Each overlay IP packet is wrapped in two 
additional IP headers for each overlay layer; the first is 
the overlay link, and the next is for the endpoint of the 
next layer ‘down’. The innermost header indicates the 
endpoints in the overlay. The next layer acts as a link 
layer in the overlay, and indicates the endpoints of the 
tunnel over which the packet is currently traversing. 
Overlay link addresses are a separate set of IP addresses, 
also internal to the overlay. The final header indicates the 
tunnel endpoints in the base network. The base network 
can itself be an overlay, providing stacking (recursion), as 
also shown in the figure.  

The additional layers of encapsulation are required to 
allow multiple overlay links between the two components, 
within the same overlay. This allows network components 
to participate multiple times in a single overlay (Figure 7). 
Such multiply-connected components are useful to 
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emulate systems with larger numbers of components, i.e., 
50-node rings simulated by using 10 router nodes.  

 

DATA 

DATA Base-Src, Base-Dst 

DATA OvlSrc2-OvlDst2 OLinkS2-OLinkD2Ovl-Src, Ovl-Dst 

Ovl-Src, Ovl-Dst OLink-Src, OLink-Dst Base-Src, Base-Dst 

Base-Src, Base-Dst OLink-Src, OLink-Dst  
Figure 6. Double tunneling results in three headers. 

Shown (top to bottom) are packets on the base 
network, an overlay, and an overlay on an overlay. 

In Figure 7, an overlay is created that passes from host 
A → router B → router C → router B → router C → 
router B → host D, thus router B is visited three times. 
Consider a packet addressed from A to D, as shown. The 
packet enters B three different times – once via link U, 
once via link W, and once via link Y. All these addresses 
are overlay addresses. The difficulty occurs in 
distinguishing entry via link W and entry via link Y. In 
both cases, the base source and destination addresses are 
the same – the base network addresses of routers C and B. 
The overlay endpoint addresses do not change (from A to 
D). Without additional overlay link addresses, router B 
cannot determine whether to forward over link X (if 
entering from link W) or over link Z (if entering from link 
Y). Existing Internet routing lacks the context of received 
link; packets are routed solely on their IP addresses. The 
overlay link addresses encode these link contexts, and 
suffices in cases of multiple visitation. 

 

HOST D HOST A ROUTER B 

ROUTER C 

Link U 

V W 

Link Z 

Packet from A to D 

X Y 

 
Figure 7. A single component (router B) 

participates multiple times, using multiple overlay 
links between the same two components 

The additional layer also permits the use of multicast, 
dynamic routing algorithms, and IPsec inside the overlay, 
because such systems effectively operate on the link IP 
layer. Without that layer, it would be impossible to 
decouple intra-overlay routing from base-layer routing. 
Again, the context of link address is critical, and the 
additional IP encapsulation layer provides this context.  

It is also desirable for an overlay to secure its links. 
Link-level security in an overlay protects the routing and 
management of the overlay itself, as well as providing 
some protection when neither applications nor the base 
network provides security. In this case, the additional IP 
layer provides a place for overlay link IPsec, independent 
of base network IPsec (which may be incomplete) or 

application IPsec (which may not be available). Further, 
by providing a different header where overlay IPsec 
occurs, the X-Bone’s IPsec allows either (or both) base or 
application IPsec independent of overlay IPsec. Figure 8 
shows these three places for IPsec – the dashed indicator 
shows where X-Bone deploys IPsec, when requested. 

 DATA Ovl-Src, Ovl-Dst OLink-Src, OLink-Dst Base-Src, Base-Dst 

Application IPSEC 
(overlay endpoints) 

Virtual network IPSEC 
(overlay links) 

Base network IPSEC
(base endpoints) 

 
Figure 8. Three headers = three places to do IPsec 

The two layers of the encapsulation change at every 
overlay hop, as shown in Figure 9. Note the hosts, 
indicated by their single overlay endpoint and overlay link 
addresses, and the router, indicated by its pair of overlay 
endpoint and overlay link addresses. In this case, because 
the router is not an endpoint for overlay communication, 
its overlay endpoint addresses are shown in dashed ovals. 
Each component is shown as using a single, canonical 
base address for base-layer routing; this can be relaxed for 
multihomed systems. The X-Bone requires that routers 
are multihomed inside the overlay (having multiple 
overlay link and endpoint addresses), according to the 
standard Internet practice, though this can be supported 
even through a single (as shown) or multiple base 
interfaces.  

 

Ovl-D 

OLink-T 

Base-Z 

Ovl-A 

OLink-Q

Base-X 

Ovl-C 

OLink-S 

Ovl-B 

OLink-R 

Base-Y

DATA A to D Q to R X to Y DATA A to D S to T Y to Z 

HOSTHOST ROUTER  
Figure 9. A single packet traverses the overlay – 

modifying both outer IP headers at each hop 

The X-Bone is currently implemented using separate 
IP address spaces both for the overlay endpoint addresses 
and the overlay link addresses. The use of separate 
address spaces effectively encodes the overlay identifier 
inside the IP addresses, allowing conventional dynamic 
routing and forwarding at the routers, and conventional IP 
demultiplexing at the destination host. This can be relaxed 
to allow address reuse, provided the decapsulation steps 
in routers (for forwarding) and end hosts (for 
demultiplexing) keep sufficient context of the discarded 
layers of IP headers. Current implementations discard this 
state, requiring global addresses4. Overlay addresses can 
                                                           

4 Again favoring design simplicity over efficiency. 
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be reused among overlays that do not overlap, as can be 
determined during the negotiation process. 

