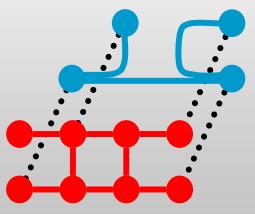


The Past, Present, and Future of Virtual Networks

Joe Touch
Postel Center Director
USC/ISI
Research Associate Prof.
USC CS & EE/Systems Depts.


Outline

- Background
 - Definitions & uses
- Past
 - Origins & some accomplishments
- Present
 - Current uses & Caveats
- Future
 - VNs to drive unification

VN- definition

- Virtual Network is network composed of:
 - Virt. hosts, virt. routers, virt. links (tunnels),
 i.e., an end-to-end system
 - provides at least the same services as any NA
 - in a virtual context
- First-principles extension
 - More than a patch
 - More than interim

What is a VN?

- TENET 1. Internet-like
 - VIs = VRs + VHs + tunnels
 - Emulating the Internet
- TENET 2. All-Virtual
 - Decoupled from their base network
- TENET 3. Recursion-as-router
 - Some of VRs are VI networks

VN Corollaries

- Behavior:
 - VH adds/deletes headers
 - VRs transit (constant # headers)
- Structure:
 - VIs support concurrence
 - VIs support revisitation
- Each VI has its own names, addresses
 - Address indicates overlay context

How are VNs different?

- Nets deployed/managed over a net
 - Enables new levels of automation/mgt
- Nets not 1:1 to physical devices/topology
 - Logical topology
 - Nodes can be emulated

Potential Uses

Isolate

Testbeds, privacy

Dynamic routing, proxylets, security

Overlapping nets, add delay & loss

Scale

Simplify view of topology

Abstract

Added level of recovery

The Past...

- Cronos (1982, RFC-824)
 - Added layer between IP and link ABSTRACT
- Operational:
 - M-Bone multicast /SOLATE
 - 6-Bone IPv6 //SOLATE
- Testbed:
 - A-Bone Active Networks
 - Q-Bone QoSISOLATE
- VPNsISOLATE

1996-1999 VN Origins

Planned:

MorphNet – L1-7EMULATE

VONs – "stackable"

Genesis – active nets, recursion SCALE

Developed for experiments:

Detour/RONs – L3, alternate routing ABSTRACT

Netscript VANs – L2, active nets, QoS ABSTRACT

■ Darwin – QoS ABSTRACT

Deployed:

■ X-Bone – L3 (any)

What changed?

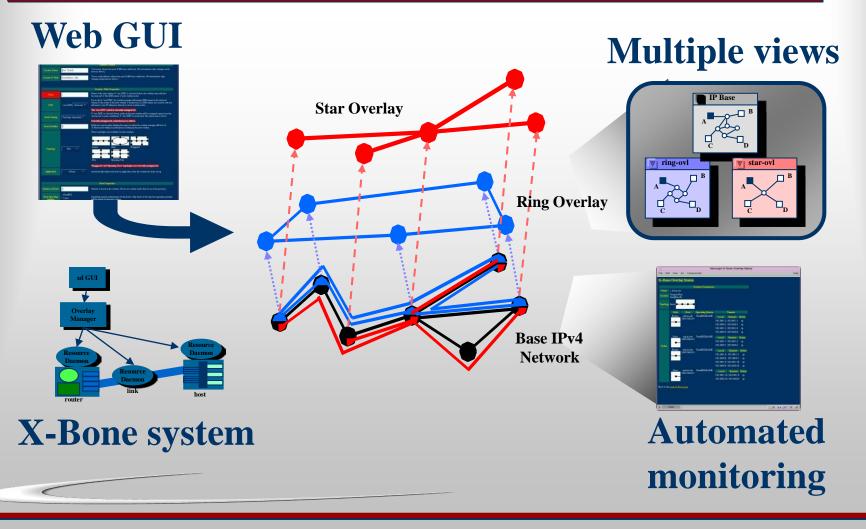
- Virtual interfaces
 - Decoupling address from interface
- Encapsulation as a link
 - No need for new tunnel protocols
 - No need for immediate adjacency
- Use of the base net as OOB channel
 - Allows net management to deploy new nets

