

Application Deployment in Virtual Networks Using the X-Bone

Yu-Shun Wang and Joe Touch
USC / Information Sciences Institute
yushunwa@isi.edu, touch@isi.edu

January 7, 2002

Abstract1

This paper describes a framework for application

deployment within virtual networks using X-Bone. The
framework supports deployment of arbitrary applications
and allows users to configure the runtime environment by
executing user-provided scripts instead of hard-coding
application commands into the system. It also automates
the process of constructing virtual networks and
deploying applications by using X-Bone.

Keywords: application deployment, virtual network,

network management, overlay network, VPN, automated
configuration

1. Introduction

Virtual networks, or overlay networks, consist of a set
of hosts and routers connected by encapsulated (tunneled)
links. They were originally developed for protocol
isolation, to test and incrementally deploy new protocols,
e.g., Mbone, 6Bone [1][8]. They may also provide
security (VPNs) or a simpler view of the network
topology (e.g., X-Bone, RONs, Genesis) [2][7][13][18].

Virtual networks are increasingly used as infrastructure
for distributed applications. Early applications focused on
network services, such as multicast [8]. More recently,
they have been used to deploy constellations of web
caches, or to support so-called ‘peer networks’
[3][13][14].

There are several tools for the automated
configuration, deployment, and management of virtual

1 This work is partly supported by the Defense Advanced Research

Projects Agency (DARPA) and Air Force Research Laboratory, Air
Force Materiel Command, USAF, under agreement number F30602-98-
1-0200. The U.S. Government is authorized to reproduce and distribute
reprints for Governmental purposes notwithstanding any copyright
annotation thereon. The views and conclusions contained herein are
those of the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either expressed or
implied, of the Defense Advanced Research Projects Agency (DARPA),
the Air Force Research Laboratory, or the U.S. Government.

networks, such as the X-Bone, GUILN, and others
[7][10][12][16][18]. Most of these tools have focused on
the configuration of network devices and network-level
services such as multicast and QoS. This paper focused on
generic extensions to the X-Bone to support application
deployment.

Application deployment is the process of installing,
configuring and starting an application on a virtual
network. The complexity varies with different types of
applications. Sometimes privileged access to a system is
required because some applications need to access core
system components and configurations. Deploying
applications over a network adds to the difficulty by
requiring remote accesses to each system and sometimes
across different administrative boundaries.

The X-Bone is a system for dynamically deploying and
managing virtual networks over the Internet [17][18]. The
X-Bone automates the process of deploying virtual
networks including resource discovery, node selection
and configurations, state refreshing (heartbeat) and
monitoring, dismantling, and crash recovery. The X-Bone
achieves these by using SNMP-like daemons on each
system and providing a web GUI.

This paper describes a framework for deploying
applications in virtual networks using the X-Bone. The
procedure of deploying a virtual network is exactly the
same as deploying other applications over a network,
because virtual network is a kind of network application.
With this framework, a user can request a virtual network
with certain topology and also specify the application(s)
to deploy over it. The X-Bone system then constructs the
overlay and deploys requested applications on the virtual
network without additional user intervention.

The next section provides background on application
deployment. Section 3 describes the framework and
Section 4 discusses the issues therein. Section 5 presents a
case study of deploying an ABone. Section 6 lists related
works and future directions.

2. Background

There are a number of steps required to deploy an
application on a virtual network. Some of these steps are
part of any application configuration, and can be
automated easily. Some steps are more difficult to
automate because there might be more than one copy of
the same application running on the same node. Finally,
there are steps that are complicated by running the
application on a virtual network, which can challenge
some assumptions of the application designer.

2.1. Application Deployment

To deploy network applications, the following tasks
need to performed in order:

1. Find and select the systems (discovery),
2. Obtain access privileges (access),
3. Install applications,
4. Configure the systems and the applications,
5. Starting, monitoring, terminating (control),
6. Monitoring

These are discussed in further detail below.

