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Abstract:
The X-Bone is a system for the rapid, automated
deployment and management of overlay networks.
Overlay networks use encapsulation to enable virtual
infrastructure, and they are being used more frequently
to implement experimental networks and dedicated
subnets over the Internet. Existing overlays, such as the
M-Bone for multicast IP and 6-Bone for IPv6, require
manual configuration and management, both to establish
connectivity and to ensure efficient resource utilization.
The X-Bone uses a graphical interface and multipoint
control channel to manage overlay deployment at the IP
layer, much like multimedia sessions are controlled via
the session directory (sd) tool. The X-Bone enables
rapidly deployable virtual infrastructure, that is critical
to the development of both network and application
services, and that is also useful for deploying isolated
infrastructure for restricted purposes. This document
describes the architecture of the X-Bone.

1: Introduction

Overlay networks are increasingly becoming neces-
sary for general infrastructure support, used for develop-
ing experimental protocols and for emulating dedicated
networks over shared infrastructure,e.g., to support
emergency services and disaster relief (Figure 1). They
allow a set of shared resources to emulate several sepa-
rate sets of dedicated resources, and allow new protocols
and services to be developed in a safe and contained
environment. Overlays also may provide reserved ser-
vice, effectively a ‘carpool lane’ for each overlay’s traf-
fic. Additionally, overlay networks present a simplified
network topology, so new protocols can be examined in
controlled ways, without exposing the details of physical
topology.

The general use of overlays is hindered by the tedious
and complicated nature of configuration and manage-
ment. Current overlay networks are configured manually,
often requiring out-of-band (i.e., telephone or e-mail)
communication with human network managers. These
managers are expected to oversee deployment, and avoid
inefficiencies such as redundant traversals of the same
links, or oversubscription of resources. Furthermore,
there is no current framework in which to detect or avoid
inter-overlay resource contention.

FIGURE 1. Overlay networks

The X-Bone is a system for the automated deployme
of overlay networks. It enables users to deploy overla
without human network manager participation. It enabl
overlay networks to be deployed within seconds, rath
than days. It manages inter-overlay resource content
by providing a uniform coordination point for overlays
This provides a framework for coordinating reservation
even between different mechanisms that manage a sin
class of resource. By making overlay establishment
fast, common function, the X-Bone enables new uses
overlays, such as for distributed applications witho
cumbersome application-level service location and rou
ing support.

The X-Bone is also useful for testing new protocols
Even protocols designed for backward-compatibility o
incremental deployment are best initially tested in a co
trolled environment. This includes end-to-end protocol
such as new TCP congestion control algorithms, so th
testing can limit the effects of unforeseen bandwidth ov
utilization.

The X-Bone can be used to bootstrap and mana
Active Networks (AN) infrastructure, deploying them a
their own overlays. X-Bone also provides a platform t
demonstrate the benefits of AN; although the X-Bone ca
be deployed prior to the availability of AN support, it can
be implemented itself in AN technology.

The X-Bone system takes advantage of the opportu
ties provided by recent overlay network deployments a
protocol developments. It emulates the development

Overlay #1

Overlay #2

Physical network (solid), with overlays
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the web, which combined simplified versions of estab-
lished components, to implement a system that makes
remote information access simple and ubiquitous. The X-
Bone brings together a variety of independent mecha-
nisms to provide accessible, ubiquitous overlay manage-
ment. The X-Bone research helps pioneer new
mechanisms for inter-overlay network management and
coordination, by using multicast to simplify resource dis-
covery and configuration management.

The X-Bone is composed of overlay managers,
resource daemons, and a multicast control protocol. The
overlay manager controls the deployment and configura-
tion of an overlay, and is controlled by a user interface or
programmable API. There are many such managers, run-
ning at user locations. The resource daemon runs at (or
near) each resource, and provides access control,
resource management, and security. It coordinates all X-
Bone use of that resource. The multicast control protocol
uses expanding-ring searches to locate available
resources, and provides management control and feed-
back, as well as announcing channels for application use.

