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Figure 15: A three-dimensional plot of the Delay Jitter histogram at the destination for four VBR connections for different
background non-QoS (datagram) loads with preemptive priority to QoS Virtual Channels. Note the log scale for the delay

jitter in byte times at the destination.

we have presented and evaluated several different approaches to this problem. Dedicating a subnet to
carry QoS traffic exclusively is an approach that when combined with pacing and call admission control
can support QoS traflic. Imposing a synchronous framework on top of the asynchronous high-speed
network (via a Hyper Token Ring, FDDI etc.) provides support for guaranteed bandwidth and delay
applications. Both approaches can benefit from switch priorities in order to reduce interference of QoS
and non-QoS traffic at the host interface.

The use of virtual channels (one set dedicated to QoS traffic and one set to non-QoS traffic) along
with a priority mechanism (especially the preemptive priority mechanism) was also shown to be an
effective approach to supporting QoS traffic. It becomes even more attractive when combined with
deadlock-free shortest path routing (as considered in this paper).

QoS multicasting must be performed via storing and forwarding and replication through the host
interface, in the absence of switch level hardware support for multicasting. This tends to increase
latency because of reassembly at each host interface. However, proper choice of worm size can ensure

that latencies are within predefined constraints.
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Figure 13: A three-dimensional plot of the Delay Jitter histogram at the destination for four VBR connections for different
background non-QoS (datagram) loads with non-preemptive priority to QoS Virtual Channels. Note the log scale for the

delay jitter in byte times at the destination.
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Figure 14: A three-dimensional plot of the Delay Jitter histogram at the destination for one VBR connection (between
node 0 and node 27) for different background non-QoS (datagram) loads with preemptive priority to QoS Virtual Channels.

Note the log scale for the delay jitter in byte times at the destination.
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Figure 12: A three-dimensional plot of the Delay Jitter histogram at the destination for one VBR connection (between
node 0 and node 27) for different background non-QoS (datagram) loads with non-preemptive priority to QoS Virtual

Channels. Note the log scale for the delay jitter in byte times at the destination.

then the destination received the worm with the same interarrival time as at the source. In Figs. 12
and 13, we plot the delay jitter histograms for one VBR connection and for four VBR connections,
respectively. We see that a high fraction of worms (almost 70% even at high background non-QoS traffic
load of 0.5) get to the destination with zero delay jitter. Thus, the mechanism of two separate sets of
virtual channels with the non-preemptive priority between the two sets provides adequate support for
VBR traffic. We next compare these curves with Figs. 14 and 15 which plot delay jitter histograms for
one and four VBR connections, respectively, when preemptive priority is given to the QoS traffic. We
note that the preemptive priority mechanism is able to deliver 100% of the QoS worms with a delay
jitter value of 0. Thus, the preemptive priority mechanism provides very strong support for QoS traffic
in high-speed wormhole routing networks.

In conclusion, we can say that the use of two different sets of virtual channels for QoS traffic and
non-QoS traffic along with the use of preemptive priority provides strong support to QoS traffic. Of
course, the switches need to be intelligent for this scheme to be implemented (we note that virtual

channel support is not available in Myrinet switches at present).

7 Conclusions

High-speed wormhole routing networks provide natural low-latency, high-bandwidth support for data-

gram traffic. Providing support for QoS traffic, on the other hand, is a challenging task. In this paper,
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Figure 10: A three-dimensional plot of the Interarrival Delay histogram at the destination for one CBR connection
(between node 0 and node 27) for different background non-QoS (datagram) loads when non-preemptive priority is used

to give priority to the QoS set of virtual channels. Note the log scale for the delay jitter in byte times at the destination.
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Figure 11: A three-dimensional plot of the Interarrival Delay histogram at the destination for four CBR connections for
different background non-QoS (datagram) loads when non-preemptive priority is used to give priority to the QoS set of

virtual channels. Note the log scale for the delay jitter in byte times at the destination.
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Figure 9: A three-dimensional plot of the Interarrival Delay histogram at the destination for four CBR connections for

different background non-QoS (datagram) loads. Note the log scale for the interarrival times at the destination.