Virtual Interfaces

- Allow device sharing
 - More than one address on a single physical device
- Allow overloading
 - More than one L3 address on a single L2 address
- Revise without reboot
 - No need to restart OS to change addresses
 - (Happened prior to VIFs, but esp. with VIFs)

Encapsulation as Link

- Custom layering one time only
 - VPN IDs
 - Source routing
- Generic layering can be repeated
 - IP in IP
 - GRE
 - Ethernet in Ethernet



Base OOB Channel Use

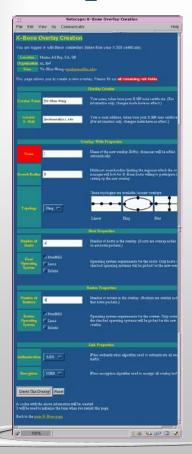
- "Base" networks require non-network management
 - Can't assume a control channel
 - Treat provisioning as separate from operation
- VNs always have a base network
 - Assumed control channel encourages automation
 - Automation encourages increased optimization and monitoring

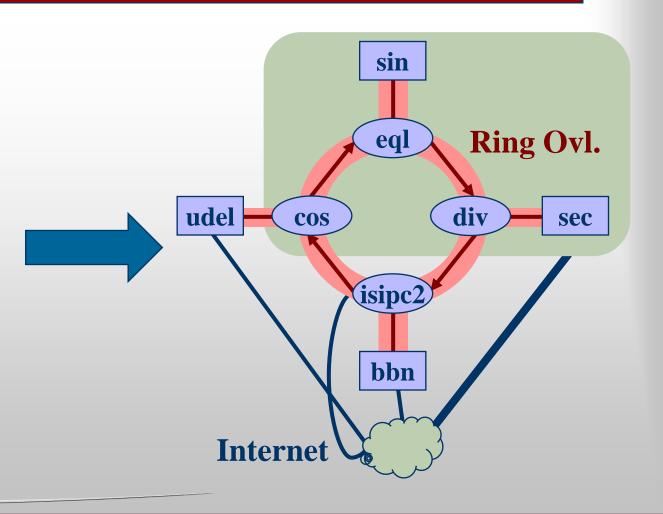
X-Bone Overlay System

X-Bone Aspects

- Network management over a network
 - DWIM, GUI-based network deployment
 - XML language for describing overlays
- Robust distributed system
 - Idempotent commands
 - Transactions with rollback and recovery
 - Persistent state (save to disk)
- Overlay advances
 - See later slide...

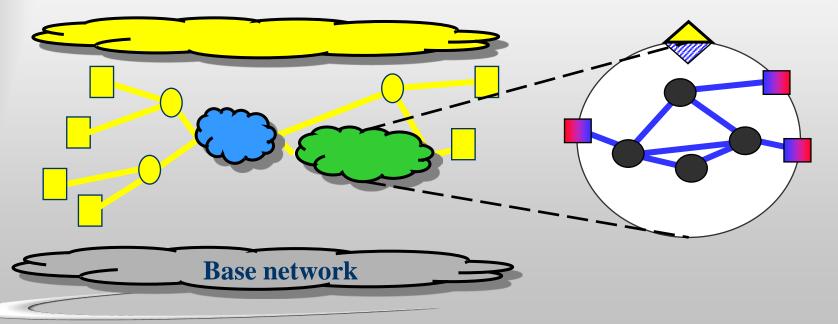
Timeline


- 1997 first whitepaper
- 1998-2001 X-Bone (DARPA)
 - IP overlays with revisitation, recursion (LISP)
 - 2000 running code (FreeBSD, Linux)
 - 2000 application deployment
 - 2001 TetherNet "NAT-buster" to support demos
- 2001-2004 DynaBone (DARPA)
 - 800-way spread-spectrum parallel overlays
 - 15-level deep overlays