The X-Bone adds two IP headers for each overlay 
layer. The use of IP at both layers supports the use of 
unmodified host operating systems, user applications, and 
network services. The X-Bone could equivalently add a 
new overlay identifier layer that could combine these two 
headers, e.g., as in the VPN-ID [11], requiring substantial 
programming without additional benefit. 

2.3. IPsec Issues 

The X-Bone supports IPsec in the overlay [19]. The X-
Bone uses transport-mode IPsec, rather than tunnel-mode 
IPsec, as would be expected in an overlay. The 
combination of transport mode IPsec and an IPIP link 
tunnel allows the X-Bone to support dynamic routing over 
IPsec’d links, which requires extraordinary coordination 
of key databases and routing tables if done in 
conventional (tunnel-mode) IPsec overlays. This section 
discusses the X-Bone’s use of IPsec to secure the overlay 
links, and describes its use of transport mode IPsec on 
IPIP tunnels in detail.  

The use of two layers of IP encapsulation simplifies 
IPsec support. The overlay IPsec parameters are attached 
to the overlay link IP header, according to the IPsec 
protocol. This allows separate IPsec associations to exist 
between base network hosts (or in the underlying overlay, 
if the base is itself an overlay), as well as allowing IPsec 
end-to-end by applications in the overlay, as shown in 
Figure 8. It also allows applications to benefit from a 
secure overlay network without requiring specific 
application support for IPsec, assuming the components 
(hosts, routers) in the overlay are reasonably secure. This 
security comes at the expense of hop-by-hop IPsec, whose 
performance is shown in Section 4. 

IPsec in an X-Bone overlay is configured out-of-band, 
via the OM using TCP/SSL. Keys are generated by the 
OM, and sent to the RDs over these secured channels, 
rather than via IPsec key exchange protocols. The X-Bone 
uses explicit key distribution for simplicity, but can use 
in-band key exchange (e.g., IKE) when available; such in-
band key exchange mechanisms are not currently used 
because they are not widely available, and because they 
are currently in a high state of flux. The X-Bone uses 
transport mode IPsec on an IP in IP encapsulated overlay 
link packet, then wraps the result with the outermost base 
layer IP in IP encapsulation. This is simpler to manage, 
because tunneling is independent of whether IPsec is 
enabled on a particular overlay hop. 

Dynamic routing in an overlay network can interfere 
with the traditional use of IPsec to secure overlay links 
[30]. IPsec authenticates or encrypts links in an X-Bone 
overlay. IPsec can interfere with forwarding decisions in 
overlay routers, however. Consider a packet P entering 

router A, destined ultimately for host Z (Figure 10). There 
are two possible paths to Z, one through B, the other 
through C. The B path begins with an overlay link keyed 
with K1; the C path, with K2. Per-link keys are required 
for robustness, to avoid needlessly compromising keys. In 
an implementation where IPsec processing precedes 
forwarding decisions, Router A must decide which key to 
use (K1 or K2) before it has decided which path to take 
(via B or via C). Some of the forwarding decisions (i.e., 
routing table) must then be represented in the IPsec rule 
base, so that packets destined for Z are tagged to use K1. 
The IPsec rules must reflect the current routing table, 
imposing configuration and synchronization effort on the 
routing protocol implementation. Current routing 
protocols do not support synchronous IPsec rule updates. 

A

B

C

Z

K1

K2  
Figure 10. Dynamic routing interferes with per-hop 

IPsec 

IPsec relies on policy databases to determine key usage 
and requires that keying precedes forwarding [19]. This is 
not consistent with the use of per-hop keys and dynamic 
routing protocols. An alternative to binding keys to rules 
is to bind keys to virtual interfaces, as in the NIST Linux 
implementation. Keys are bound to links by conventional 
routing rules, rather than policy-based rules in a separate 
key database. This allows the key decision to come after 
forwarding. A forwards via B by using virtual interface 
V1; everything from V1 is encrypted with K1, then sent 
to B (Figure 11).  

A 

B 

C 

Z 

K1 

K2 V2 

V1 

 
Figure 11. Binding keys to virtual interfaces allows 

per-hop IPsec 

The X-Bone takes advantage of this scheme, even in 
systems that bind keys to IPsec rule bases. In the X-Bone, 
tunneling is decoupled from keying, and tunneling is 
always performed first [30]. E.g., V1 performs the link-
layer encapsulation, and K1 would add the link key. This 
allows the IPsec rules to remain static, as in “encrypt 
everything wrapped in this overlay link header.” Dynamic 
routing algorithms update the routing table, and determine 
which virtual interface, and, by consequence, which key. 
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The X-Bone is the only known overlay system that 
integrates both IPsec support and dynamic routing. 

