Efficient High-Speed Data Paths for IP
Forwarding using Host Based Routers

Simon Walton, Anne Hutton, JoeToucH
USC / Information Sciences Institute

Abstract

Host-based forwarding uses general purpose computers with two
or more network interfaces to act as a router. These routers offer
certain advantages over the use of dedicated hardware, allowing
open, public source code access to the forwarding, queuing, and
routing algorithms, and the use of more flexible, commodity host
interfaces and host CPUs. The main drawback of host-based
forwarding is its inefficiency in supporting high-bandwidth
interfaces; although host 1/0 busses support gigabit throughputs,
existing host routers achieve only 25% of this capacity. This paper
examines a version of host-based forwarding that substantially
increases the capacity of host-based routers, by transferring
packets directly between host interfaces, rather than staging them
through the host memory. On a 200 Mhz Pentium-Pro FreeBSD PC,
the resulting system supports bandwidths in excess of 480 Mbps, a
45% increase compared to conventional techniques.

KEYWORDS: host routers, IP forwarding, data paths, peer DMA,
router performance

1.0 Introduction

Host workstations are increasingly being used as routers. Using commodity platforms and
network interfaces, these host-based routers can be cheaper, and allow more flexible configuration
and programmability than production routers. This work optimizes the data path in a host-based
router, to increase routing bandwidth, while reducing backplane bandwidth and CPU load.

Production routers are special-purpose systems, which use custom backplanes and line
interface cards, with closed, proprietary software. These systems are often limiting, because of

t. This work is supported by the Defense Advanced Research Projects Agency through Ft. Huachuca contract
#DABT63-93-C-0062 entitled “Netstation Architecture and Advanced Atomic Network”. The views and conclusions
contained in this document are those of the authors and should not be interpreted as representing the official policies,
either expressed or implied, of the Department of the Army, the Defense Advanced Research Projects Agency, or the
U.S. Government.

their closed software and proprietary backplane bus. Systems requiring software modification,
such as experimental routing testbeds (e.g., DARTnet and CAIRN) and dynamically-reprogram-
mable routers (Active Networks [7]), typically require host-based routers.

Host interfaces for new gigabit technologies are typically available much earlier than their
router line-card equivalents. In some cases, such as the Myrinet, no router line cards are available.
In addition, the router line-cards are vendor, and sometimes product specific. Host interfaces
focus on commodity standards, such as PCl and VME busses. As a result, host-based routers pro-
vide the earliest, and sometimes only way to interconnect new technologies among themselves,
and to other existing technologies.

Our investigation of the optimization of host-based routers focuses on optimizing the data
path. First, we present some background. We discuss the way conventional host-based routers
process packets, and the two ways we optimized that processing, by reducing an extra data copy.
We then present our results, showing how we increased data throughput by 25% while reducing
CPU load in the host. Finally, we discuss the implications of this optimized processing, and how it
affects network interface design and host operating system software.

2.0 Background

The University of Southern California Information Sciences Institute’s (USC/ISI) Com-
puter Networks Division current runs the largest production Myrinet LAN, a 1.28 Gbps mesh-
connected network co-invented by USC/ISI and the California Institute of Technology (CalTech),
and spun-off to a company called Myricom. The Myrinet provides full-duplex gigabit bandwidth
using cables composed of dual simplex byte-wide copper links. At ISI, this LAN is connected to a
host-based router, interconnecting 53 office workstations to OC-3c (155 Mbps) ATM and fast eth-
ernet (100 Mbps).

The Myrinet links are connected to LAN switches, each providing 8 ports of full-band-
width cross-connect. The switches use hardware signalling to provide backpressure to the source,
and route packets inside the LAN using source-routed, cut-through packet switching. Myrinet link
packets carry up to 8,432 bytes of payload.