- 2001-2003 NetFS (NSF)
 - File system configuration of network properties
- 2002-2005 X-Tend (NSF)
 - X-Bone for testbed uses
- 2003-2005 DataRouter (int.)
 - Support for overlay P2P forwarding
- 2005-2006 Agile Tunnels (NSA)
 - Partial overlays for DDOS safety
- 2006-2009 RNA (NSF)
 - Extending X-Bone Choices model to general protocol stack architecture

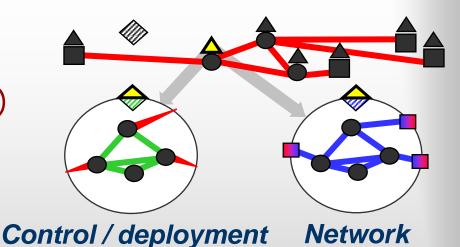
Creating a Ring

Request


X-Bone Constraints

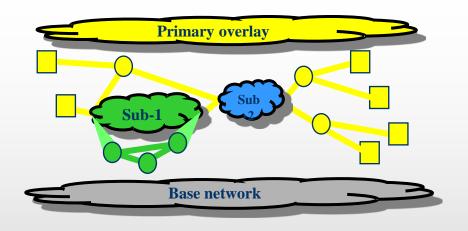
- Internet-based
 - Routing (link up) vs. provisioning (link add)
 - ...one header to bind them all...(use IP & provide IP = recursion)
- Complete E2E system
 - All VNs are E2E
- VN "Turing Test"
 - A net can't tell it's virtual
- Use existing protocols, OSs, apps.

Recursion-as-Router

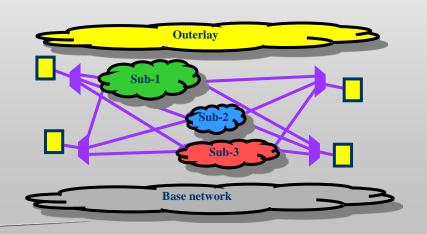

- Sub-overlays look like routers
 - L3 version of rbridges (IETF TRILL WG)
 - Similar to LISP

X-Bone Enables (1)...

- Recursion
 - Control (like BGP AS's)
 - Network (like LISP/NERD)
 - BARP (label distrib)


Revisitation

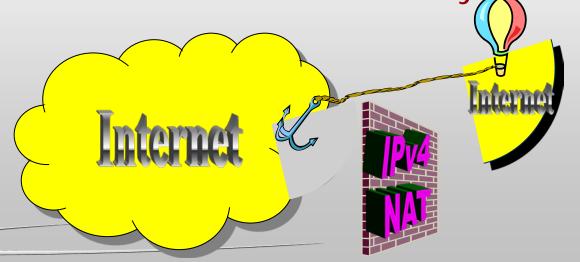
- . . .
- Integration of resolution, choices
 - Shims and glue layers as fundamental
- Service for deploying & managing VIs
 - Language for describing VIs



X-Bone Enables (2)...