This example highlights the issue of lost context, as 
shown earlier in Figure 7. When an encapsulated packet is 
received, it is unwrapped, and forwarded by the router or 
demultiplexed to endpoint connections in the host. 
Forwarding and demultiplexing decisions do not depend 
on the state of the additional encapsulation headers; this 
state is discarded as it is removed, so is not available 
anyway. This means that the interior packet addresses 
must be globally unique, unless host kernel and router 
firmware modifications are made to support retaining this 
state. Uniqueness is per-component. Addresses can be 
reused on overlays that do not share components, i.e., that 
participate in both overlays. Routers that provide 
tunneling only (i.e., intermediate on the tunnel path) do 
not count as part of an overlay. 

3. Features of X-Bone Overlays 

The X-Bone exhibits unique overlay capabilities, 
largely due to a combination of its focus on IP, and the 
use of two IP in IP encapsulation tunnels for each overlay 
link. It allows overlays to be selected on a per-application 
basis and it supports recursive overlays (overlays on 
overlays). It also enables dynamic routing inside an 
overlay and provides fault recovery. Finally, its 
architecture supports private and secure overlays, both in 
the invitations and in the configured overlays. These 
features are discussed in this section. 

3.1. Overlay selection 

The X-Bone allows applications to be used unmodified 
inside overlays. On a host, an overlay is selected either 
directly by IP address, or indirectly by overriding the 
DNS resolver parameters of a process environment. A 
deployed overlay includes dynamically configured DNS 
entries for variants of the names of the participating 
components. For example, if blue.abc.com belongs to an 
overlay called apple, then a DNS near the OM (part of the 
X-Bone deployment) is updated with the name 
blue.apple.xbone.net as part of the overlay configuration.  

Both FreeBSD and Linux support the use of per-
process overrides to the resolver default suffix; setting the 
process environment parameter LOCALDOMAIN allows 
the name blue to resolve to either blue.abc.com or 
blue.apple.xbone.net, depending on the whether 
LOCALDOMAIN is set to abc.com or apple.xbone.net. 
The DNS resolver uses LOCALDOMAIN as a per-
process override to the default suffix in its system-wide 
configuration, so different processes on the same host can 
easily refer to different overlays, even using the same 
endpoint prefix names (e.g., blue). An example of how 

the overlays and base network from Figure 1 would 
appear is shown in Figure 12.  

Base component names (here only hosts are shown 
named) remain the same; the DNS suffix of 
LOCALDOMAIN in each window differs. A standard 
network mapping utility can thus show different network 
views in different windows. The use of LOCALDOMAIN 
to set overlay-specific suffixes, and the DNS to 
subsequently determine IP addresses, allows unmodified 
applications to select either the base address or an overlay 
address for a given name prefix. 
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Figure 12. User views of a network mapping utility; 

different views in different windows 

3.2. Ability to recurse 

The X-Bone’s version of tunneling supports layering 
an overlay on an overlay, also known as recursion or 
stacking. These recursive overlays are useful for 
managing groups of experiments on a shared 
infrastructure. The shared components are gathered as a 
single overlay, and individual experiments performed on 
overlays on top of that overlay. This allows the resources 
of the shared components to be subdivided among 
experiments. 

Recursive overlays are also useful for managing fault 
tolerance. A single overlay provides a layer of indirection, 
in which individual components can be replaced or 
renamed without affecting the superior or inferior overlay 
layers. A set of overlays at this middle layer can be 
exchanged to swap sets of resources. 

The ability to support recursive overlays relies on a 
recursive tunneling mechanism; the X-Bone’s two-layer 
tunnels have been tested in several recursive layers. It also 
relies on the X-Bone’s preservation of true IP packet 
formats; because it relies on an IP substructure and 
presents IP as the overlay network, X-Bone overlays can 
be stacked without modification. Finally, recursion 
depends on isolation of the overlay management 
components; in the X-Bone, only the IP addresses inside 
an overlay are visible to processes on the overlay, so OMs 
and RDs at one overlay layer are not visible to other 
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layers. This latter capability, of X-Bone systems at 
various overlay levels, is currently under development. 

3.3. Dynamic routing 

The X-Bone's dual-layer tunnels allow existing 
dynamic routing (RIP, via gated or mrtd), multicast (via 
mrouted) and network diagnostic tools to be used inside 
an overlay, transparent to the base network. This has been 
used to deploy dynamic routing across non-cooperating 
administrative domains, where only the hosts involved 
need participate in the routing algorithms.  

Addresses of an overlay are visible only at the network 
components (router, host) attached to the overlay, and are 
unique at those points. The X-Bone can configure gated 
or mrtd to exchange RIP messages only among sets of 
interfaces belonging to an overlay. For example, assume 
that a router has three interfaces, A, B, and C, and that it 
already has a gated configuration file indicating what 
routing protocols to use on those interfaces. 