At the link layer, the LAN emulates an ethernet, using ethernet-like link addresses. The
LAN supports broadcast by serially copying the outgoing packets at the source interface, sending
a copy to every destination interface on the LAN in sequence. Multicast is provide by broadcast,
using driver-based select inside the host. The Myrinet network interface cards (NICs) contain 256
KB (kilobyte) of shared memory (512 KB to 1 MB in newer versions), used to contain the inter-
face control program, shared and local variables, and packet buffering. The NIC also contains a
32-bit (20 million instructions/sec.) processor, dedicated to link and LAN control, but not suffi-
cient to participate in other processing. DMA is provided by the NIC across the host PCI bus, in
either direction.

For our testbed, we use 200 Mhz Pentium Pro PCs, running FreeBSD 2.2.5 [3]. These
hosts also have a 33 Mhz, 32-bit wide PCI bus, used for high-bandwidth peripheral access. In
experiments performed elsewhere, the combination of these PCs and the Myrinet NICs have been
shown to provide host-memory to host-memory data transfer rates in excess of 1 Gbps (gigabits
per second), using very large transfer units (64 KB and larger), pipelined directly into the NIC
DMA [6]. However, at the IP layer these hosts support UDP rates of 300 Mbps and TCP rates of
150 Mbps.

2

For our experiments, we relied on the packet multiplexing capability of the Myrinet
switches to merge traffic from multiple sources, to find the limiting routing bandwidths. We found
that as a host-based router, the hosts provide bandwidths near 335 Mbps, using existing produc-
tion drivers and the FreeBSD forwarding software. This rate is not substantially higher than the
single-host data source limit of 300 Mbps. We knew that existing host forwarding copied data
twice across the peripheral bus, and that this would limit the maximum bandwidth to 500 Mbps;
we felt that reducing the number of copies would alleviate this contention, and possibly increase
the throughput of the system.

3.0 Prior and related work

It is well known that memory performance in workstations has not paralled improvements
in processor performance or network bandwidth. Much work has been done on techniques to min-
imize data copying by bypassing or reducing the level of operating system intervention and pro-
moting direct application to network interface interaction.

First some terminology about routing. Routers relay packets between different networks,
using a combination of forwarding and queuing. Forwarding is the process of determining the
destination interface and queue of an incoming packet, and includes some header manipulation.
Queuing is the process of storing, retrieving (and potentially dropping) packets according to
gueue, network, and header context. Routing has multiple meanings; it can mean the combined
process of forwarding and queuing, or the inter-router process of computing routes used by the
forwarding algorithm. As a result, we refer separately to the process of forwarding and queuing
here.

Several techniques have been introduced to minimize the number of times network data
crosses the CPU/memory data path, notably hardware streaming [2] and kernel-level streaming
[4]. In hardware streaming data is transferred from source to sink device without CPU involve-
ment. This avoids the extra copy into kernel RAM, but is focused on inter-peripheral communica-
tion, such as video-to-disk. In packet forwarding and queuing, the host CPU still needs to process
the packets between the input and output devices; whereas such intermediate processing is
entirely avoided in hardware streaming. Kernel level streaming transfers data from source to sink
over the system bus without an application process being included in the data path. Data does,
however, pass through memory and the technique relies on the Sytem V STREAMS interface.

There has also been substantial work in avoiding OS intervention by providing user access
to network data [9]. Direct application access to the network interface is used to achieve both low-
latency and high bandwidth using commodity workstation clusters. Protocol processing is moved
to the application by virtualizing the interface using a combination of NIC capabilities (on board
buffers, programmable co-processors, DMA) and OS mechanisms. In the case of fast ethernet
NICs, which do not have an on-board co-processor, kernel intervention is necessary. The main
benefit of the NIC co-processor is to allow examination of the packet header and direct DMA of
the data into the user-space buffer reducing the number of data copies. U-Net is currently working
on implementing a subset of the Java Virtual Machine for the Myrinet NI - this would allow cus-
tomized packet processing on the NI and would encourage further use of host based routers in an
Active Nets context.

An industry consortium is also extending the concept of virtualizing NIs to provide user-
level access to the network interface [8]. The interest is primarily in low latency message passing,

which may streamline the interrupt processing of current NICs, and allow outboard co-processors
to be controlled and programmed using a standard interface.