Resource Discovery
In manual application deployment, the choice of

systems is usually determined out-of-band. For dynamic
and automatic application deployment, finding the ‘right’
system is difficult. It involves identifying systems that
meet the requirements and are capable of running the
application requested, and determining whether one has
(or is granted) the necessary access. In our framework, the
X-Bone resource discovery multicast is used to find the
nodes to deploy. The X-Bone’s discovery mechanism
finds any nodes that are capable and willing, and selects a
subset of the responding nodes arbitrarily. This does not
address the need to precisely locate applications, which
would be supported by augmenting the X-Bone’s
discovery mechanism.

Remote Access
To deploy applications over the network, users need

remote access to the selected systems. This usually
involves contacting the system administrators or owners
to obtain access with necessary privileges beforehand. In
our system, X-Bone daemons already run as root on each
node to perform the deployment, based on an earlier
arrangement. Basically, installing the X-Bone is as
challenging as deploying an application, except that the
X-Bone can then deploy subsequent topologies and
applications without further reconfiguration.

Building and Installing Applications
During resource discovery, the system needs to verify

that the requested applications are available on each node.
If an application is not already installed, it can be built
locally on each node, or pre-build executables can be
deployed over the network. The later is preferred because
building applications at deployment time could be time-
consuming and may incur errors that need manual
intervention. It also allows users to control the specific
version or compilation options needed. Our system
assumes that applications are already installed on the
systems and uses a command provided by the users to
verify the availability of each application.

Configuring Applications
Configuration refers to the parameters of the runtime

environment for an application. Most of this is contained
in configuration files or command-line arguments, but
other data may be required (e.g., environment variables,
accounts, devices, etc.).

Command-line arguments are easier to script for
automatic deployment, and do not affect the local file
systems. They are suitable only for applications with
simple or few options.

Configuration files are typically used for applications
with a large amount of complex runtime options. These
files need to be generated and stored in unique locations.
Each instance of the application must be configured to use
the appropriate configuration file, usually via command
line arguments.

Some applications require environment variables,
special user login accounts, or new devices created. These
can be more difficult to configure, because multiple
instances of an application are likely to interfere with
each other. It can be difficult or impossible to have
different copies of a single application refer to different
environment variables, usernames, or devices, unless they
can be isolated local to a process.

Application control
Applications can require multiple steps to start or stop.

These steps include managing configuration files, log
files, or command line parameters. Stopping or signaling
a running application can require locating the appropriate
process and sending the appropriate shutdown, restart, or
cleanup signal. Again, this can be complicated when more
than one copy of the same application is running on the
same node.

Monitoring
Monitoring is an important requirement for most

applications, and a critical requirement for automated
deployment and management of applications on virtual

networks. For applications with runtime processes,
process IDs are the most common indicators (though an
insufficient one) for monitoring purposes. For other
applications performing system configurations, it is
harder to verify the integrity of the settings. However, as
with other areas of application control, it can be difficult
to isolate a particular instance of an application when
more than one copy of that application is running on a
node.

Automatic management is simpler if applications have
an integrated status report capability that generates a
short, text summary.

2.2. Multi-Instance Application Conflicts

For hosts participating in multiple virtual networks, it
is possible to deploy the same application more than once
on a system. Although the procedures remain the same,
care must be taken to prevent conflicts among instances
of the same application regarding files (configuration
files, log files, etc.), address binding (wildcard address),
account names, process numbers, etc. This issue is
discussed in more details in Sections 4.2 and 4.4.

2.3. Virtual Network Complexities

Some network applications make certain assumptions
about the ‘view’ or’scope’ of network components within
a system. Most applications bind to the so-called wildcard
address, which may include all valid IP addresses in a
system, or iterate through the list of all network interfaces
in a system. These suffice where there is only one
instance of the application. On a host participating in
multiple virtual networks, the ‘view’ or ‘scope’ of
network components an application should see must be
limited to the particular virtual network on which it is
deployed. This is discussed further in Section 4.4.