When the X-Bone deploys a new overlay, it allocates 
addresses for that overlay to be used at that router, e.g., X 
and Y. It updates the gated configuration file to indicate 
that addresses A, B, and C should ignore routing 
information relating to X and Y, and vice-versa. Then it 
indicates that interfaces X and Y run RIP. 

The result is that A, B, and C exchange messages as if 
the overlay were not there, and the overlay exchanges 
messages as if the base network (A, B, C) were not there. 
Multiple overlays are handled by somewhat more 
complicated but corresponding rules. In each case, a set of 
interfaces is configured to ignore messages relating to all 
except members of that set. 

The benefit of dynamic routing is that routing message 
exchanges are no longer limited to sets of routing peers in 
the base network. A telecommuter can utilize redundant 
network connections with dynamic route selection, e.g., 
between a cable modem path and DSL to his work 
network, without requiring complicated peering 
agreements between multiple ISPs and his work network. 

3.4. Robustness 

The X-Bone has a variety of fault detection and 
recovery mechanisms. Each X-Bone action (interface 
configuration, adding routes, configuring tunnels) has 
rollback recovery, and all state changes are logged to a 
state recovery file.  

The OM emits periodic heartbeat pings to refresh the 
state of the RD components. When a RD no longer hears 
from an OM (after several beats), all overlays of that OM 
are released from the RD state. Both RD and OM state are 
kept on disk and reloaded after reboots or restarts. 

As a result, components used in the X-Bone are 
failsafe. When disconnected, their overlay configuration 

state is removed, and when reconnected, it is restored. 
The current implementation has only single-component 
fault tolerance; the entire overlay is removed only when 
the OM fails or is disconnected. This level of fault 
tolerance can easily be extended to support hot-backup 
OMs (becoming ‘hot’ when failing to hear primary OM 
heartbeats), or to support piece-wise recovery. 

3.5. Privacy and security 

The X-Bone achieves secure invitation-based 
configuration, the use of secure configuration channels, 
and the ability to deploy IPsec’d overlays.  

Invitations keep the configuration and availability of 
individual network components private. In a bulletin 
board or registry system, components would advertise 
their properties and reservation status. Configuration 
requests would still expose the intention to create an 
overlay, at least to the components advertised as 
available. The X-Bone uses multicast invitations, where 
the invitations are somewhat more public, but only the 
components available and capable of participating in an 
invitation respond.  

The use of multicast for invitations provides avoids the 
need for preconfiguration of the OMs or RDs. A single 
channel can be used for all invitations, because invitations 
are not expected to produce significant traffic. Resources 
in the current implementation are centered on the OM, 
where the multicast invitation packet originates from the 
OM. Alternately, loose source route [22] or an explicit 
proxy to a remote OM can center the invitation wherever 
useful, providing proxy resource discovery. Invitations 
can be general (5 routers and 15 hosts), system or 
capability specific (FreeBSD/KAME, IPsec/3DES), 
permission-based (userid=jones), or specific down to the 
site (loc=blue.abc.com). Topologies can be selected from 
a generic set (ring, line, and star are currently 
implemented), or provided by a netlist to the API. 

Secure configuration channels are provided by 
TCP/SSL using X.509 keys, as used for secure Internet 
web transactions [16]. The OM sends interface, route, 
IPsec, and tunnel configuration via these channels, which 
are opened only to RDs responding to the multicast 
invitations. The invitations and invitation responses use 
UDP, and cannot be secured with SSL; instead, S/MIME 
is used. Multicast invitations are typically only 
authenticated, whereas unicast responses are encrypted. 

IPsec secures the data (IP packets) of the deployed 
overlay. This prevents packets from non-overlay 
components from interfering with an overlay, and ensures 
that overlay components can trust network-level packets, 
such as routing protocols and ICMP messages. 
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4. Performance 

The performance of the X-Bone has been measured in 
a lab testbed using 300 MHz Pentium II and 733 Mhz 
Pentium III PCs running FreeBSD 3.2 with KAME IPsec 
extensions, FreeBSD 2.2.8 with CAIRN IPsec extensions, 
and Linux RedHat 6.0 with NIST IPsec extensions 
[4][18]. These PCs were connected using a private, 
switched 100 Mbps Ethernet, and measurements were 
made between a single source host and destination host.  

The primary focus of overlay deployment is 
connectivity, but it is useful to consider the performance 
of this implementation using untuned tunneling and IPsec 
code. The primary performance impacts are an increase in 
per-hop latency and a decrease in end-to-end bandwidth. 
The X-Bone’s two-layer tunneling adds 30% to per-hop 
latency and decreases bandwidth similarly, compared to 
the base network. Compared to M-Bone-style single-layer 
tunnels, the X-Bone’s additional tunnel layer adds 6% to 
the per-hop latency, and 20% to the end-to-end bandwidth 
decrease. Limited processing capability of our current 
hosts likely results in this substantial bandwidth impact. 