Finally, there are a number of techniques for optimizing custom router design, summa-
rized in [5]. Peer-DMA transfers between router line cards has been utilized there, including vari-
ations on where whether the header forwarding processing occurred on-card or outboard, on a
separate processor. One recent system at BBN shows how this can be accomplished using com-
modity CPUs in a custom backplane architecture [5].

4.0 Conventional host-based forwarding

This section describes the flow of IP packets in a conventional host-based router. A host
router is composed of a host with at least two host interfaces (Figure 1). The host RAM is man-
aged by its CPU, predominantly as a pool of shared memory used by the operating system kernel.
The host also has an I/0O controller which manages DMA access by the host interfaces over an 1/0
channel. This channel is conventionally a shared bus, e.g., a PCI bus, but can also be a switched
matrix, as in recent workstations from Sun Microsystems and Silicon Graphics.

The network interface cards, or NICs, each have a DMA controller and some internal
memory, as well as an interface to their particular link. The DMA controllers manage data trans-
ferring from the NIC RAM directly in to the host RAM, without the supervision of the host CPU.
For simplicity, only one incoming and one outgoing NIC are shown in these figures.

In a conventional host-based router, forwarding is performed inside the host, by the CPU.
When a packet arrives, the NIC signals the host, which signals the DMA on the NIC to proceed
with a copy of the packet from the NIC RAM into the host RAM. The host CPU then processes
the packet, examining its link and IP header, and determining the appropriate outgoing interface,
outgoing link header, and any modifications to the IP header. The host packet copy is then modi-
fied appropriately, and the outgoing NIC then DMASs the packet into its RAM, and emits it on the
outgoing link. These steps are shown in Figure 1

Forwarding computation

m "

= [O

DMA into host RAM Route, edit headers DMA into NIC RAM

[L [I] data]

FIGURE 1. Full packet kernel copy, with DMA to/from host memory only

In the forwarding step, both link and IP headers are modified by the forwarding algorithm.
The IP header is typically modified only at its hopcount field, but other fields, such as source
route, encapsulation, and timestamp options can also be altered. The link header can indicate link
level destination (and possibly source) addresses, and can also have additional demultiplexing
fields, such as channel identifiers in the Myrinet, or virtual circuit identifiers (VCIs) in ATM. The
link header is usually replaced entirely by the router, appropriate for the destination of the outgo-

ing interface link. Data inside these packets, interior to the IP packet, is typically not modified,
although it can be examined, encrypted or authenticated.

Buffer management in the conventional host case focuses on main memory storage; buff-
ers in the NICs are used as temporary queues to buffer the link rate to the DMA transfer rates.
NIC buffers are used only as long as required to transfer packets into main memory on the incom-
ing path, or out to the link on the outgoing path. All other queuing, and queue management is per-
formed in main memory [3].

These steps are somewhat different if the host is the destination of the incoming packet. In
that case, the packet is copied from kernel memory into user memory, based on further demulti-
plexing of the packet header by the kernel. However, in the case where forwarding to an outgoing
interface is the dominant case, the conventional data path is not optimal. The packet is copied
twice, once into host memory, and once out of host memory.

A better algorithm would permit packets to be transferred directly from incoming NIC to
outgoing NIC, without the extra copy. This would reduce the I/O channel load, free host
resources, and reduce the transfer latency through the router. The I/O channel would have reduced
signalling load, because the bus arbitration is accessed only once per packet, rather than twice. If
the channel is implemented using a shared bus, the bandwidth over this bus would be cut in half
(this is not an issue if the channel is switched). The host memory would not be required, so kernel
RAM resources would be increased. The host would also have increased 1/0 channel access band-
width for other devices, such as video and disks, because the packet bandwidth over its port is
reduced from two packet copies to zero.

5.0 Peer-DMA forwarding

Here we describe an alternative to the packet path in conventional host-based routers. We
were not sure whether host PCI bus contention was a significant problem, but wanted to examine
the benefits of avoiding the excess packet data copying of the conventional system. The goal is to
leave most of the packet in the incoming NIC, until its destination is determined. When the packet
is ready to be transferred, it can be DMAd directly from the source NIC to the destination NIC,
without an intermediate copy into the host memory.