3. Framework for Application Deployment
Using the X-Bone

This section describes the particular framework
developed for deploying applications using the X-Bone. It
describes the basic operation of the X-Bone, and how it
was augmented to support application configuration,
deployment, and control. The system is based on a user-
supplied script, and the use of the script to generate more
specific scripts in multiple phases.

There are a number of assumptions on which this
solution is based:

1. Applications are already installed on the hosts, or
methods for downloading and installing the
application is included in the user-provided script.

2. Virtual network management is entirely handled by
the X-Bone. This includes finding and selecting the
participating nodes, constructing virtual networks,
monitoring, and dismantling virtual networks. The
X-Bone currently supports ‘arbitrary’ selection – of
a set of nodes responding to a request, an arbitrary
subset is selected. More precise placement of
services is supported in the X-Bone architecture,
but not in the current implementation.

3. X-Bone works on the Internet, and constructs IP
virtual networks. As a result, deployed applications
must work on or above the IP protocol layer

4. X-Bone overlays are “closed”. Components within
the virtual network cannot communicate with those
not in the same virtual network.

The internal workings and the virtual network

architectures of X-Bone are discussed elsewhere [17][18].
As a simple overview, the X-Bone consists of a web user
interface, a per-overlay Overlay Manager (OM) (like an
SNMP controller), and a per-node Resource Daemon
(RD) (like an SNMP agent). The Overlay Manager
receives requests to deploy an overlay via an API, and
sends per-node configuration commands to the Resource
Daemons. In the current system, resource discovery uses a
multicast invitation, and topologies are created from an
arbitrary subset of respondents. The general architecture
is pictured in Figure 1.

link

web
GUI

RD

host

RD

OM

API

router
Figure 1. X-Bone architectural components

The application deployment framework uses scripts

(usually Perl or shell) to setup and control the
applications. This is a generic way to accommodate the
different requirements of different applications without
the need to hard-code particular commands into the X-
Bone. The script needs to be different for different
instances of the same application on different nodes, or
for the same node when the application is on different
virtual network. This will affect network parameters, e.g.,
IP addresses, routes, host or virtual network names, etc.,
as well as usernames, log files, or other parameters used
in configuring or starting applications. This could require

the user to provide specific scripts for each node on each
overlay created.

Instead, our solution uses a script generator generator,
a script which is interpreted multiple times. At each
interpretation, the script incorporates additional
parameters. The final script is a control script for a
particular application on a particular virtual network on a
partitcular node (Figure 2).

Action File
Generator

Script

Application
Generator

Script

ring-

A

B

DC

RD

(User Input)
Application-Instance

Specific
Parameters

(XBone-Auto)
Overlay/Node-Specific

Parameters:
Ovl Name, IPs,

Topology

RD

RD

Node
Action

File

RD

1

3

2

5

OM

edit

4

6

Figure 2. Block diagram of application deployment

in virtual networks using X-Bone

The following is a step-by-step walk-through of Figure
2, above:

1. The user provides an Application Generator Script,

which incorporates (via user input or modification)
some application-instance specific parameters. This
is done before creating the overlay and before any
applications are deployed. This step may be
partially automated itself, i.e., the user may write a
script to generate this file, automatically
determining software versions, etc. However, this
automation happens outside the scope of the

system. This Application Generator Script will be
fed into the X-Bone system later when the user
requests an overlay and applications to deploy.

2. The X-Bone GUI is used to request an overlay with
certain constraints (topology, size, platforms, and
security, etc.) and …

3. specify the application to deploy by including the
URL of the Application Generator Script in the
request

From this point on, the X-Bone system takes over the job
of creating the overlay and deploying applications.

4. X-Bone Overlay Manager (OM) receives the
request from GUI, and starts the resource discovery
process. Once enough nodes are found, OM edits
the script to integrate the overlay-specific
parameters (topology, overlay network address &
name, list of nodes, etc. common to all nodes in the
overlay). The result is now called the Action File
Generator Script.

5. The OM transmits commands to construct the
overlay. The Action File Generator Script is also
transmitted to each Resource Daemon with node-
specific parameters.