Figure 13 shows the per-hop latency increases, 
measured using ICMP ping messages for the 300 Mhz 
PCs. The first three bars (from the left) indicate the per-
hop latency in the base network with a single-layer tunnel, 
and with the X-Bone’s two-layer tunnel. Subsequent pairs 
compare the base network and two-layer solutions for 
IPsec authentication (AH), encryption (ESP), and 
combined (AH/ESP) processing. Where IPsec is used, it is 
performed on only the overlay link tunnel layer. 
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Figure 13. Per-hop increases in latency using single 

and two-level tunnels 

Figure 14 compares end-to-end throughput of TCP and 
UDP streams, in similar three- and two-way comparison. 
Here both 300 Mhz (foreground, striped) and 733 Mhz 
(background, solid) PCs are measured. Note that the 
effects of multiple tunnels are masked where encryption is 
used, because encryption processing dwarfs the overhead 
of additional encapsulation and decapsulation processing. 

Figure 14 shows how IPsec processing can result in 
substantial throughput penalties. Use of hop-by-hop IPsec 
in the overlay is the only way to ensure that packets from 
outside the overlay cannot encroach the overlay. It also 
protects network control inside the overlay, and provides 

a moderate level of protection to applications that do not 
use end-to-end IPsec. 

The X-Bone also decreases the effective MTU 
(maximum transmission unit) or packet size in the overlay 
network. On multihop paths in the base network an MTU 
of 576 bytes is required by IP, of which 20 bytes are the 
IP header and another 20 bytes are the transport layer 
header (typically TCP or UDP). This leaves 536 bytes for 
application data, although many implementations round 
this down to a power of two (512 bytes), for data 
manipulation efficiency. This leaves a slack of 24 bytes of 
available packet space that can be used by additional 
encapsulation layers without changing the typical data 
payload. Such a change could affect applications not fully 
tested with limited packet payloads.  
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Figure 14. End-to-end decrease in throughput using 

single and two-level tunnels 

Even if the application is written to accommodate 
varying payload sizes, an MTU of 576, minus 40 for first 
IP and transport, leaves room for only a few levels of 
additional two-level tunnels (at 40 bytes each) before 
performance is severely compromised. These limits can 
be overcome using path MTU discovery (P-MTU), which 
both potentially increases the MTU, and stress-tests 
applications to deal with varying payload sizes. 
Successful P-MTU depends on contiguous deployment of 
MTU discovery support, which is not typically the case.  

Even discounting the effect on MTUs, the increased 
headers consume network bandwidth. Each layer of 
tunneling adds an additional IP layer, which consumes 8-
20 bytes, when using minimal-encapsulation [26] or 
standard IP in IP encapsulation tunnels [25]. The X-Bone 
uses the standard IP in IP tunnels in the FreeBSD/CAIRN, 
FreeBSD/KAME, and Linux/NIST stacks. As a result, our 
effective MTU is 576-40-40 = 496 bytes. The additional 
two headers increase packet overhead by 7%. 

5. Related Work 

The X-Bone is related to other overlay networks and 
overlay deployment systems, as well as to the abstraction 
of network components. Other manually deployed overlay 
systems include the M-Bone [10], which first used IP in 
IP encapsulation for tunnels and the more recent 6-Bone 
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(for IPv6), both used to test new protocols. The X-Bone is 
currently implemented and available, and is being 
deployed in a number of regional and national testbeds, as 
well as used in several networking courses. Many other 
proposals, such as MORPHnet [1], VON [23], and 
Genesis [6] are only at the planning stages thus far. 

The following are further discussions of the particular 
distinguishing characteristics of the X-Bone and how they 
relate to ongoing and earlier work. The primary features 
of the X-Bone are its use of IP tunnels and its support for 
fully automated deployment and management of overlays. 
The X-Bone avoids OS modifications and provides a 
complete, end-to-end solution for overlay deployment. 
Finally, the X-Bone is compared to VPNs, the dominant 
commercial variant of overlay networks. 

5.1. IP tunnels 

The M-Bone was developed to incrementally deploy a 
testbed for multicast IP. Not all systems under test were 
directly connected; tunnels were used to avoid this need 
for contiguity. The first M-Bone tunnels used IP's loose 
source route (LSR) option [22], but this was replaced by 
IP in IP tunneling [25], because the former is more 
computationally intensive and requires contiguous 
deployment of loose source routing in intermediate 
routers along a tunnel path, as noted in Section 4. IP in IP 
tunneling presents a conventional IP packet to 
intermediate router hops, so takes the fast path, and does 
not stress these routers' implementation of infrequently 
used options. IP in IP tunneling requires new software at 
both tunnel endpoints, whereas LSR needs encapsulation 
software only at the source end of the tunnel, but also 
relies on proper option processing at all intermediate 
steps, as well as at the destination end of the tunnel. 