This streamlined DMA processing has several benefits. By avoiding the superfluous copy
into host memory, shared peripheral resources are economized. In a shared bus, such as PClI,
bandwidth use is halved. Even in switched peripheral systems, bandwidth in and out of host mem-
ory is significantly reduced. Finally, packets are moved with reduced transfer latency. This low-
ered transfer latency is typically not noticed in host-based routers, where queuing latencies
dominate.

We examined two different ways of supporting peer DMA forwarding. In both methods,
packets remain in shared memory on the incoming NIC, and are eventually peer-DMAd directly
to the outgoing NIC. The host continues to perform the forwarding functions, and so needs access
to the packet’s link and IP headers. Both methods assume that the NIC contains a reasonable
amount of packet buffer space, and that space is sufficient for queuing packets while they are for-
warding and queued for output. Neither method involves changes to kernel code only to the net-
work interface driver.

In the first variant, called ‘IN-PLACE’, the entire packet is left in the NIC, and the host
accesses these headers by reading its fields directly over the PCI bus (Figure 2). Each field is read

5

separately, as a shared-memory access. In the second variant, called ‘HEADER COPY’, the link
and IP headers are copied, in full, into the host memory, where they are manipulated by the host
using local RAM accesses. The modified headers are copied out over the original packet’s header,
then the result is DMAU in its entirety to the destination NIC Figure 3. Both techniques required
modifications only to the device driver, and the changes affect packet transfers only on the incom-
ing NIC.

The two variants differ in complexity and efficiency. IN-PLACE forwarding requires only
minor modification to the driver routines, where packet buffer pointers address shared NIC mem-
ory rather than kernel RAM in the host. However, each field accessed by the host CPU requires
peripheral bus arbitration, and also runs at a slower clock rate than CPU accesses to main mem-
ory. In addition, these accesses cannot be cached, because they refer to shared memory. In this
case, the bus arbitration overhead is increased.

HEADER-COPY transfers the entire header into main memory when the packet arrives,
streamlining peripheral bus access, but using copying fields the host may not access. The header
must be copied back out to the incoming NIC before the peer DMA can begin. These steps were
not difficult to add to the driver, but not as trivial as the IN-PLACE method. In this case the bus
arbitration overhead is slightly higher than the conventional case, because of the additional access

for the header copy-back operation.

2 AT\
LIIIdata L [ITdata] [LTITdata
3 J ot

Route, edit headers Peer DMA NIC-to-NIC
via reads across 1/O bus

Forwarding computation

FIGURE 2. IN-PLACE forwarding, followed by peer DMA
Forwardlng computation
I I

LIIIdata L [IT data LIIIdata L [ITdata] [L]ITdata
3 3 3 -

DMA link, IP headers Route, edit headers DMA link, IP headePeer DMA NIC-to-NIC
into host RAM to source NIC RAM

FIGURE 3. HEADER COPY forwarding, followed by peer DMA

Both of these techniques require special processing for ARP and ICMP packets. These
packets are usually associated with low-level control exchanges, often handled within the driver

6

software. Many such packets generate an immediate response, which typically overwrites the
incoming packet, and is rapidly sent back out. As a result the peer DMA methods would request a
transfer from the incoming NIC back to itself; although this operation is not prohibited by the PCI
bus specification, it is often not supported, and can lock the bus and freeze the host. This case is
easily handled by detecting the special case, and effecting the peer DMA by pointer manipulation,
rather than by an excess self-copy.

6.0 Results

For our experiments, we used two measurement software toetperf2.11, andraffic.
Netperfgenerates both UDP and TCP packets, taffic generates only UDP; for our measure-
ments, we used only UDP packets, because we focus on throughput of the router, and both types
of packets are forwarded identically. Neither tool contains flow control, and the send side is typi-
cally faster than the receive side for UDP. For CPU load measurement, we used a passive monitor-
ing tool developed at ISI, callegbuload

Our experiments used both single pairs and multiple pairs of hosts sending and receiving,
and used only Myrinet NICs to simplify the testbed. A single PC host can send only 300 Mbps
UDP without checksums, 275 Mbps with checksums.We found that a PC-based router can easily
support these bandwidths, such that hosts directly connected, or routed through an intermediate
PC, achieved the same bandwidth. As a result, we used the Myrinet switch’s packet multiplexing
capability to aggregate streams from multiple sources, and demultiplex them to separate destina-
tions, as shown in Figure 4. These switches are internally non-blocking, and the link rate supports
1.28 Gbps; for up to 4 hosts, the links and switches would provide no contention for our experi-
ments. We used up to three sources and three sinks for our tests; additional sources and sinks were
tested, and did not affect the results.