6. Each RD modifies the script again to incorporate
the node specific parameters (node virtual IP
addresses, hostname, list of neighboring nodes,
etc.). This final script is called the Node Action
File. The Node Action File takes predefined
control commands including: configure, start, stop,
and status. At this point the RD automatically runs
the configure and start commands.

Now the deployment is complete. We have the overlay
constructed, and the application is deployed within the
overlay as requested. Users will get a feedback on the
GUI indicating the result of the overlay and application
deployment.

7. X-Bone system has built-in GUI commands for
monitoring the status of active overlays. When the
monitoring command is issued, RD on each node
will check the overlay configurations, and then
execute the (pre-defined) Action File target to
verify the status of the application.

8. When the users decide to destroy the overlay, they
will use the X-Bone GUI to issue the delete-
overlay command. RD’s on each node will execute
the Action File again to terminate the application
and cleanup the environment, and then dismantle
the overlay.

Script Generators
The Application Generator Script could be in any

format. The only requirement is that the final Action File
must be an executable text script (e.g., shell scripts, Perl
scripts) with the follow format for execution:

Action_File [target]
where target={conf|start|stop|status}

X-Bone modifies the script by substituting the predefined
keywords in the Action File with corresponding values.

If there are no differences among instances of the
same application for different virtual networks, users can
skip the Application Generator Script and provide the
Action File Generator Script directly.

Application Installations and Verification
As stated above, we assume the application is already

installed on each node. A simple verification assumes
users provide a command in the script to verify the
availability of the application. The command will be
executed on each node during resource discovery process
and the result is used as one of the criteria when selecting
nodes to deploy. If the application is not available, the
script needs to include procedures for installing the
application.

 Virtual Network Creation
The details on how X-Bone creates the overlays have

been skipped, except the additional steps regarding
application deployment. For X-Bone details, please refer
to [18].

The Action File Generator Script is specified in the
form of a URL in the X-Bone GUI request. The X-Bone
OM uses HTTP, FTP, or local file access (as indicated by
the URL) to obtain the script according to the address
format. OM extracts the verification command to use in
the resource discovery invitation. It sends the full script to
the selected nodes for the overlay.

Application Deployment & Termination
The X-Bone RD on each node runs the Action File

with a set of predefined targets (conf, start, stop, status) to
control the application deployment or termination in the
following order:

1. Configure the virtual network,
2. Setup the configuration files and environment with

the “conf” target,
3. Start the application with the “start” target,
4. (OPTIONAL) Monitor the application with the

“status” target,

5. Terminate the application with the “stop” target. It
also handles the cleanup and restoration of the
environment if necessary.

Multi-Application Scripts
Users can include multiple applications in one script,

but this is not recommended unless these applications are
closely related or there are certain constraints or
dependency between them. Otherwise the users could
include multiple scripts in the create-overlay request to
deploy multiple applications. In this case, X-Bone will
execute the script in an arbitrary order.

4. Discussion

This framework automates the complex procedure of
deploying applications on top of a virtual network.
Certain tradeoffs were made to accommodate this task
more simply in the prototype. There were also issues
regarding security, network reentrancy, and multihoming
that have been encountered when designing and
implementing this framework.

4.1. Security

Security is probably the most important issue. There
are several aspects of security related to this framework:
communications between X-Bone components (OM and
RD’s), integrity of the applications to deploy, access
privileges for users who request overlays and deploy
applications in them.

X-Bone Communications
All control communications between X-Bone

components are SSL-encrypted [11]. Each host and user
must present its X.509 certificate signed by designated
Certification Authority. The system administrators can
grant access to each user according to their IDs on the
certificate. Again, please refer to [18] for details regarding
X-Bone security.

Integrity of Applications and Action File Scripts
Application integrity has not been addressed in this

framework. Instead, we assume the applications are
already installed and verified on each host by trusted
parties. Users can include the commands to download or
obtain the program executables from secure locations in
the Action File Script, and install the application files as
part of the configuration process.