The X-Bone presents an IP overlay built on an IP base 
network, and is intended to be recursive, or stackable. 
Stackability is a feature of the X-Bone and VONs, though 
VONs use of global identifiers, e.g., the IETF's VPN ID 
[11] limits the scope of the recursion. The X-Bone differs 
from the IETF's VPN and VONs by allowing non-
overlapping reuse of global addresses, rather than 
requiring VPN ID [11] and protocol modifications [13] to 
support their use. This contrasts to inherently single-level 
solutions, such as the M-Bone and A-Bone, where 
recursion is not feasible due to the tunneling mechanisms 
used. Genesis supports a retrograde variant of recursion – 
deploying parent overlays, where each parent can spawn 
multiple child overlays. Genesis goes up two levels, and 
back one, allowing testbed overlays to deploy subset 
overlays to coordinate and separate multiple concurrent 
experiments in each testbed. The X-Bone supports 
arbitrary recursion, due to its use of two-level tunnels, 
thus allowing testbeds on testbeds ad infinitum.  

The X-Bone uses two-level tunneling and global 
address spaces to abstract its hosts and routers. Address 
partitioning allows a single routing table to contain non-
interfering entries for multiple overlays as well as a base 
network. Preprocessed routing configuration scripts 
provide partitioned dynamic routing and multicast without 
OS or router modification. Competing proposals support 
partitioned routing tables without modification, including 
policy routing, multi-table gated and mrtd host-based 
router routing protocol systems. The X-Bone explicitly 
configures both ends of a tunnel; this can be replaced with 
single-ended tunnel deployment mechanisms, such as 
Ascend's Tunnel Management Protocol (TMP) [15]. 
Future versions of the X-Bone are expected to replace 
scripting with advanced variants of automated 
configuration, such as MPLS, DHCP, and SNMP. MPLS 
[5] will allow fine-grained control over the path a tunnel 
uses. DHCP will allow standard configuration of an end-
host, but must be modified to allow the DHCP server to 
initiate the reconfiguration of the host, rather than 
supporting only client-initiated transactions. SNMP is a 
reasonable replacement to our explicit scripting 
mechanism, but was not necessary for a proof-of-concept. 

5.2. Automation 

Both M-Bone and 6-Bone are manually-deployed 
overlays, requiring network managers to design, deploy, 
and monitor network configuration. There are a number 
of systems for automatic deployment of overlays as well. 
Argonne's MORPHnet [1] is an overlay system that 
supports virtual networks at all layers, from virtual 
physical, to link, to network, on up to application. 
MORPHnet was designed for use in supercomputer 
networks, where performance requirements necessitate 
low- and multi-layer solutions. CRATO's Supranet [8] 
extends this multi-layer notion with multi-layer 
optimizations. Columbia's Virtual Active Networks 
(VANs) are part of the Netscript project [32] and deploy 
link-layer virtual networks. These systems focus on multi-
layer or low-layer virtual network support; the X-Bone 
[31] has more in common with Cornell's VON [23], 
focusing on IP. The X-Bone’s IP focus supports stackable 
networks and the use of standard network protocols and 
applications within an overlay. It differs from application 
solutions, e.g., Yallcast [12], and pseudo-network 
overlays, e.g., the A-Bone [2]. In both cases virtual 
networks exist inside application environments 
interconnected by UDP or TCP tunnels.  

The X-Bone uses multicast for resource discovery, 
avoiding explicit configuration. Yallcast [12] and some 
other overlay systems (e.g., USC/ISI and SRI's A-Bone 
[2]) rely on central registries or rendezvous points, which 
must be configured explicitly. Zeroconf [14], a recent 
IETF effort at specifying zero-configuration network 
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deployment, focuses on the base network, and relies on 
broadcast. This limits Zeroconf to a single LAN, as with 
BOOTP and DHCP protocols. The X-Bone uses 
multicast, which is not limited to a single network.  

5.3. QoS support and OS requirements 

Several overlay systems focus on QoS support for 
overlay deployment, e.g., Supranet and DARWIN [7], the 
latter of which includes a component called VNS [8], 
addressing dynamic overlay deployment. The X-Bone 
does not require QoS support, though there are hooks to 
use standard QoS mechanisms, such as RSVP [33] and 
tunnel mode RSVP [29], where available.  

The X-Bone avoids OS and application modifications, 
and supports the use of existing dynamic network 
services, such as routing, multicast, and nameservers, 
inside the overlay. Supranet, MORPHnet, VONs and 
VNS require OS modifications for custom tunneling and 
QoS. VANs push these modifications to an application 
layer emulation of the OS, in an Active Networks 
environment. In each case some network services can be 
reimplemented to operate within the overlay, though only 
VONs and VANs purport to support dynamic routing.  

 

5.4. End-to-end overlays 

The X-Bone focuses on end-to-end deployment of an 
entire overlay, including end host configuration, router 
configuration, and network services such as DNS. There 
is a trade-off between the X-Bone’s end-to-end overlays 
and backbone overlays as provided by Darwin/VNS and 
Detour. Complete overlays allow endpoints to participate 
simulatenously in multiple overlays, and avoid the need 
for manual coordination to supplement the backbone 
deployment. Complete overlays also require software 
deployment at the endpoints, which places additional 
constraints on the types of participants in an overlay. The 
X-Bone acknowledges the level to which endpoints are a 
key component of an overlay, and thus includes them in 
overlay management. Backbone overlays include routers 
only implicitly; such implicit participation is much more 
difficult to monitor, control, and coordinate. 