Host Host
Host

Host w router w Host

Host Host

FIGURE 4. Experiment testbed configuration

We measured the three competing solutions to host-based forwarding: conventional, using
the standard drivers, IN-PLACE, in which header fields are read over the PCI bus individually,
and HEADER-COPY, in which the link and IP headers are copied into host memory prior to for-
warding (shown Figure 1, Figure 2, and Figure 3, respectively). We measured throughput in band-
width (bits/second) and packet rate (packets/second), and monitored CPU load, over a range of
packet sizes from 128 bytes through 8 KB. These results are shown in Figure 5. Latency was not
measured because routers are dominated by queuing latency, which is not affected by our solu-
tion.

First, we measured a single pair of hosts, both with and without an intermediate router. We
found that both UDP bandwidth and packet rates were unaffected by the inclusion of the host-

based router. The router CPU was less loaded using the standard driver (37%) than either the IN-
PLACE (65%) or HEADER-COPY (56%) drivers. Because our system is not otherwise limited,
the peer DMA drivers only serve to complicate packet processing, requiring additional effort to
access the header over the PCI bus, or to copy the header back out to the incoming NIC before the
final DMA. The read-through over the PCI bus in the IN-PLACE driver is higher cost than the
HEADER-COPY,; it is likely this cost is a combination of bus contention tying up the CPU, and
the fact that read-through data cannot be cached.

For two pairs of sources and sinks, the standard driver tops out at 335 Mbps, the IN-
PLACE at 419 Mbps, and the HEADER-COPY at 441 Mbps. The higher utilization is possible
due to a higher offered load, a total of 600 Mbps of offered UDP packets. The HEADER-COPY is
more efficient than the IN-PLACE driver, because copying the entire header into the host and
back out is more efficient than accessing the fields independently over the PCI bus. In these cases,
CPU load was nearly 100% for all packet sizes, except for the HEADER-COPY driver, where the
CPU load dropped to 65% for 8 KB packets, measured by our cpuload tool.

For three pairs of sources and sinks, we modified our experimental technique. For the one
and two pair cases, netperf and traffic generated identical results. For three or more sources, net-
perf could not be used; one source would block and restart later, staggering the streams, defeating
the goal of generating three simultaneous sources. Nonetheless, for three or more sources, the
standard driver did not increase in throughput - it peaked at 335 Mbps, as before. The IN-PLACE
driver peaked at 472 Mbps, and the HEADER-COPY driver at 482 Mbps.

The standard driver, in general, increased bandwidth only 10% using multiple sources, as
compared to a single source. For HEADER-COPY, the final design, the measured CPU load was
100% for small packets and multiple sources, and per-packet overheads dominate for small packet
sizes. This is also evidenced in the packets/second graph, Figure 6. The packet rate is nearly con-
stant for packets under 1 KB, around 12,000 packets/second, indicating that either interrupt pro-
cessing or forwarding algorithm processing causes resource contention at the CPU. For larger
packets, costs proportional to packet size dominate, suggesting backplane bandwidth contention.
Backplane bus arbitration does not appear to be an issue, because the CPU is 100% loaded at low
levels, and because the CPU is involved in each step also requiring bus arbitration. By avoiding
the additional packet copy, throughputs and packet forwarding rate is increased substantially, up
to 45%, to a bandwidth of 480 Mbps.