The integrity of the Action File Scripts is generally
protected by the security measures of X-Bone system. It is
very difficult to verify the scripts against their original
content because X-Bone replaces certain keywords in the

script with overlay- or node-specific values. One solution
is to supply those parameters in the form of command-
line arguments for the Action File Scripts, this renders the
set of arguments very long and complex, and was not
selected for this prototype.

Access Privilege Control
The X-Bone RD runs as system administrator (root) on

each node, and it executes the user scripts also as root.
This grants the users, though indirectly, the privilege

level of system administrator when executing the Action
File Scripts. This is a significant security concern
particularly because we cannot verify every command
listed in the script due to the diversity of applications.

This problem is also compounded by the fact that
almost all platforms adopt the ‘all-or-none’ approach
regarding critical system resources. Applications
accessing critical system resources must be run at the
highest privilege. Examples include the tunnel devices
used by virtual networks, privileged ports on virtual
addresses, etc. Fine-grain access control over resources
would be preferred, so that resources can be partitioned
according to virtual networks and grant different users
access right to those resources without giving them root
access to the whole system. This is addressed in another,
ongoing project (NetFS). Such partitioning would also
limit the ‘scope’ or ‘view’ of each application to its
corresponding virtual network only, instead of all the
network components available on a system.

4.2. Application Configuration

The framework allows users to perform configuration
for each application including specifying command-line
arguments, generating configuration files, setting up run-
time environment for each application. Although this is
achieved via user-provided scripts, options are still
limited since the process is non-interactive, and conflicts
among different instances of the same applications must
be avoided. Users must also separate the working
directories for different instances of applications.

4.3. Resource Discovery and Selections

Currently, X-Bone uses authenticated multicast to send
out invitations for overlays. This limits the scope of
resource discovery because IP multicast is still not widely
available. Other forms of resource discovery such as
broadcast and bulletin board are possible, but are outside
the scope of this work.

The X-Bone uses the following criteria to determine
the list of nodes to participate in an overlay: platform
capability, host/router, and application availability. The
selection process in the X-Bone is not optimized based on

locality, hop count, or other quality-of-service parameters.
At this time, all nodes deploy all request applications.

4.4. Network Reentrancy

Network Reentrancy refers to multiple instances of an
application in a node, which could mutually interfere.
Conflict avoidance relies not only on the Action File
Script for deployment, but also on how a program is
written. If a program hard-codes assumptions (wildcard
addresses, login name for runtime account, etc.) without
means to override, then reentrancy is not possible
regardless of how the scripts are written.

The following are the major areas of conflicts:

• Account login names: Some applications must run

as certain dedicated user logins in a system. Those
applications must not hard-code login names in the
programs, but rather should use symbolic
references that allow user override. The
deployment script might need to create separate
user accounts for different instances.

• File Systems: Configuration files, log files, and
output files must be separated to avoid conflicts.
Applications must have command-line arguments
to select different files to use, or such conflicts are
impossible to avoid.

• Network Resources: As described earlier,
wildcard addresses will prevent multiple instances
of the same applications from running. Routes,
DNS entries, interface list are all candidates for
such conflicts.

Most applications provide ways to specify those listed

above either in command-line options, or in configuration
files. Users must study the instruction manuals of each
application carefully before writing the scripts and take
extra care to prevent and resolve conflicts to achieve
network reentrancy.

4.5. Multihoming Implications

Any hosts participating in virtual networks must be
multihomed [6]. This may mean that whether they are
hosts or routers on the Internet, or whether they act as
hosts or routers in virtual networks, they may also need to
satisfy the requirements of Internet routers [4][18].
Without this requirement, each host could only participate
in one network (virtual or not) since it won’t be able to
forward packets to and from different virtual and physical
networks.

5. Case Study: Deploying ABone Using X-
Bone

We have implemented the framework in the X-Bone
system and have given several presentations and demos of
deploying ABone within overlays using X-Bone [5].
ABone is a DARPA-funded project at ISI and SRI to
implement a virtual testbed for active network research
programs. ABone consists of nodes running the Active
Network Daemon (Anetd) to support multiple Execution
Environments (EEs). Active Applications (AAs) runs
within different EEs in the ABone architecture.