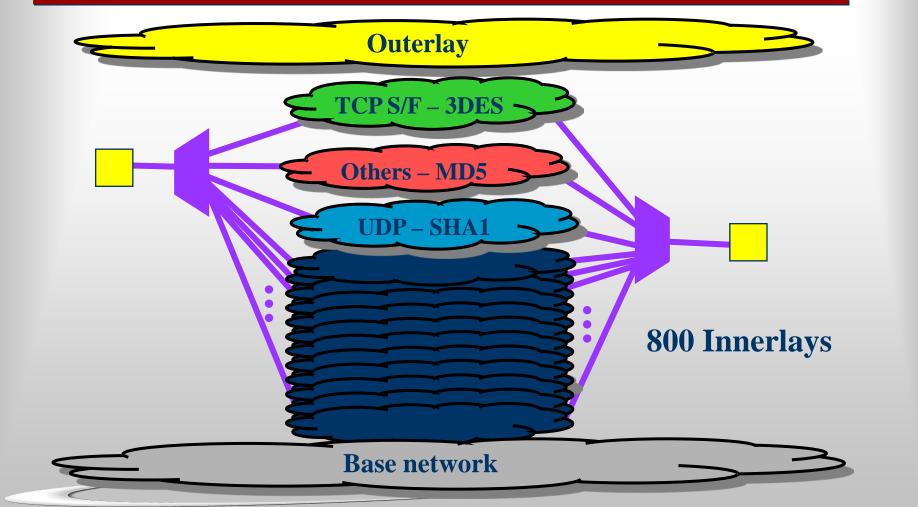
- Compose:
 - DTN, Plutarch

- Alternate:
 - Control Plane,
 FEC, Boosters,
 - Dynabone

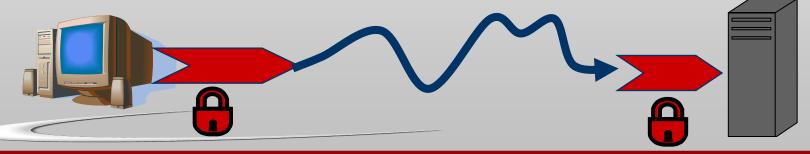


TetherNet

- Rents a block of addresses
 - Auto-configures secure tunnel
- Undoes effect of NAT/NAPT

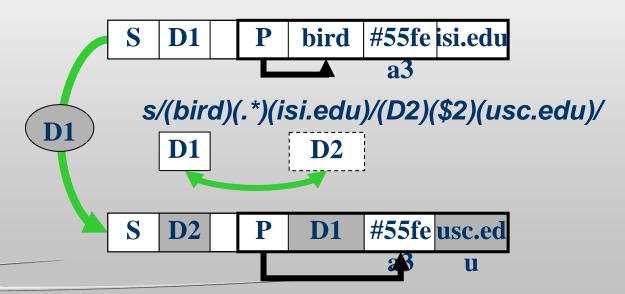


DynaBone:Spread Spectrum



Agile Tunnel Protocol (ATP)

- Client
 - -> tunnel head @client
 - -> roaming tunnel tail
 - -> server (hidden)


Works like a floating tunnel:

DataRouter for P2P

- P2P re-implements network arch.
- Need app.-layer forwarding at net layer
- Add string-based forwarding

X-Bone Contributions

- Host model
 - Embedded router
 - Socket as unit of overlay isolation
- Recursion model
 - Subnet as router
- Revisition architecture
 - Requires 2-layer tunnels
- Routing / IPsec integration architecture
 - Requires embedded intermediate interfaces

Observations

- Virtualization changes the architecture
 - Hosts are really processes, everything else is really a router or system
 - Devices aren't localized
 - Subnet as a router
 - NAT as a host front-end
 - Link and net layers are tightly coupled
- Core concepts from previous glue/shims
 - A single model yields layering, forwarding, routing, and dynamic composition

The Present...

- Testbeds
 - GENI
 - AKARI
 - FIRE
- Routing infrastructure
 - Rbridges/TRILL
 - LISP

- ISOLATE/EMULATE
- ISOLATE/EMULATE
- ISOLATE/EMULATE

- SCALE
- SCALE

What VNs Currently Do

- Keep "ships" separate
 - No sibling interference
 - No parent-child interference
 - Establish sibling "relative" QoS ("at most")
- PEP-style enhancements
 - Dynamic routing
 - FEC, Multipath

What VNs Cannot Do

- Enforce performance constraints
 - Fixed BW, latency
 - Provisioning-style, e.g., "at least" QoS
- Enhance app. interactions
 - Needs networking, i.e., multihop forwarding
 - Grid/Cloud Computing is single hop E2E

Potholes

- Confusing virtual provisioning with routing
 - Establishing tunnel = provisioning
 - Selecting from a set of tunnels = routing
- Optimizing to an underlying network
 - It could be virtual!
- Tunnel problems
 - MTU issues, signalling issues
 - Security/protection (IP ID wrap, checksum)