First, we simulated the case where QoS and non-QoS traffic are carried on the same virtual channels
(i.e., the network does not distinguish between the two types of traffic). Figs. 8 and 9 show a plot of
the histogram of interarrival times at the destination for CBR traffic with only 1 connection (between
nodes 0 and 27) active and with all 4 connections active, respectively. The point to note from these
graphs is that the tail of the distribution is rather short (note the log scale for delay in byte times).
Thus, even when QoS and non-QoS traffic are mixed, the interarrival time between QoS (CBR) worms
at the destination are tolerable, though as the background non-QoS traffic load increases, a smaller
fraction of worms get to the destination with the same interarrival time as at the source. For example,
in Fig. 8, about 50% of the worms get to the destination with the same interarrival time as at the source
(i.e., 10000) with a background datagram load of 0.1. This reduces to about 10% with a background
datagram load of 0.5.

Next we simulated the case where QoS traffic and non-QoS traffic are carried on different sets of
virtual channels with the non-preemptive priority mechanism between the two sets (as described in
section 4). Figs. 10 and 11 plot the interarrival delay histograms at the destination(s) for one CBR
connection and for four CBR connections, respectively. By comparing with Figs. 8 and 9, we notice that
the non-preemptive priority mechanism improves slightly the delay jitter performance of QoS traffic.

We next show the results for the VBR traffic case. Here we plot the delay jitter histograms at
the destinations. The delay jitter is calculated as the difference between the interarrival time of two

consecutive worms as noted at the destination and at the source. Thus, if the delay jitter value is 0,
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Figure 6: Performance of HTR handling both synchronous traffic and 3 classes of asynchronous traffic.
Class 0 is synchronous traffic and Class 1 is the highest priority asynchronous traffic type. 50% of the

total load comes from Class 0 traffic which is modeled as a simple voice source.

6.2 Virtual Channel Approach

The virtual channel simulation model was written in Maisie [2] — a C-based, message-passing, discrete-
event simulation language. The virtual channel approach was simulated on a 64-node bidirectional
shufflenet topology (see Fig. 7) [22]. Each node is an asynchronous, wormhole-routing switch and has
one host connected to it. In the simulation, the link bandwidth was 640 Mbps (the speed at which
Myrinet runs) and the links were assumed to be 1 Km long (with a propagation delay of 400 bytes).
We simulated both Constant Bit Rate (CBR) and Variable Bit Rate (VBR) traffic types. The CBR
traffic source generates worms of length 1000 bytes with a worm interarrival time (from head of one
worm to the head of the next worm) of 10000 bytes. The VBR traffic source simulated transfer of
MPEG encoded video frames (from a trace file with frame sizes for an advertisement) at the rate of 30
frames per second. The simulation was run long enough to transmit 1000 frames.

Source routing was employed. Four virtual channels were simulated per physical channel (each with
its own sTOP /GO protocol) in the topology to enable shortest-path deadlock-free routing. This result is
true for any bidirectional shufflenet [21]. Four connections were simulated. Connection 1 was between
node 0 (source) and node 27 (destination) which has a path length of 6 hops (with a choice of 10
alternative shortest paths at the source). Connection 2 was between node 6 and node 34 which has
a path length of 5 hops (with a choice of 2 alternative shortest paths at the source). Connection 3
was between node 11 and node 23 which has one path of length 2 hops. Connection 4 was between
node 15 and node 52 which has a path length of 6 (with a choice of 10 alternative shortest paths at
the source). Non-QoS traffic was simulated in the background from and to hosts that did not have a
QoS connection described above. Non-QoS traffic had a geometrically distributed worm length with
an average of 5000 bytes and a maximum of 10000 bytes. In the graphs, we plot the offered load as

the fraction of time that each host is busy transmitting non-QoS traffic.
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Figure 5: Performance of HTR handling both synchronous traffic and 3 classes of asynchronous traffic.
Class 0 is synchronous traffic and Class 1 is the highest priority asynchronous traffic type. 10% of the

total load comes from Class 0 traffic which is modeled as a simple voice source.

each host interface along the path and be forwarded to those destination hosts as requested by the
source host (as discussed earlier).