In our demonstration, the proposed framework deploys
the Anetd in virtual networks. The following highlights
the procedures of the deployment.

5.1. Configuring Anetd

Anetd on each node requires running 7 instances on 7
different accounts, each with its own set of configuration,
log, and output files. The configuration process includes
creating the required accounts and all the configuration
files, and setting up the commands such that they would
use the corresponding accounts and files. To simplify the
configuration, the same configuration files were used for
all 7 instances. The overlay names were embedded in all
account names to differentiate among different virtual
networks.

5.2. Starting and Terminating Anetd

When starting Anetd, it’s necessary to specify the
accounts each instance is associated with, and the IP
addresses on the virtual network it should bind to. The
script also needs to identify each instance and terminate
each process when stopping Anetd.

5.3. Conflicts Resolution

As mentioned in the Section 4, all possible conflicts
must be avoided and resolved when multiple ABones are
deployed on the same node. Anetd is a good example to
demonstrate this capability because it requires dedicated
login accounts to run it, it uses several configuration,
logging, and output files, and it binds to IP addresses.
Separate sets of accounts were created for different
ABone instances, so the file system and login account
conflicts are resolved. Command-line arguments were
used to assign correct IP addresses for each Anetd
instances and the account they associated with.

5.4. Caveats

There are some caveats due to the closed nature of X-
Bone overlays. Anetd loads codes for EEs and AAs from
Trusted Code Servers (TCS) in the form of web servers.
To truly implement a complete ABone in an overlay
network, a mirror code server was cloned within the
virtual network to serve as the TCS for the ABones
deployed in the virtual networks.

6. Related Works and Future Directions

This section discusses the related commercial
applications of this framework, as well as the future
directions of this research.

6.1. Commercial Applications – From VPNs,
Peer-to-Peer, to Grid Computing

There are currently several commercial developments
on Virtual Private Networks (VPNs) by service providers
and network equipment venders. The majority of the
works focus on security aspects of virtual networks and
management of VPNs. Very few has touched upon the
problems of application deployment.

At the other end of the spectrum, peer-to-peer
networks and applications (P2P), and content distribution
networks (CDNs) among content providers approach
virtual networks from a totally opposite point of view:
they deploy applications first, and then try to construct the
virtual network at the application layer. The problem with
doing virtual networks at the application layers is that
very often, they will have to re-invent a lot of
functionalities which are well-studied and implemented in
the Internet like routing, naming, addressing, congestion
control, just to name a few. Although different
applications might have specific requirements on
particular functionality, in general, this represents a
duplication of effort and usually the results were not as
scalable and well implemented as their Internet
counterparts.

Although this framework might not solve all aspects of
both ends of the spectrum, it provides a platform in which
to combine virtual networks and application deployment.

The third related commercial and academic
development is grid computing [9]. In general, the Grid
focuses on network application development and resource
sharing across the network, in which virtual networking is
just one of possibility. Virtual networking provides
partitioning, security, and topology abstraction which
makes application development and deployment simpler.
Our application deployment framework is compatible
with the Grid Computing architecture, in that case.

6.2. Extended Definitions of Applications

In addition to just the traditional types of applications,
the definition of “application” can be extended to include
network management functionalities, distributed services,
content distributions, and even protocol deployment and
testing.

6.3. Non-Overlay Application Deployment

The current framework of application deployment is
implemented as part of the virtual network deployment
process. We plan to develop a version of general network
application deployment that could either factor out the
virtual network part of the framework, or even treat
virtual network as just another application to deploy. This
new version could potentially be a generic platform-
independent application deployment solution.

7. Conclusions

This paper describes a framework for application
deployment within virtual networks using X-Bone. The
framework supports arbitrary applications and allows
users to configure the runtime environment by executing
user-provided scripts instead of hard-coding application
commands into the system. It also automates the process
of constructing virtual networks and deploying
applications by using X-Bone.