The remainder of this paper discusses overlay net-
works, and presents the X-Bone architecture, which is
currently being implemented. It also discusses the issues
in deploying the X-Bone, and some related research.

2: Introduction to overlays

Overlay networks are virtual topologies that use a
combination of shared and dedicated resources, to pro-
vide a simple network view that conceals unnecessary
details about the underlying topology. Overlay networks
are composed of routing software installed at selected
sites, connected by encapsulation tunnels [15] or direct
links (Figure 1). Recent examples of overlays include the
M-Bone for multicast IP [9] and the 6-Bone for IPv6 [1].
A single physical network can support multiple overlays,
which can share both link and node resources.

Today, deploying an overlay network is a manual pro-
cess performed by human network managers. To deploy
a single overlay network, the manager performs the fol-
lowing steps:

•Obtain contact info. for managers at remote sites

•Lay out the network topology

•Assign the network addresses

•Ensure your overlay doesn’t interfere with others

•Configure remote sites

•In the case of a network problem, debug

The X-Bone replaces this manual sequence with a
graphical user interface tool and control and management
algorithms to provide automated remote deployment.
Consider the network in Figure 2 (I), which consists of
five nodes and five links.

Figure 2 (II) shows a ring overlay, consisting of thre
types of overlay links: <1> to partition the overlay from
the existing network (AC, DC), <2> to bypass routers n
participating in the overlay (ADvia E, BC via A), and
<3> to provide multiple virtual links over a single link
(AB #1, AB #2). The overlay provides a virtual network
of a ring of four routers (Figure 2, III). This basic exam
ple highlights some of the complexity of managing a
overlay, where resources can be used for multiple pa
(AB used twice), as transit (E), or as both (A as both pa
ticipant and transit). Multiple overlays can map to a sin
gle physical network concurrently. In today’s networks
nodes are typically part of a single overlay, although the
may transit traffic for other overlays.

FIGURE 2. Existing physical networkvs. overlay
on the same network

2.1: Current Practice
The simplicity of the above example belies the effo

required to deploy such a virtual infrastructure in th
Internet today. Consider how sites join the M-Bone.

First, IP addresses must be assigned to the nodes of
overlay. Then the local system administrator calls th
network provider to determine the tunnel configuration
which both parties enter manually. In the case here, t
entire overlay is composed of tunnels, even where ov
lay links map directly to physical links. This additiona
tunneling is required to separate the address space of
overlay from that of the underlying transit network.

Consider Figure 2 again. The path between B-C is tu
neled through A, and A-D is tunneled through E. Th
through-nodes of the tunnel, A and E, do not require sp
cific configuration.; E is not even aware it is used as
tunnel. The tunnel encapsulation rules indicate how ove
lay addresses are to be encapsulated inside physical
addresses; default routing handles the further routi
required.

A

CB
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Physical network Overlay network (dashed)

A
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D

Resulting logical network

(I) (II)

(III)
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Once tunnels are configured, default routes need to be
added at the nodes. In this example, these routes are triv-
ial, i.e.,at A, routes to the overlay addresses of B, C, and
D are required. Although a simple topology is shown, it
requires substantial effort, summarized as:

•Assign addresses

•Determine whether and where tunnels are required

•Configure tunnels

•Add routes

Each of these steps requires root privileges and remote
login (telnet) for each host and router. Each step is
entered manually; errors can cause the entire overlay and
production networks to be disabled. Finally, it is difficult
to configure multiple overlays when they use competing
resources.

2.2: Desired Practice
The desired practice is fairly simple to specify. Con-

sider the same network as Figure 2. Consider also that,a
priori , sites A, B, C, and D are all runningxd, the X-Bone
interface tool, a version of ansd-like graphical interface
and configuration management tool. In this case, the user
selects the participating routers of the overlay, A, B, C,
D, much as a teleconference organizer selects partici-
pants. In this case, the tool provides several simple
default topologies, and the user selects ‘ring, in-order’.
The rest, from addressing, to tunnel configuration, to
routing, is handled automatically byxd.