E.g.: New Tunnels

- SEAL (Templin, I-D 2009)
 - Augments IP ID number space
 - Adds checksum
 - Adds PMTUD / PLPMTUD
 - Adds ingress-egress signalling

Current Efforts

- IRTF NetVirt BOF / VNRG mailing list
 - Preparing charter for IRTF RG
 - Focusing on network issues (host arch., net arch.)
 - was "NVRG"
- Future Internet meetings
 - ICCCN 2008 "FIAPP" (future Internet arch & protos.)
 - CoNext 2008-9 "ReArch" (re-architecting the Internet)
 - ICCCN 2009 "NAP" (net arch & protocols)
 - Globecom 2008-9 FutureNet

The Future: Unified Architecture

- VN as basis of unification
 - Unify layering and forwarding
 - Unifying different layers
- Examples:
 - RNA
 - Network IPC (Day)

What if...

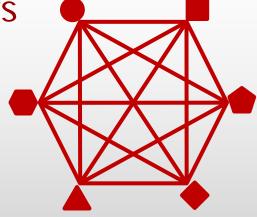
- Über-protocols are the right idea...
 - A single configurable protocol with
 - Hard/soft state management
 - Congestion control, error management
 - Security
 - *E.g.*, XTP, TP++
- But they went too far...
 - Keep layering because of first principles

Recursive Net Arch

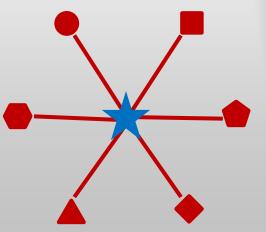
- Layering as more than software engr.
 - Layers defined by scope, context
- Create a one layer 'stem cell' protocol
 - Integrate resolution, "choices" from X-Bone
 - Template of basic functions, ala J. Day

RNA MP 4 RNA MP3 RNA MP 2 **RNA MP 1** PHY **RNA MP 4 RNA MP 4** RNA MP3 RNA MP3 RNA MP 2 RNA MP 2 RNA MP 1 RNA MP 1 **ATM** WIRELESS

Exploring Invariants

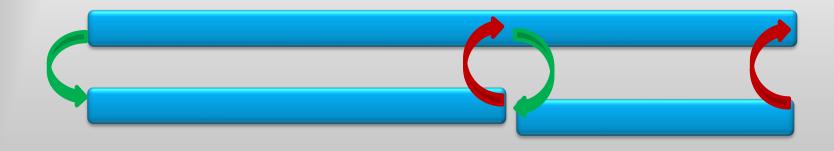

- Networking is groups of interacting parties
 - Groups are heterogeneous
 - All members want to interact
 - Groupings are dynamic (i.e., virtual)
- Thus, need an architecture that supports:
 - Heterogeneity
 - Interaction
 - Virtualization

Heterogeneity leads to layering


- M different interacting parties need
 - M² translators

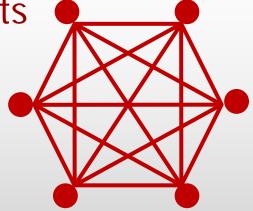
or

M translators + common format

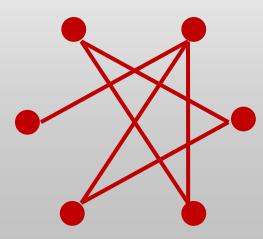

... i.e., a layer

Layering leads to resolution

- IDs are local to a layer
 - Whether names, paths, locations
- Need to resolve IDs between layers
 - Google, DNS, ARP, LISP encap tables