In the four station ring, there are sixteen possible source destination pairs. FEach is considered a
separate message type. All stations transmit asynchronous traffic. The load of asynchronous traffic at
each station is distributed between classes 1, 2 and 3 according to the ratio 3:2:1, respectively. Only 3
message types support both voice and asynchronous traffic, (0,2), (2,0),and (1,3). L, is set at 3200 bits
and each voice packet arrives every 50ms. All other traffic has exponential length with a mean of 3200
bits and arrives according to a Poisson distribution. Offered load includes both synchronous traffic as
well as asynchronous traffic. The set of transmission configurations are chosen as if the stations were
transmitting a symmetric load across all message types. This provides good throughput performance
(see [15] for more details). The TT'RT is set such that the average visiting time to each configuration
is 25ms and the maximum is 50ms.

The offered load versus throughput for 10% voice traffic is shown in Fig. 5 and for 50% voice traffic
in Fig. 6. As the voice traffic load increases, the amount of bandwidth available to the asynchronous
traffic drops. When the network is heavily loaded, only class 0 (synchronous traffic) and class 1 are
able to use the network. The delay performance for synchronous traffic is acceptable across all loads.
Even under high loads such as p = 3.0 (with 50% of the total load coming from voice traffic), the voice
channels receive access to the ring every 18.6ms with a standard deviation of 2.2ms. The results show
that HTR with support for synchronous traffic is capable of providing bandwidth guarantees and strict
delay bounds.
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its depth will be |logy(n 4+ 1)|. Each host retransmits the multicast packet (up to) twice, and the
second retransmission will also be subject to the transmission delays of the first retransmission, as for
the single-source case. Thus the number of compounded delays will be 2[log,(n 4+ 1)]; an improvement
on the n delays for the previous two schemes. The tree scheme also allows for multicast paths with less
retraversal of the same links, because of the greater freedom to choose the multicast paths.

All three schemes can be regarded as variants of a tree scheme with bounded fanout, the single-source
scheme having infinite fanout, the Hamiltonian circuit a fanout of one, and the binary tree a fanout of
two. The fanout imposes a limit on the bandwidth that can be guaranteed, as the output link capacity
must be shared by that fanout. Therefore the greater the fanout the lower the bandwidth guarantees.

This favors the binary-tree scheme, which offers higher capacity but with low overall latency.

6 Results

In this section, we present some selected simulation results for the options described earlier. Due to
space constraints, we present simulation experiments only for two options — synchronous system and

the virtual channel approach.

6.1 Synchronous QoS support

In this section, simulation results for a four station unidirectional ring are presented. The HTR
simulator is written in C. FEach host is capable of transmitting both synchronous data as well as all
three classes of asynchronous data. Class 1 is assumed to be the highest priority asynchronous traffic
class and Class 3 is assumed to be the lowest. The stations are spaced 15m apart and are capable of
transmitting at 640Mbps.

In the following results, only CBR traffic is considered. The synchronous traffic corresponds to a
voice stream. The actual bandwidth required for a single voice conversation is very small compared to
the total available bandwidth offered in HTR. Consequently, to provide a substantial amount of voice
load we allow more than one voice channel per source host. The number of voice channels per station
is C'y. Voice packets are of fixed length, L, and are generated at fixed time intervals of P, per station.

The total voice load of the network Gy is:

Go = {C;;fv}zvv (1)

N, is the number of voice sources in the network. We do not consider the case where a single voice
source wishes to multicast its packets to several destinations. However, this case can be easily handled
in HTR. For example, if a host wishes to transmit to two other destinations, the host would send a

multicast packet to the destination furthest away along the ring. The packet would then go through
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Figure 4: Three schemes for achieving multicasting by host forwarding: (a) single-source multiple

unicast, (b) Hamiltonian circuit, (c) binary tree.

cycle from its source. The worm will stop at the host in the cycle immediately before its source; it is not
necessary for it to return to the source. A binary-tree scheme for multicasting is depicted in diagram
(c). Here each host forwards the multicast worm to two other hosts, which continue the process.

Because each arc of the forwarding graph represents a complete path in the network fabric, each
multicast worm may traverse the same network link several times. This implies that the central
bandwidth-reservation entity must take this into account when reserving bandwidth (whether by virtual
circuit or separate subnet) for the multicast transmission. This reduces the theoretical maximum
bandwidth that can be assigned, as compared with the bandwidth that would be available if multicast
were performed within the switch fabric.