Becausexdmanages the configuration, explicit remote
logins or root privileges are minimized. Root-level con-
figuration is done through thexd tool at each site, permit-
ting access only to limited overlay functions. Of course,
for each automated function, there should be a way for a
privileged user to provide overrides. In this case, such
overrides would be useful where manual addressing is
preferred,e.g., to assign particular addresses. However, it
is expected that as automated tools become more sophis-
ticated, the requirement for manual override will become
less frequent.

3: Architecture

The X-Bone architecture is based on a a two-level
multicast control protocol, combined with algorithms to
deploy and configure overlays. The architecture includes:

•Overlay manager - configures and manages overlays

•Resource daemons - manages resource use

•Multicast control protocol - enables efficient
resource discovery and management communication

The following is a description of these components
(Figure 3), and some issues in their implementation.

FIGURE 3. The X-Bone architectural components

3.1: Overlay manager
The overlay manager (OM) runs insidexd, and it runs

the algorithms that acquire resources, configure the
and manage them as a coherent overlay. Each overla
ultimately managed by a single OM, which may delega
subtasks or sub-overlays to other OMs. The OM mai
tains the state of the overlay, including address usa
and resource allocation. This state allows coordinati
between overlays as well as coordination between se
rate reservation mechanisms. The OM is itself a comp
nent ofxd, which also includes a graphical user interfac
and a port for program control via an API. The OM i
also the primary active component, and initiates most
the configuration and management communication.

FIGURE 4. The xd GUI for coordination / control

The user interface ofxd is loosely based (and perhap
implemented as a configuration of) thesd and sdr tele-
conference session control tools.Sd/sdr rely on multime-
dia tools (vic, vat, nevot) to monitor the status of a
session,e.g., to display the list of participants.Xd will
provide a similar tool to view the network topology o
each overlay system.Xd also supports user monitoring
and manipulation of the overlay (Figure 4). Simila
topology display tools,e.g., GUILN [10], are under
development in the CAIRN project, but only for manua
configuration, and for ATM networks.

xd

GUI

Manager
Overlay

router host

Resource
Daemon

Resource
Daemon

link

Resource
Daemon

Grab: All, N in K hops
Reserve X Mbps of BW
Select specific sites
Select specific topology
Select IP addresses
...

Announcement and control channels

Overlay #2

xd Tool

Overlay #1
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The user interface includes controls to override auto-
matic site selection and tunnel configuration parameters,
and to deploy and delete an overlay. Access is provided
via a graphical interface, as well as by a scripted control
port, the latter supporting direct access by applications.

3.2: Resource daemon
Resource daemons (RDs) are persistent software pro-

cesses running at or near resources, such as routers, links,
and hosts. They keep state of the use of that resource, and
coordinate how the resource is shared by multiple over-
lays. Initially, this state can be a simple counter, limiting
the number of overlays in which a resource participates.
Advanced RDs will interface to more specific control and
reservation mechanisms, such as RSVP.

Resources that lack RDs do not participate in the X-
Bone. RDs who use a binary counter can participate in
only one overlay at a time; this ensures isolation of over-
lay resources in the simplest case. Advanced RDs can
ensure isolation by managing the reservation of band-
width, CPU, and memory within the resource.

As each resource in the network becomes a part of a
shared set of overlapped overlays, more sophisticated
resource sharing management is required, such as Inter-
net Integrated Services for router sharing. Routers man-
aged by the daemon will either be dedicated for
experiments only, or have sufficient resource partitioning
(process priorities, bandwidth reservation) to ensure iso-
lation of production and experimental services.

Tunnels require the configuration of encapsulation and
de-encapsulation mechanisms at each end of virtual link.
Emerging tunnel management protocols for in-band con-
trol of the encapsulation parameters can be incorporated
when available [12].