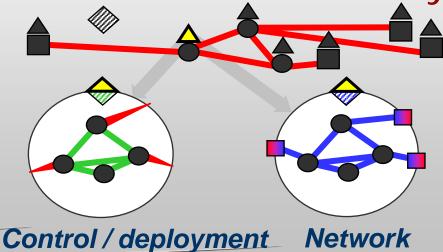


Interaction leads to forwarding

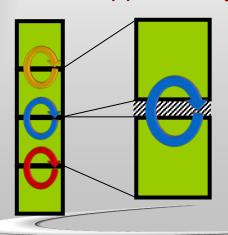

N parties need

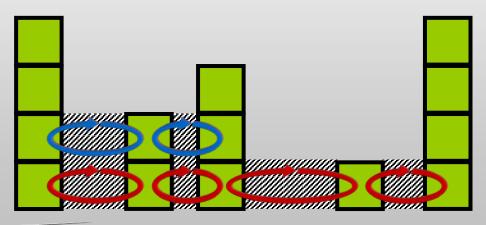
N² circuits

or


O(N) links + forwarding

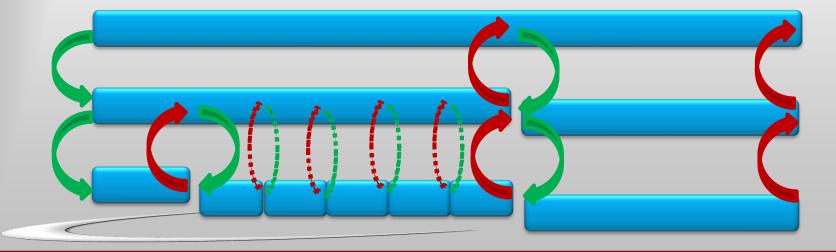
Virtualization leads to recursion


- N parties want to group in arbitrary, dynamic ways.
 - ... such groups are inherently virtual
- ... and virtualization is inherently recursive



Recursion unifies layering, forwarding, & resolution

- Layering (left)
 - Heterogeneity via O(N) translators
 - Supported by successive recursive resolution
- Forwarding (right)
 - N² connectivity via O(N) links
 - Supported by successive iterative <u>resolution</u> (tail recursion)



RNA

- One metaprotocol, many instances
 - Needed layers, with needed services
 - Layers limit scope, enable context sensitivity
 - Scope defined by reach, layer above, layer below
 - Resolution connects the layers (red/green)

RNA MP Unifies...

- "Resolve" unifies:
 - Layer address translate/resolution
 - ARP, IP forwarding lookup
 - BARP/LISP/TRILL lookup
 - Layer alternates selection
 - IPv4/IPv6, TCP/SCTP/DCCP/UDP
 - Iterative forwarding
 - IP hop-by-hop,
 DNS recursive queries
- "Process data" unifies:
 - Shared state, security, management
 - Flow control, error control

```
LAYER(DATA, SRC, DST)

Process DATA, SRC, DST into MSG

WHILE (Here <> DST)

IF (exists(lower layer))

Select a lower layer

Resolve SRC/DST to next layer S',D'

LAYER(MSG, S', D')

ELSE

FAIL /* can't find destination */

ENDIF

ENDWHILE

/* message arrives here */

RETURN {up the current stack}
```


Next Layer Resolution

What does RNA enable?

- Explains and details invariants
 - Layering as more than a SW Engr. artifact
- Integrate current architecture
 - 'stack' (IP, TCP) vs. 'glue' (ARP, DNS)
- Support needed improvements
 - Recursion (AS-level LISP, L3 BARP, L2 TRILL)
 - Revisitation (X-Bone)
 - Concurrence (VPNs, multipath TCP)
- Supports "old horse" challenges natively
 - Dynamic 'dual-stack' (or more)

Conclusions

- Virtualization requires recursion
- Recursion supports layering
- Recursion supports forwarding

One recurrence to bind them all...

- Recursion is a native network property
 - Integrates and virtualization, forwarding and layering in a single mechanism

Acknowledgements

- X-Bone, DynaBone, X-Tend
 - Lars Eggert, Yu-Shun Wang, Greg Finn, Steve Hotz, Oscar Ardaiz-Villanueava, Norihito Fujita
- NetFS
 - Josh Train
- DataRouter
 - Venkata Pingali
- RNA
 - Yu-Shun Wang, Venkata Pingali