The single-source multiple unicast scheme suffers the worst in this regard — the local network link
from the host (assuming a single network interface) must have n-times the guaranteed bandwidth
reserved for it.

For the remaining schemes, each multicast path from source to destination consists of, in general,
two or more concatenated unicast paths. This will clearly affect the delays experienced by the multicast
worms. Assuming negligible processing delay at the host for the forwarding of the worm, the average
delay for the concatenation of several unicast paths will be the sum of the average delays of the indi-
vidual paths. The variance in delay times (or jitter) will be sum of the individual path delay-variances,
if we assume the delays on each path are independent of one another (which is only approximately
true). Worst-case bounds will also sum along the multicast path.

The Hamiltonian-circuit scheme suffers the most from these cumulative effects, since the multicast
path consists of n concatenated unicast paths. The single-source also suffers to some degree from these
effects, even though all multicast paths are one unicast path long. To see why this is so, consider that
for typical worm sizes and typical network sizes, the head of the worm will reach its destination before
the tail has left the source. Thus any transit delays due to blocking experienced by the worm will also
be felt by the transmitting host, if it has not yet sent the tail.

The binary-tree-—multicasting scheme potentially offers the least delay. If the tree is balanced then
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and be able to schedule QoS traffic and non-QoS traffic as required by the protocols. The preemptive
priority protocol is harder to implement than the non-preemptive protocol as the switch has to check
for the arrival of a QoS traffic worm at any of the input ports prior to transmission of the next non-QoS
flit from the output port.

The advantage of the virtual channel approach to supporting QoS traffic outlined above is that the
network appears the same for both types of traffic (i.e., QoS and non-QoS traffic are integrated). The
intelligent switches allocate the link bandwidth resource as required to support QoS traffic. The virtual
channel scheme can be used to provide bounds on delay jitter as shown by the results. Bandwidth

guarantees are provided by employing a call admission agent as described earlier.

5 Provision of Quality-of-Service Multicasting

Availability of a multicast service is now important for many applications (e.g. [11]). Since many of
the same multimedia applications which require guaranteed bandwidth are likely to require multicast
service (e.g., MBone, video-conferencing, etc.), we would like to extend the point-to-point guaranteed-
bandwidth schemes to provide such a service.

Unfortunately, Myrinet does not perform any kind of multicasting within the physical switching
fabric (unlike, say, Ethernet, in which multicasting can make use of the inherent broadcast nature
of the medium). Methods of extending the Myrinet switch functionality to allow such multicasting
have been proposed [9]. These methods, however, face major implementation challenges. Therefore,
we only consider multicast implementation feasible on the currently available hardware. In particular,
we implement multicasting by using multiple host-retransmission of the multicast worm. With this
method each multicast consists of a sequence of point-to-point (unicast) transmissions. A multicast
scheme of this type for non-QoS (datagram) traffic has been implemented [9]. Similar work has been
performed by Verstoep et al. [27], using the University of Illinois Fast Messages system [20] as the

unicast transport.

5.1 Multicasting by Multiple Unicast

We consider three basic schemes for achieving multicast by successive unicast. These schemes are
illustrated in Fig. 4. We assume a source is transmitting guaranteed bandwidth traffic to n other
members of a multicast group. Each arc in the figure represents a complete unicast path (of several
network links) through the Myrinet. Single-source multiple unicast is depicted in diagram (a). This
scheme is the most straightforward way to perform multicasting under the general method of multiple
forwarding — the source simply retransmits the same multicast worm n times to the remaining members
of the multicast group. The second diagram illustrates the Hamiltonian circuit scheme. In this scheme

the members of the multicast group are arranged in a cycle; the multicast worm proceeds around the



Figure 3: Alternative deadlock-free routing schemes. (a) A sample 10-node bidirectional ring topology.
(b) Up/Down routing tree with node 5 as root. (c) and (d) Virtual channel approach with two virtual
channels per physical link. For example, channel ¢; between nodes 1 and 2 (in (a)) is split into two
bidirectional virtual channels co; and ¢17. The virtual channels are traversed in the order shown in (c)

and (d) by traffic in opposite directions.

an arbitration scheme that works on a per flit basis is that the switch design becomes more complex
and the switching latency is increased. In [18], several priority mapping schemes (allocation of virtual
channels based upon the (perceived) delay of the incoming worm) along with round-robin and priority
arbitration for the physical link were considered. Extensions to this work were considered (along with
a worm dropping algorithm) in [17].