UDP Throughput for 3 sources and sinks for 3 Driver Types

500 , _
Standard DIiVe i,
IN-PLACE peer DMA
HEADER-COPY peer DMA= /’-
400 |

300

200t

UDP Throughput (Mbps)

100}

128 256 512 1024 2048 4096 8192
Message Size (bytes)

FIGURE 5. UDP bandwidth comparison of three driver types

HEADER-COPY Peer DMA throughput by number of sources

1 source - 1 Sin ke
15000} 2 sources - 2 SinkGe= |
3 sources - 3 sinké =

10000

5000}

Throughput (packets/sec)

128 256 512 1024 2048 4096 8192
Message Size (bytes)

FIGURE 6. HEADER-COPY packet rate throughput

These results focused on UDP packet processing. We expected TCP processing to be iden-
tical, but found otherwise. The host-host throughput for a single pair through an intermediate host
router is 100 Mbps; lower than a point to point connection which achieves 150 Mbps and does not
use an intermediate router. The lower throughput occurs for both conventional and peer-DMA
implementations of the host router. There is no current theory on why the rate through a router is
lower; it is possible that the hardware flow-control feedback of the Myrinet is affecting the

9

throughput, but our lab currently lacks a comparable link technology capable of supporting TCP
over 200 Mbps in which to compare these effects. Using ATM links, the point to point TCP
throughput is 100 Mbps, the same as using Myrinet with the host router. The peer-DMA is not
currently suspected, because throughput is lowered even for conventional forwarding.

7.0 Implications

The results of these experiments are that HEADER-COPY peer DMA is an effective tech-
nique for increasing host-based router throughput, and for reducing the CPU load for forwarding
large packets. However, when the same driver was used for packets destined for the router itself,
i.e., for the end host, throughput was substantially reduced, compared to the standard driver. The
optimized driver should be used only for host-based routers where the dominant traffic is through,
rather than into, the host. This is not different from the effects of user protocol optimizations, so-
called single-copy stacks, which optimize throughput into user space memory; for similar rea-
sons, such systems are likely to be ill-suited to host based routers. For hosts with mixed traffic, a
combination of these two systems, with early demultiplexing (packet labels) indicating which
algorithm to select, is one possible design alternative.

We assume that the link bandwidth is sufficient to necessitate seeking a higher perfor-
mance forwarding algorithm. The results of the UDP tests indicate that link bandwidths in excess
of 400 Mbps, closer to 500 Mbps would be required for peer DMA to be beneficial. Below these
rates, conventional forwarding is sufficient. This result is host dependent; as CPU and backplane
bandwidths increase, conventional forwarding will be faster, requiring ever higher link band-
widths to necessitate peering. However, given the advent of gigabit ethernet, Myrinet, and OC-12c
ATM (622 Mbps), link speeds warranting alternate methods are likely to be common.

We assume that NICs support DMA, and that each NIC supporting incoming traffic also
contains shared memory sufficient for packet queuing. Our experiments used only Myrinet inter-
faces, because available fast ethernet and ATM NICs did not support equivalent shared memory
use. If the NIC lacks sufficient shared memory, the host memory must be used as a staging area,
defeating the peer-DMA altogether. Extensive memory can also be required when NIC link rates
vary widely, to be used for line rate matching, or if advanced queuing algorithms are supported,
such as priority queues or early discard queuing. Note that peer DMA supports any queuing algo-
rithm, because both forwarding and queue management occur in the host CPU.

We also assume that fragmentation is either not required or is trivial. This requires that the
maximum transmission units (MTUs) do not vary largely between the NICs, that all NICs can be
set to use the smallest, or that packets are forwarded to external nets, where the default Internet
MTU is used. The NICs are assumed to deal in units of packets, the same packets as processed by
the host forwarding algorithm. This latter case may not be true when packets are aggregated for
link transmission, as in IP over SONET or gigabit ethernet.

We assume that packet data is ignored by the host CPU. This is not the case in Active
Nets, or when data is transcoded, reformatted, segmented and reassembled, authenticated or
encrypted. In these cases, the entire packet must be manipulated by the CPU anyway, so the initial
data copy of the standard driver aggregates the packet transfer in one step, just as the HEADER-
COPY aggregates the individual field accesses of the IN-PLACE driver.