Hosts require configuration of addresses for virtual
interfaces as well as environments within the host used to
select the overlay(s) to which an application communi-
cates. Host virtual interface mechanisms, such as multi-
ple IP addresses per interface (Solaris), or kernel patches
for dummy internal interfaces (VIFs in SunOS) are
required for multiple overlays given a single physical
connection. Multiple physical interfaces suffice where
policy routing on the host differentiates traffic destined
for the separate overlays.

When global addresses are used, RDs are required to
manage the address space. Initially, global addresses are
used to keep overlay traffic partitioned, where each over-
lay has a distinct address space. This requires per-site
RDs, to manage the available pool of addresses within a
site. As the X-Bone is developed, more sophisticated tun-
neling and host demultiplexing capabilities allow over-
lays to have independent address spaces, in which
addresses can be used without enforcing uniqueness. In
this latter case, the address spaces can be managed within
each overlay’s OM, without the need for per-site RDs.

3.3: Multicast control protocol
The multicast control protocol uses a two-layer mult

cast IP system, similar to that used bysd/sdr. Multicast
simplifies the resource discovery and route bootstrappi
that is required for network management, by providin
logical group names and self-configuring routing that
not otherwise ubiquitous in the Internet.

sd/sdruse a common announcement channel (the fi
layer), in which an announcement indicates a separate
of channels for a session (the second layer), for each
audio, video, text, and shared whiteboard.Xduses its first
layer channel to exchange configuration and status info
mation. Each overlay has its own, second-layer multica
control channel, which is announced on the main contr
channel. Each X-Bone tool listens to this channel and d
plays a listing for each advertisement received. Overl
announcements are handled much like teleconferen
sessions (in fact, they can be considered teleconferen
among the automated resources) (Figure 5).

FIGURE 5. xd tool and the two-level multicast
channels for coordination

These channels can be used for resource discove
Requests are sent on the main announcement chan
asking for resources. These requests are sent with limi
TTLs (time-to-live), to restrict the extent of the
announcement; if the request remains unsatisfied, a n
message with a larger TTL is sent. Once the resources
an overlay are acquired, a control channel is created t
reaches only that set of resources. The announcemen
the created overlay may reach only that far, or ma
extend further, to indicate to other users (and applic
tions) about the overlay.

4: Sharing issues

X-Bone resources are hosts, links, and routers. Ho
are data sources and sinks; links connect hosts to rout
and routers to each other. Routers are interconnections
links that do not source or sink data. Resources that
part of a single overlay are called dedicated; resourc
that are part of more than one overlay are shared.

Overlay #1 control

xd xd xd

Announcements



on
ost
s is
ds
X-

e
the
n-

r-
icy
.
ffi-
.,

pa-
the

-

he
of
lly
at

nd-
-
n

is
l-

a
r

Although addresses are not a resourceper seof the X-
Bone, address management affects all other resource
sharing. The X-Bone operates at the IP layer, so
resources must be labelled with IP addresses; this
includes hosts, routers, and link tunnels. Addresses are
either local to the overlay, or global to the Internet.

Global addresses allow simpler configuration of the
X-Bone resources. Existing internet name service (DNS),
and application interfaces suffice. However, this requires
the X-Bone allocate and manage all overlay addresses
globally, to ensure exclusive use; this is a non-trivial
problem.

Local addresses allow richer overlays. A local address
is interpreted within its own overlay, allowing address
experiments to be replicated within an overlay, and
allowing overlay users full freedom to manage their
address space independently. This requires additional
mechanisms in hosts and routers, to allow an address to
be interpreted within the context of a particular overlay.

The mechanisms and requirements of the X-Bone are
a result of supporting shared resources; these mecha-
nisms are also affected by whether overlay addresses are
globally unique or local to a single overlay. Table 1 pre-
sents a summary of these requirements; these are dis-
cussed in detail below.