Our approach differs from previous approaches in that the allocation of a virtual channel to an
incoming worm is fixed as per the deadlock-free routing policy [21]. Given this scenario, we propose
to combine deadlock prevention and QoS support in the following way. We use two different sets of
virtual channels — one for transporting datagram traffic only and the second for transporting QoS
traffic only; and use a priority mechanism to give priority to QoS traffic within the network. One
priority mechanism that we propose is the non-preemptive priority mechanism in which the arrival
of a worm to the QoS set of virtual channels does not immediately cause it to be transmitted on the
desired outgoing link. The worm currently being transmitted on the desired outgoing link (either QoS
or datagram) is transmitted until either the tail of the worm clears the connection or the worm is
blocked at a node further downstream. Then, the QoS set of virtual channels are scanned before the
datagram set of virtual channels in order to schedule a worm for transmission on the outgoing link.
It is easy to envisage a preemptive priority mechanism in which a worm arriving at the QoS set of
virtual channels preempts a datagram worm (but not another QoS worm).

Implementation of the non-preemptive priority and preemptive priority mechanisms in the switches

is possible only if the switch has intelligence. The node needs to monitor all traffic passing through it



is maintained by increasing the TT'RT parameter and allowing stations to transmit for longer periods
of time when they have captured the token. However, increasing the TT'RT parameter has the effect
of making the network less responsive and less capable of providing tight delay bounds. Consequently,
as the network grows, it may be necessary to split the network into multiple smaller rings connected
by gateway nodes. The traffic entering the ring via the gateway is treated as a host on the sub-ring.
Simulations for this scheme have been run and the results are promising. A drawback of this scheme is
that the gateway node has large buffer requirements and must perform complex packet manipulations
to support the synchronous QOS scheme. Currently, methods using less complex gateway nodes are
being explored.

Other attributes of this QOS support scheme are that the synchronous network is both deadlock
free and fair [15]. Since the system has strict control over routing and access to the medium, these

attributes are easily provided.

4 Virtual Channel Based QoS Support

In the Virtual Channel approach, each link is split into two different sets of virtual channels, used for
datagram and for QoS traffic respectively. Traditionally, the virtual circuit channel approach has been
used in wormhole routing networks to prevent deadlocks [8]. Thus, this QoS support alternative would
make most sense if combined with deadlock prevention. To explain how this could be accomplished,
we introduce a brief discussion on deadlock free routing.

Wormbhole routing networks with unrestricted shortest path routing are prone to deadlocks [8]. When
a worm is blocked at an intermediate node, by employing the backpressure flow control mechanism,
the worm is frozen’ in place across several links and nodes. Thus, it is possible to obtain a cycle of
such blocked worms leading to a deadlock. Upon detection of a deadlock, the network could be reset
(or some worms dropped to break the cycles). However, this option involves worm loss. Thus, we focus
on using deadlock-free routing — either Up/Down routing as in Autonet [23] or virtual channel based
shortest path routing [8, 21] (see Fig. 3).

In the virtual channel approach (which is of interest for QoS support), each buffer associated with the
input port of each switch is split into several disjoint buffers. The link between the upstream node and
this input port is then treated as a collection of several virtual channels each with separate backpressure
flow control. The number of virtual channels required per physical link to achieve deadlock-free routing
is dependent upon the network topology [8, 21].

The use of virtual channels allows worms to be interleaved. As a result, in [7], Dally proposed the
use of virtual channels as an efficient way of controlling the critical network resources of link bandwidth
and input buffer space. Further, he proposed a priority-based deadline scheduling arbitration scheme

(on a per flit basis) to meet end-to-end latency requirements of the application. The problem with



and an average delay of TTRT at each station [25]. This is also the case for the HTR protocol. The
timer scheme is capable of providing good jitter control. The only difficulty is in properly setting the
parameters to do so. Recently, several papers have addressed this problem [1, 29].