The X-Bone’s complete overlays are similar to VONs, 
but differ from the partial deployment of Darwin/VNS 
[7], Detour [24], and VANs [32]. In Darwin/VNS, the 
overlay is deployed among a set of routers via tunnels, 
and end hosts are attached via filter-based translators, 
stationed upstream of the end-hosts. This supports 
unmodified end-host applications, even though VNS 
requires OS modifications (i.e., DARWIN) in the 
remainder of its deployment. Detour [24] deploys 
individual tunnels to override inefficient or inoperative 
routing, rather than deploying an entire overlay network. 

VANs [32] deploy only links, inside an active networks 
layer. Even VONs [23], though end-to-end, do not 
address the issue of automation of the deployment 
process. Both the X-Bone and VONs allow access of 
different overlays via dynamic, partitioned namespaces, 
but in VONs the namespace is per-login, whereas in the 
X-Bone it is per-process.  

5.5. VPNs 

The X-Bone differs from commercial VPNs [27] by 
supporting components being shared by multiple 
overlays, and multiple times in a single overlay. VPN 
components are typically a member of only one VPN at a 
time, and VPN deployment is an increment to an existing, 
deployed network. VANs and VONs support components 
shared in multiple overlays, but do not address single 
components appearing multiple times in a single overlay. 
This latter use enables testbeds to emulate larger 
networks, such as 5 routers emulating a 50-router ring, 
enabling large-scale experiments using limited resources. 

The X-Bone system shares much in common with the 
IETF's emerging VPN framework, and with the goals of 
VONs. All three abstract network infrastructure for the 
purposes of simplicity, scalability, provisioning, and 
containment. Like VONs [23] (and Detour [24]), the X-
Bone supports fault tolerance. The X-Bone uniquely uses 
the ability to deploy existing dynamic routing protocols to 
support fault tolerance within an overlay, and its 
capability to support stackable overlays to support more 
advanced fault tolerance (see future work, below).  

The X-Bone supports security at multiple levels, 
allowing encrypted or authenticated invitations with 
private response, using TCP/SSL for configuration, and 
supporting existing IPsec to secure the deployed overlay 
links. IPsec is supported, but not strictly required. There 
may be cases where, for performance reasons, a secure 
tunnel is neither required nor desired, such as for lab 
testbeds. Other overlay systems do not address security, 
or use custom integrated packet security, e.g., VONs [23]. 

6. Status and Future work 

The X-Bone is an ongoing effort at USC/ISI, currently 
in its fourth public release. The following section outlines 
its current status in detail, and discusses ongoing work to 
address optimizations, recursive (stacked) overlays, 
multihoming issues, and fault tolerance. 

6.1. Current status 

We released our first distribution of the X-Bone, 
including source code, in Feb. 2000; it’s most recent 
release is v1.3.1 (Dec. 2000). The latest distribution 
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supports FreeBSD 4.2 and Linux RedHat 6.2/NIST 
(kernel 2.2.5) (some earlier versions are also supported). 
The NIST patches (and KAME on FreeBSD prior to 4.x 
[18])  are optional and required only to support IPsec. 
Without KAME IPsec patches, FreeBSD pre-4.x also 
requires use of available DIVERT sockets together with a 
user-level IP in IP tunnel daemon (ip-tun [30]), developed 
as part of the project [9][17]. Our current release uses 
non-encrypted multicast invitations and unicast responses, 
and configures components securely via TCP/SSL. It 
supports dynamic DNS with per-overlay namespaces, and 
currently requires configuration via the GUI from among 
a fixed set of topologies, including ring, star, and line 
backbones. The current release also supports static intra-
overlay routing, either via conventional static routes or 
via explicit entries in the gated or mrtd configuration of 
the dynamic routing of the base network. The X-Bone has 
multiple levels of logging, and includes heartbeat refresh 
and timeout, as well as state recovery on restart or reboot. 
Support for dynamic intra-overlay routing via gated or 
mrtd using RIPv2 and support for intra-overlay multicast 
have been developed and are being tested for robustness.  

Future releases over the next year are expected to 
include richer topologies and the explicit API. A system 
for deploying applications, e.g., Squid proxy cache or 
anetd (Active Nets) daemons, is also under current 
testing. We are also developing an explicit recursive X-
Bone, deploying OMs and RDs inside an overlay. The X-
Bone's out-of-band configuration will eventually be 
replaced with emerging standards for in-band control, 
such as tunnel configuration (TMP, including MPLS 
tunnel pinning), IPsec key exchange, dynamic DNS, and 
SNMP. Security of the invitations is also under 
investigation, including authentication, privacy, and 
traffic confidentiality of invitation activity.  