As discussed earlier, the peer DMA techniques reduce peripheral system bandwidth
resource contention. In our experiments, this resource is a shared bus with 1 Gbps capacity. When

10

using a switched backplane, or when a shared bus backplane has higher throughput, these tech-
niques are not needed to reduce peripheral resource contention. They do continue to reduce band-
width use into and out of the host RAM, and to reduce use of that RAM. Bus arbitration overhead
does not appear to be a significant issue.

Finally, there is the possibility of moving the IP forwarding algorithm into the NIC itself,
completely obviating the need for host CPU access to the packet headers. This would require
copying the routing tables and algorithms into the NIC, as well as sufficient general-purpose pro-
cessing capability to handle the forwarding algorithm. It also requires moving queue management
algorithms into the NIC, and complicates the shared queuing model of existing routers, which
may interfere with policy-based forwarding and queuing, as well as resource reservation. It
remains a possibility, but not for Myricom NICs, whose processors are completely loaded running
the link-level protocol and packet management algorithms.

8.0 Conclusions

Host-based routers provide a flexible, open architecture for router implementation. By
using commodity components they support a variety of LAN and WAN links that purpose-built
routers do not as rapidly support. Techniques to increase the capacity of host-based routers will
remain important, as a result.

We found that peer DMA can increase host-based router throughput by up to 45%, sup-
porting bandwidths of 480 Mbps. Peering is more efficient using a header-copy driver, where the
entire link and IP headers are copied in a single DMA operation into the host RAM. For large
packet sizes the resulting system also relieves CPU load substantially.

Peer DMA host-based forwarding requires NICs with substantial shared memory
resources, because packet queues are stored on the interfaces themselves, rather than in host
RAM. The queueing algorithm remains in the host CPU, supporting advanced queue manage-
ment.

Current systems are packet processing limited; a combination of streamlined forwarding
algorithms and aggregate interrupt processing should further increase host-based capability. Mov-
ing some of the IP processing out to the NIC co-processor may enable this, where co-processing
is available. It is also apparent that as processor speeds increase the advantages of peer DMA will
aid throughput for small packet sizes.

9.0 References

[1] Boden, N., Cohen, Degt al, “Myrinet — A Gigabit-per-Second Local-Area Network,” IEEE-
Micro,Vol.15, No.1, February 1995, pp.29-36.
<http://www.myri.com/research/publications/Hot.ps>.

[2] Druchel, P., Abbot, M., Pagels, M., and Peterson, L., “Network Subsystem Design: A Case
for an Integrated Data Path,” IEEE Network, Vol 7, No 4, pp 36-43, July 1993.

[3] McKusick, M., Bostic, K., Karels, M., and Quarterman, The Design and Implementation
of the 4.4 BSD Operating Systefdison Wesley, 1996.

11

[4]

[5]

[6]

[7]

[8]

[9]

Murphy, B., Zeadally, S., and Adams, C., “An Analysis of Process and Memory Models to
Support High-Speed Networking in a UNIX Environment,” USENIX, Proceedings of the
Technical Conference, pp 239-251, Jan 22-26 1996.

Partridge, C., et al., “A 50-Gb/s IP Router,” IEEE/ACM Transactions on Networking, Vol 6,
No 3, June 1998.

Prylli, L. and Tourancheau, B., “Bip: a new protocol designed for high performance net-
working on myrinet,” Proc. of the PC-NOW Workshop, IPPS/SPDP98, Orlando, USA,
1998.

Tennenhouse, D.L., Smith, J.M., Sincoskie, W.D., Wetherall, D.J., Minden, G.J., “A survey
of active network researcHEEE Communications Magazingp. 80-86, Jan. 1997.

Dunning, D., Regnier, G., “Virtual Interface Architecture”, IEEE Proceedings of the Hot
Interconnects Symposium V, 1997.

Welsh, M., Basu, A, and von Eicken, T., “ATM and Fast Ethernet Network Interfaces for
User-level Communication,” IEEE Proceedings of the Third International Sympsosium on
High Performance Computer Architecture, pp. 332-342 Feb 1-5, 1997.

12