To support this timed token protocol, a dedicated unidirectional ring is embedded in the network.
The ring may be generated in two different ways. The first method operates on any arbitrary topology.
A spanning tree is constructed by one of the host interfaces and an eulerian trail is generated by
traversing this tree. The information is broadcast to all other hosts. This procedure is repeated
periodically in order to adapt to node failures. A similar procedure for generating the routing map
is used in the Myrinet mapping protocol [6]. The second method can only operate on a network
topology that contains a Hamiltonian cycle. The embedded ring resides on this Hamiltonian cycle and
a bidirectional ring can be supported if the set of switches that have hosts attached to them are on
the embedded ring. The additional unidirectional ring may be used for either providing fault tolerance
support (FDDI) or for increasing throughput by exploiting the potential spatial reuse of the system
(HTR) [15]. However, if the ring does not include the set of switches that have hosts attached to
them, only a unidirectional ring may be supported. As long as all hosts transmitting and receiving
QOS traffic have access to the core ring, the QOS scheme will function. For example, in Fig. 2, a
ring may be constructed by eliminating one link (the QOS link connecting 57 and S3) from the QoS
subnet. Although switches with hosts A, B, (', and D do not reside on the embedded ring, the timed
token scheme still functions properly on the core ring. The links connecting switches 53 and 54 to the
embedded ring are used as a part of the unidirectional ring.

This QOS scheme must deal with a similar issue as that of the dedicated subnet idea of section 2.
The number of host interfaces affects system operation. The problem occurs due to the interaction of
QOS traffic and non-QOS traffic. Typically, QOS traffic travels on the core ring while non-QOS traffic
travels on all links not on the core ring. No contention at the switches in the network fabric occurs
because the two traffic types are kept on separate subnets. However, delay bounds for QOS traffic may
be compromised at the destination host interfaces. If a host is busy receiving a non-QOS message, a
QOS message arriving from the ring network would be delayed an unpredicatable amount of time if
the host only has one network interface. Consequently, QOS traffic must have preemptive priority at
the switching nodes when the host only supports a single interface. An alternative would be to provide
two host interfaces at the host node, one for the embedded ring and one for the non-QOS traffic.

To help increase the throughput of non-QOS traffic, the embedded ring may also be used to carry
this type of data. If bandwidth is not completely taken up by QOS traffic on the ring, non-QOS traffic
may be integrated on the ring network using a multi-class implementation of the timer scheme [28].

A problem with this QOS scheme may be its scalability. Although throughput performance for both
FDDI and HTR does not degrade as the physical size and propagation length of the system increases,

the potential delay bounds and responsiveness of the network do suffer. The throughput performance
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Figure 2: A sample network topology with two separate subnets - one for QoS traffic and one for
non-QoS (datagram) traffic. The links between the hosts and the switches do not belong exclusively

to either subnet.

3 Support of QOS using a Synchronous Framework

Providing strict delay bounds in the separate subnet scheme is difficult due to the delay dynamics that
result from blocking at the various crosspoints. Another alternative for supporting QoS is to impose a
synchronous structure on top of the asynchronous network. Constructing this synchronous framework
enables control over the blocking. Thus, delay bounds and message priorities may be implemented. The
tradeoff is that the network is no longer asynchronous and under low traffic load conditions, messages
suffer delay due to the overhead of supporting the synchronous protocol.

The framework for integrating both QOS and non-QOS traffic is similar to that of the dedicated
channels idea as described in section 2. The difference is that the dedicated channels scheme employs
traffic shaping (pacing and segmentation) to provide statistical guarantees for ensuring quality of
service requirements. In the synchronous structure, control over the traflic streams is obtained using
a timed token control mechanism. Consequently, the synchronous structure can provide tighter delay
bounds and bandwidth guarantees. Examples of synchronous protocols that may be built on top of
a wormhole routing network include polling systems such as token ring, FDDI [24], and Hyper Token
Ring (HTR) [5, 4, 15]. FDDIand HTR support Constant Bit Rate (CBR) and Variable Bit Rate (VBR)
by controlling the amount of traffic flow at each node via a timer controlled token scheme [10, 26]. To
support quality of service requirements, a set of timers at each station is used to limit the amount of
information transmitted. Details on the specifics of the timer scheme may be found in [28] for FDDI
and [15] for HTR. The delay bounds provided by this mechanism are related to one of the parameters
used in the protocols, the Target Token Rotation Time (TT'RT'). This value is used to help limit the