The X-Bone is currently used for networking research 
and networking education. Various research groups are 
using the X-Bone to facilitate concurrent overlapping 
virtual testbeds on a shared, interdomain infrastructure 
(CAIRN, including a total of 30 nodes [4]). The X-Bone 
is being augmented to assist in the deployment of the A-
Bone, and is being deployed in several advanced 
showcase testbeds. It is also being used for USC’s 
graduate networking laboratory class (a 24 node lab), for 
overlapping concurrent student experiments. 

6.2. Optimizations 

The X-Bone makes no attempt to optimize the 
mapping of overlay resources to base network resources. 
The X-Bone also does not currently use network resource 
reservation, e.g., RSVP. This is largely due to RSVPs 
limited (and currently experimental) support for 
tunneling, and lack of support for multi-level tunnels. 

We are investigating other extensions for fault 
tolerance and optimization. It would be useful to avoid 
deploying multiple overlays over the same physical link, 
or to provide redundant links within a single overlay. It 
would also be useful to map requested ring overlays onto 
rings in the base network, somewhat matching topologies. 
Strictly, such overlay optimizations are graph embedding 
problems, which are difficult to optimize efficiently. The 
Internet's strict layering further complicates redundancy 
detection; even purchasing separate physical links from 
different networks providers can result in unintentional 
fate-sharing. We are investigating protocols for voluntary 
labeling to enable automated fate-sharing detection. 

6.3. Recursive (stacked) overlays 

We are investigating many of the features described in 
the architecture as possibilities, such as proxy-based 
resource discovery, and divide-and-conquer deployment. 
These features determine the scale of an overlay that the 
X-Bone can deploy; the current system has been tested for 
tens of nodes, and while larger scale tests are underway, it 
is not realistic to expect a single OM to coordinate 
thousands or tens of thousands of nodes. A related issue is 
fusion and fission, the ability to split an existing overlay, 
or merge two overlays into a single meta-overlay, which 
are useful for policy-based coordination, where 
organizations create their own overlays and subdivide 
them for internal use (ala Genesis), or merge them for 
inter-organization testbeds (e.g., CAIRN). 

In divide-and-conquer, each overlay will have a master 
OM, which delegates a portion of the overlay to other 
slave OMs and then combines the results of their 
deployment. OMs will discover each other using the same 
multicast mechanism as OMs use to discover RDs.  

6.4. Further multihoming extensions 

The X-Bone has been especially affected by the dearth 
of support for multihoming. Hosts in an overlay system 
are necessarily multihomed [3], belonging to both the 
base network and perhaps several overlays. Multihoming 
requires context-sensitive demultiplexing, such that 
daemons not attach to every incoming packet addressed to 
a particular protocol's port. While this is supported in 
current host operating systems, most protocol daemons 
are not written to bind to a subset of addresses. In 
addition, applications need control of the source IP 
address of a packet, i.e., to indicate which of a host's 
multiple addresses is to be used as the source (not 
currently implemented). Multihomed hosts often require 
support for an internal, virtual router, such as support for 
dynamic routing protocols, support for proxy ARP, etc.  

Routers are similarly multirouted (our term for a 
multihomed router), needing similar partitioning. In a 
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router, this translates to context-sensitive forwarding, and 
context-sensitive routing algorithms. Packet processing 
and routing packet exchanges need to be predicated on the 
address of the incoming packet and its interface. In both 
routers and hosts this context is both address, and overlay 
identifier specific. For overlays, this means that the IP 
decapsulation must retain portions the outer headers, to be 
used as context for further processing. Other host 
services, such as DNS resolution, require this context to 
differentiate namespaces among overlays. Our future 
work includes these extensions. 

6.5. Fault tolerance 

Fault tolerance is a specific focus of future 
development. The X-Bone's support of stackable overlays 
supports dynamic relocation of a running overlay, without 
renumbering that overlay, which can remap a faulty 
underlying overlay to a working overlay.  Fault 
replacement is intended to provide a dynamic alternative 
to manual relocation, but not to replace dynamic routing. 
Dynamic relocation is expected to operate at timescales 
much larger than that of dynamic routing, i.e., tens of 
minutes, hours, or even days. Conventional dynamic 
routing can provide fault tolerance within an overlay; 
when that overlay loses too many links to be considered 
viable (e.g., K-connected), it is replaced with a different 
overlay. Partial (component-wise) and incremental 
replacement can minimize the effect on overlay traffic.  

Consider our first example, of a base network on 
which various overlays are deployed (Figure 1). The X-
Bone can deploy stacked overlays, such as three ring 
networks on the base network, and a star on one of those 
rings (Figure 15). When a fault is detected in one ring, the 
star can be remapped to a different ring. The challenge is 
deploying multiple rings that are known not to share 
physical resources. The X-Bone's layering provides a 
level of indirection to IP addressing in the star overlay, 
which allows it to be renumbered with respect to the base 
network, without renumbering within the star (the virtual 
network equivalent of virtual memory paging). 

 
Figure 15. Multi-layered overlays allows dynamic 

re-mapping, supporting fault tolerance 
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