4.1: Host Sharing
A host is a network endpoint for application access to

overlays, and is defined by its interfaces. Different appli-
cations on one host might each access different overlays,
or a single application may access multiple overlays
(Figure 6). Hosts on multiple overlays require multiple
network addresses, which requires either multiple inter-
faces or multiple addresses for one interface.

Hosts with multiple addresses are called ‘multihomed’
[3]. Multihoming complicates packet addressing; packets
sent out of the host must be stamped with a source
address, and there is no convention for allowing applica-
tions to select that address. Common Internet practice is
to give each interface one preferred IP address; for hosts
participating in multiple overlays, this is not feasible. In
addition, it is possible that different overlay addresses
have the same IP address, where additional link labelling
is used to demultiplex the packets.e.g., for tunneling.

FIGURE 6. Host issues, including applications on
different and multiple overlays

When addresses are local, or where the applicati
needs to transparently participate in an overlay, the h
application needs to determine these addresses. Thi
conventionally done in the DNS, but here the DNS nee
to respond with overlay-specific IP addresses. In the
Bone, application calls togethostbyname(host1) can also
be trapped in the OS or library, and replaced withgeth-
ostbynameenv(host1, environment(overlay_name)). Th
overlay can alternately be determined by state outside
application, such as user input or per-window enviro
ment variables [5].

The endpoint hosts require some combination of vi
tual addressing, multiple physical addresses, and pol
routing1 to allow them to participate in multiple overlays
The various combinations ensure that the host has su
cient information to demultiplex packets internally (e.g
policy-based routing) or that the first-hop router from
that host has already demultiplexed the packets to se
rate destination addresses. The difference is whether
labelling occurs at the IP layer (for virtual and multiple
physical addresses) or at an interior label (for policy
based demultiplexing or routing).

4.2: Link Sharing
Shared links require virtual endpoint addresses at t

routers or hosts, similar to the virtual IP addressing
shared host interfaces. Shared links can additiona
require encapsulation or decapsulation mechanisms
these endpoints. Dedicated links can be assigned e
point IP numbers for their particular overlay, while mul
tiple physical interfaces on a host each have their ow
address. The support for multiple IP numbers on a link
provided at the host or router interface by assigning mu
tiple IP addresses to the interface.

Resource Sharing requirements
Host multiple IP addresses

application overlay selection

Link tunnel support

Router tunnel support

partitioned route table

multiple forwarding engines

TABLE 1. X-Bone Shared Resource Requirements

1.  We use ‘policy routing’ in its most general sense, to indicate that 
packet’s routing depends on arbitrary header and data values, rathe
than only its header destination address.

O1 Address

O2 Address
O2 Address

O1 Address

O3 Address
O2 Address

Application

OS

Application

Application

1 overlay
2 interfaces

1 overlay
1 interface

Logical addrs

Phys. addr

2 overlays
1 interface

Host

Interface

Interface
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Virtual links can use either source routing or tunneling
(Figure 7). Source routing requires the addition of path
information at the source only, either inside individual
packets or as persistent state at intermediate routers in the
path, but the length of the source route (physical hops per
virtual path) is often limited. Tunneling relies on existing
network state, and hides the entire packet contents in a
new header with a label; tunneling has no limit to the
length of the virtual path, but requires de-encapsulation at
the destination end.

FIGURE 7. Virtual links constructed using either
source routingor tunneling

4.3: Router Sharing
Routers are composed of link interfaces (line cards),

routing tables, forwarding algorithms, and routing algo-
rithms (Figure 8). The link interfaces are the router
equivalent of host network interfaces. Routing tables
store information that is used to forward packets. The
packet forwarding algorithm determines how packet
information is used to select a route from the routing
table, to select an outgoing link and modify packet infor-
mation. The routing algorithm manages the routing
tables, how tables entries are communicated among rout-
ers, and how shared information is used to recompute the
route table. Each of these resources may be shared.