transmission time. The FDDI protocol guarantees a worst case delay of synchronous traffic of 2xTTRT



required QoS parameter (either bandwidth or delay). If the subnet cannot provide support for a new
QoS connection request, the source host is informed and then the source could either wait until a later
time and retry or use the datagram subnet (if appropriate). If the QoS connection request is accepted,
the source host is informed and it starts transmission. Upon completion of the data transfer, the source
host would inform the call admission agent and the agent would update its view of the QoS subnet
link status.

The second issue is the behavior of the source host after it has been granted a QoS connection on
the subnet. The source host must be made responsible for the amount of traffic it injects into the
subnet. It must comply with the parameters that were approved by the call admission agent in order
not to interfere with other QoS connections using the same links. One way to do this is to use pacing
wherein the source has a mechanism that would only allow some predetermined number of flits to be
transmitted per time period from the host. Segmentation of worms into predetermined sizes could
also be done in conjunction with pacing to ensure that the host injects only as much traffic as the call
admission agent approved [16].

The third issue is that of the number of interfaces that a host would require when the separate
subnet approach is employed to support QoS traffic. Suppose that the host has only one interface
connecting it to both subnets. On the transmit side, the host can schedule its own transmissions into
the network (and possible, exercise flow control on non-QoS traffic) so that QoS is maintained for the
connection oriented traffic. On the receive side, it is possible that a non-QoS worm being received by
the host blocks a QoS worm destined to the same host. This would introduce delays for the QoS worm
especially if the non-QoS traffic worm is relatively large. If the host had two interfaces (one per traffic
class), this problem would not arise. However, this would practically double the cost of the network
since host interfaces dominate overall cost. Another approach is to account for the worst case non-QoS
traffic interference on the single host interface at call setup time. For instance, referring to host G in
Fig. 2, an incoming QoS stream into G must share the interface in a round robin fashion with two
non-QoS links at the attached crossbar switch. Assuming the same worm size for all links, this leads
to a fair 3-way sharing of the host interface of ¢. Bandwidth allocation and delay performance can
thus be precomputed by the call admission agent at connection setup time. If the interfering non-QoS
traffic is controlled by TCP at the transport level (e.g., a file transfer application), the receiving host
can limit the interference by reducing the TCP window for non-QoS connections. It may also request
a reduced TCP message size in order to bound delay jitter. Finally, the interference problem would be
greatly simplified if the crossbar switches supported privatized round robin service of the input ports

(possibly with low priority preemption). Current Myrinet switches, however, do not offer this feature.



An alternative is to dedicate a pool of links from the network topology to support all QoS connections.
Several QoS connections could then be multiplexed on these links. The circuits are accepted based
upon some criteria such as peak/average bandwidth required. Pacing (input rate control at the hosts)
and bounds on worm length can be employed to guarantee average bandwidth and provide bounds on
delay. This option is discussed in section 2.

Another option (discussed in section 3) is to impose a virtual synchronous framework on top of the
asynchronous network. Examples of synchronous structures include FDDI, Token Ring and HyperToken
Ring. By imposing a suitable connection admission control policy, it would be possible to guarantee
bandwidth and delay requirements.

A fourth alternative is to use the mechanism of virtual channels [8, 7] to provide QoS traffic support.
In this approach, each input port buffer is split into two or more virtual channels, each with its own
flow control, so that worms can be interleaved. This approach avoids deadlocks in the network while
requiring intelligence in the switches. This option is discussed further in section 4.

In section 5, we discuss the issues in multicasting of QoS traffic in high-speed, wormhole routing

networks. Simulation results are presented in section 6 followed by conclusions in section 7.