8. Acknowledgements

This worked was first developed by Oscar Ardaiz [3].
Oscar implemented a prototype to deploy versions of the
Squid web proxy cache.

The deployment of ABone on virtual networks was in
part supported by the ABone project at ISI, and with the
valuable help of Bob Braden, Steve Berson, and Craig M.
Rogers at ISI. Steve Dawson at SRI not only made
valuable suggestions and corrections on the procedures of
deploying Anetd, he also incorporated several changes
into Anetd to make the deployment possible.

Current members of the X-Bone project include
Gregory G. Finn and graduate students Amy S. Hughes,
Lars Eggert, and SunHee Yoon. The authors also
acknowledge other prior project members Steve Hotz,
Anindo Banerjea, Wei-Chun Chao, Ankur Sheth, Osama
Dosary, and Stephen Suryaputra for their earlier
contributions.

9. References

[1] 6-Bone web pages - http://www.6bone.net/
[2] Anderson, D., Balakrishnan, H., Kaashoek, M. F., Morris,
R., “Resilient Overlay Networks,”
Proc. 18th ACM SOSP, Banff, Canada, October 2001.
[3] Ardaiz Villanueva, O., Touch, J, “Web Service
Deployment and Management Using the X-Bone,” Spanish
Symposium on Distributed Computing, SEID2000, Sept. 25-27,
2000, Ourense, Spain.
[4] Baker, F., “Requirements for IP Version 4 Routers,” RFC
1812, June 1995.
[5] Berson, S., Braden, D., Riciulli, L., “Introduction to the
Abone,” (internal report), June 15, 2000.
http://www.isi.edu/abone/DOCUMENTS/ABoneIntro.pdf
[6] Braden, R., ed. “Requirements for Internet Hosts --
Application and Support,” Internet RFC 1123, IETF, Oct. 1989.
[7] Campbell, A., et al., “Spawning Networks,” IEEE Network,
July/Aug. 1999, pp. 16-29.
[8] Eriksson, H., “MBone: The Multicast Backbone,”
Communications of the ACM, Aug. 1994, pp.54-60.
[9] Foster, I., Kesselman, C., (eds.), The Grid: Blueprint for a
New Computing Infrastructure, Morgan Kaufmann Publishers,
San Francisco, 1999.
[10] GUILN web pages - http://www.cairn.net/guiln.html
[11] Hickman, Kipp, “The SSL Protocol”, Netscape
Communications Corp., Feb 9, 1995.
[12] Lim, L., Gao, J., Ng, T., Chandra, P., Steenkiste, P., Zhang,
H., “Customizable Virtual Private Network Service with QoS,”
Computer Networks, July 2001, pp. 137-152.
[13] Oram, A. (ed.), Peer-to-Peer: Harnessing the Benefots of a
Distruptive Technology, O’Reilly, Sebastapol CA, 2001.
[14] Radioactive project web pages –
http://www.cs.ucl.ac.uk/research/radioactive/
[15] Scott, C., Wolfe, P., Erwin, M., Virtual Private Networks,
O'Reilly & Assoc., Sebastapol, CA, 1998.
[16] Su, G., Yemeni, Y., “Virtual Active Networks:Towards
Multi-Edged Network Computing,” Computer Networks, July
2001, pp. 153-168.
[17] Touch, J., Hotz, S., “The X-Bone,” Third Global Internet
Mini-Conference at Globecom '98 Sydney, Australia Nov. 8-12,
1998 pp. 59-68 (pp. 44-52 of the mini-conference).
http://www.isi.edu/touch/pubs/gi98/
[18] Touch, J., “Dynamic Internet Overlay Deployment and
Management Using the X-Bone,” Computer Networks, July
2001, pp. 117-135. http://www.isi.edu/touch/pubs/comnet2001/
A previous version appeared in Proc. ICNP 2000, Osaka Japan,
pp. 59-68.