FIGURE 8. Router sharing internals

Routers are already shared in the Internet. Shari
routers among multiple overlays is trivial, if the overla
links and their addresses do not overlap. Their routin
tables do not require further sharing support, because
overlays naturally partition the routing table.

If links are shared or if overlay addresses are local, t
router requires virtual link labelling and demultiplexing
i.e., tunnel support. The routing table must also be par
tioned, and selected based on a packet’s overlay indica
(incoming virtual link label if locally addressed, or its IP
address if globally addressed). The overlay can al
determine the forwarding algorithm, such as shorte
path or policy- or QoS-sensitive.

4.4: Inter-overlay and intra-overlay sharing
A key feature of the X-Bone is its ability to coordinate

between concurrent overlays where they share resourc
The X-Bone helps this coordination, by supporting mon
toring software to validate reservations or mainta
counts of how many overlays share a device. Such cou
can be signalled to a human network manager, or used
provide coarse sharing limits. Bounds checking alg
rithms will be employed to monitor and flag inter-overlay
contention, and inhibit overlay deployment where resol
tion is not otherwise possible.

This broad coordination of overlays requires a scalab
contention detection and resolution mechanism. Initiall
this can be provided by permitting an overlay only wher
contention avoidance can be detected, and defaulting t
conservative ‘prohibit’ response otherwise. Probabilist
guarantees can also be employed, where over-provisi
ing (or under-allocation) can be used to infer resour
availability.

4.5: Security management
The X-Bone is an inherent security challenge, becau

it provides remote access to routing configuration. Th
X-Bone tool uses only ‘willing’ resources to participate
in various overlays. The X-Bone is intended to b
deployed only on shared and shareable resourc
resources for which security has not or cannot be suf
ciently ensured are not participants in the overlay, oth
than as a transit for packets, a service which they alrea
provide (or otherwise constrain). The extent of the sha
ing is controlled by the API and configuration by the
owner of each resource.

In its initial deployment, the tool will be additionally
constrained,e.g., to use only ‘private’ IP addresses [13]
and to limit its access to router resources. The early s
tems will be deployed with a single, global encryptio
and authentication key, to avoid spoofing and intrusion

Initially, messages over both the single announceme
channel and the per-overlay channels are authentica
via a single, global password. Per-group password
encryption, and automated key management will b

Remove labl

Remove labl
Remove labl

Remove labl

Source route

Source route
Source route

Source route

Add label

Add label
Add label

Add label

Virtual links

Source routing

Tunneling

O1 Address

O3 Address
O2 Address

Routing
Engine

Interface

Route
Table

Route
Table

O1 Address

O2 Address
O1 Address Interface

Routing
Engine

Route
Table

O3Address
O3 Address



s
et
y
6

.
g
s
rk

-

r-
ys-

,
. It
rk
u-

s
,
at

-

-
e

t-
i-
e
to

e
b
d
li-
st

to
he

ir-
-
r
ion
X-
s-
t-
incrementally incorporated into the X-Bone tool imple-
mentation. The emerging standard IP security protocols
will be used for authentication and encryption services.

5: Optimization to the underlying network

Human network managers provide two important
functions in the current scheme for overlay deployment,
both in providing overlay configuration, as well as in
analyzing overlays to avoid interference with the under-
lying topology. We have described how the X-Bone
replaces them in the former case; in the latter case, the X-
Bone can provide a level of optimization that manual
management cannot achieve.

Simple optimizations include avoiding redundant link
traversals within a single overlay, and ensure hopcount-
limited deployment. More sophisticated optimizations
apply bin-packing heuristics to multiple overlay sharing,
to maximize the number of overlays supported on each
shared resource. Similar optimizations have been devel-
oped for telephony at the call level; the X-Bone imports
these techniques, treating overlays as multiparty ‘calls.’

Other optimizations are used to ensure user con-
straints, such as latency limits, jitter aggregation limits,
and other performance constraints. Although such opti-
mizations are seemingly unlimited, the deployment of
simple optimizations, together with community feedback,
can help develop tools to enhance network utilization,
maximize sharing, and minimize contention.

6: Prior and Related Work

The X-Bone generalizes and automates the deploy-
ment and management of overlay networks. There have
been many overlay network instances, which provide the
motivation for providing a general control system. The
X-Bone system is a simpler, less generic IP-only version
of other multi-layer or multi-capability network deploy-
ment tools, such as Supranets and MorphNet. It takes
advantage of the recent developments in emerging sup-
port for programmable routers (Active Networks),
remote tunnel management and security architecture. The
X-Bone can capitalize on, but does not rely on any of
these developments to deploy immediately. The X-Bone
also serves as a framework to coordinate and manage
other new mechanisms (e.g. multiprotocol label switch-
ing [4]) within overlay networks.

6.1: Virtual networks
The X-Bone is a direct descendant of the M-Bone [9]

and its recent clone, the 6-Bone [1]. The M-Bone sup-
ports multicast IP by using routers that implement a
superset of the IP routing algorithms used elsewhere in
the Internet, and encapsulating otherwise incompatible
multicast IP packet inside conventional IPv4 packets. An

M-Bone router, although linked to other M-Bone router
via IP tunnels, is also a proper member of the Intern
itself as well. Similarly, the 6-Bone supports IPv6 b
encapsulating IPv6 packets in IPv4, and providing IPv
routing capability only at selected intermediate routers

One of the earliest examples of overlay networkin
was the use of IP to support OSI/CNLP links [11]. In thi
system, the early Internet was used as a virtual netwo
over which OSI network-level protocols were tested.

MorphNet is similar to the X-Bone, although encom
passing many levels of virtualization [2]. The X-Bone
can be considered an IP version of MorphNet, but Mo
phNet focuses on the incorporation of heterogeneous s
tems of overlays at these different levels.

The Metanet, proposed by Wroclawski at MIT
addresses the membership issues of the X-Bone [20]
defines regions as a level of aggregation of netwo
resources, and focuses on a higher-level of basic comm
nication, perhaps as a redesign of IP.

Turner and Mankin also propose virtual network
composed at the ATM level [18] for the CAIRN network
due to existing bandwidth allocation and enforcement
ATM switches. ISI’s GUILN is an ATM graphical user
interface for managing logical ATM networks [10]. It
provides manual configuration of a virtual net from a sin
gle remote site.

The Supranet is the project most similar to the X
Bone; it is being developed in the CRATOS group at th
Catholic University of Piacenza, Italy [6]. It focuses on
optimizing the topology and resources of the virtual ne
work to the physical network, and operates predom
nantly at the IP layer. In many ways, the X-Bone is th
HTML to Supranet’s SGML; a simple subset designed
be rapidly deployed and evolved.

Any application-level routing is,per se, an overlay on
the conventional network-layer routing services. On
recent example of application routing is distributed we
cache proxy systems, such as ISI’s LSAM [17] an
UCL’s CacheMesh [19]. In such systems, an client app
cation contacts a primary proxy, which directs the reque
within a set of second-level proxies. This is equivalent
application-level routing, and acts as an overlay on t
network-layer routing provided by TCP/IP and IP
addresses of the proxies.

The NetScript project addresses the deployment of v
tual networks in particular, as NetScript Virtual Net
works (NVNs) [21]. NVN focuses on a common route
programming language, and describes the general not
of coordinated deployment and management. The
Bone is envisioned as the upper-level interface to a sy
tem that includes a variety of mechanisms, including Ne
Script and NVN.
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6.2: Other virtual networks
Virtual Private Networks (VPNs) refer to the efforts to

provide secure virtual private networks over public IP
network infrastructure by combining tunneling mecha-
nisms and mechanisms for IP security [8]. X-Bone will
use the IP security framework in a similar manner to pro-
vide for secure overlay networks. X-Bone faces similar
challenges with the use of private address spaces within
the public infrastructure. Whereas VPNs suggest use of
network address translators to deal with legacy address
assignment, X-Bone’s inherent ability to rapidly choose
and deploy virtual addresses affords an alternative solu-
tion to this problem.

Multiprotocol Label Switching is an emerging IETF
standard for simplified forwarding of layer 2 based on
label swapping [4]. These mechanisms provide for more
efficient tunneling of link-layer PDUs. The X-Bone will
be able to manage and configure overlays using the
MPLS interfaces. MPLS allows the X-Bone to achieve
tunneling with the performance of switching, with the
control of source routing.

7: Summary

The X-Bone provides a configurable virtual network-
ing infrastructure, critical to the development of both net-
work and application services, and is equally useful for
deploying isolated infrastructure for restricted purposes,
e.g., an emergency communications network for disaster
management. It provides isolation between overlay net-
works. It also provides a partitioning of resources that
allows experimental overlay networks to avoid interfer-
ence with production services, and allows overlay test-
beds to guarantee their own service for dedicated
experiments. In this way, overlays can provide per-test-
bed virtual networks using both public production ser-
vices and dedicated resources, such as the bandwidth
resources of the vBNS backbone.

Example uses of X-Bone include: a NG-Bone can be
deployed to test next-generation protocol capabilities
without disrupting existing protocols; an emergency-ser-
vices overlay backbone can be deployed quickly, in
which capacity is reserved on the tunnel links to ensure
traffic priority; a military brigade can deploy a backbone
for temporary private network service using existing
encrypted link technology.

The X-Bone’s coordinated management supports both
long-lived and short-lived large scale overlay networks
with little manual intervention. As compared with manu-
ally-configured counterparts, the X-bone is easier to use,
is being deployed sooner, incrementally incorporates new
networking technologies, and provides both fence-in
(contain the overlay from affecting others) and fence-out
(prevent others from encroaching on the overlay) isola-
tion.

The X-Bone uses an interface and resource discove
protocol adapted from thesdandsdr M-Bone tools [14].
Sdandsdr are session directory tools that advertise mu
tiple M-Bone multicast sessions on a single, global mul
cast channel. A similar X-Bone directory tool,xd,
provides an equivalent interface to multiple X-Bon
overlay networks.

The X-Bone consists of components which challeng
fundamental design principles of both integrated an
host-based routers, as well as end-system configurati
The X-Bone is based on gradual deployment, integrati
advanced capabilities incrementally, both by intern
development and synergy with emerging research effor
The X-Bone will utilize advanced network services a
they become available, including Active Networks, grou
security, in-band tunnel and encapsulation manageme
and resource reservation mechanisms. For compone
that are difficult to implement completely, there ar
trade-offs that can achieve reasonable initial functionali
in the very near term. The full capabilities of the X-Bon
are not dependent on any particular implementation
research result, however.

The X-Bone also provides a mechanism by whic
Active Networking components can be deployed an
managed. This allows heterogeneous AN nodes to
deployed on separate overlays, or as part of an integra
AN overlay. This ability to rapidly deploy and associat
AN nodes serves a complimentary function to AN’s abi
ity for rapidly introducing new network functions. X-
Bone provides a unique use for ANs, notably to buil
separate packet processing engines and routing table
routers, which will enable contained overlapping ove
lays without requiring address independence. As the co
ventional use of AN seems to be the introduction of a
independent new service into a routing node, the X-Bo
provides a novel use for AN capability.

The X-Bone architecture, presented here, was co
pleted in Spring 1998, and a prototype is expected in t
Fall 1998. The authors would like to thank Bill Manning
and Ted Faber of ISI’s Computer Networks Division
Rich Carlson of the Argonne National Lab, Bob Aiken o
the Dept. of Energy, and the participants of the Clust
Interconnects Working Group for their feedback on ea
lier versions of this document.
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