2 QoS support via a Separate Subnet

The high-speed wormhole routing network can have an arbitrary topology consisting of several asyn-
chronous, non-blocking crossbar switches. Hosts connect to the network via a host-interface card. If
the links and switch ports in the network are inexpensive relative to host interfaces (as in Myrinet), it
becomes cost effective to add more links and switches to the topology to create two separate subnets
- one to carry QoS traffic exclusively, the other dedicated to carrying datagram (non-QoS) traffic (see
Fig. 2). The links of the QoS subnet would multiplex QoS traffic originating at several different hosts.
We shall assume that both subnets are such that any host can send/receive traffic to/from any other
host. The routing is assumed to be determined independently for the two subnets. Further, there
is no interference between QoS traffic and datagram traffic at the switches. This is true in Myrinet
where each output of the crossbar switch services the inputs in round-robin fashion. Thus, indepen-
dent internal paths are used by the two traffic classes. For such a scheme to effectively support QoS
requirements, three basic issues must be considered.

The first issue is the acceptance of connection-oriented QoS traffic into the network. Call admission
and control is required since this approach provides support to QoS traffic via statistical multiplexing.
A centralized (or distributed) call admission agent on the network (with complete information of the
state of links on the QoS subnet) would receive a request for setting up a QoS traffic connection with
some specified parameters from the source host. Upon receiving the request, the agent would determine

a suitable route on the subnet through which the QoS traffic connection could be set up to satisfy the



The main goal of the SSN project is to provide support for distributed supercomputing. Target
applications include scientific visualization, distributed memory parallel supercomputing, video display
walls [14] etc. These applications generate many different types of traffic with different Quality of
Service (QoS) requirements, from low latency datagram traffic (to support fine grain distributed su-
percomputing) to high-bandwidth connection oriented traffic (uni- and multicasting) with bandwidth
guarantee. Thus, QoS support protocols are required. Further, the transport service must be reliable
(no worm loss inside the network), scalable and deadlock-free?. This is a challenging task since basic
wormhole routing supports only low-latency datagram service.

In this paper, we focus on the issue of providing reliable support for connection oriented traffic with
QoS parameters. We explore several options that may be employed for QoS support. Some previous
work has been done in this area [17, 18], however, the resulting protocols are not reliable (worms may be
dropped inside the network to meet delay constraints). This work will be discussed in more detail later.
In addition, a segmentation-based scheme has been developed [16] that provides best effort bandwidth
reservation service for high priority traffic. This scheme does not provide guaranteed throughput and
delay performance but rather adds the functionality of preferential bandwidth allocation. We discuss
how segmentation may be integrated with our schemes below to aid in traffic shaping for our statistical
multiplexing methods.

We assume in this paper that traffic with guaranteed QoS requirements is connection oriented. The
desired grade of QoS is specified at connection establishment time, and connections may be refused if
the required QoS parameters cannot be guaranteed. The definition of QoS parameters is application
dependent. Some connection oriented applications require guaranteed (average or peak) bandwidth.
Some others require that the end-to-end delays be guaranteed. Some may just require some bounds on
the end-to-end delay jitter (i.e., the time difference between when the destination should receive the
message and the actual time at which the destination receives the message). In this paper, we examine
several options to provide QoS support.

A first approach for providing QoS support in high-speed wormhole routing networks can be to create
on demand a physical path (consisting of links from the network topology) for each such traffic relation.
This would guarantee bandwidth and provide desirable delay and delay jitter bounds. However, it
requires that the network topology be very dense (in order not to disconnect the network when links are
dedicated to guaranteed connections). It also would lead to link capacity under-utilization. Moreover,
distributed algorithms are required to allocate links to QoS connections, and to clear these links of
best-effort worms (which may be blocked due to backpressure). These algorithms are difficult to design,
and inevitably add latency to the connection establishment phase. Thus, this approach is considered

impractical and is not pursued further.

Wormhole routing networks are prome to deadlocks [8], thus, some deadlock avoidance routing scheme must be
used [21].
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Figure 1: The two-level architecture of SSN. The optical backbone network is based on a physical
passive optical star topology. The high-speed wormhole routing LANs are Myrinets. The Optical
Channel Interface (OCI) connects the electronic LANs to the optical backbone network.

(see Fig. 1) in which several high-speed, wormhole routing local area networks are interconnected via
an optical backbone network. In the context of providing support for connection oriented applications
(such as scientific visualization, terrain rendering, etc.) in such a network, we evaluate alternative
methods to support Quality of Service (QoS) traffic in this paper.

Wormbhole routing [19] is a modification of the virtual cut-through method [12] for communication
in computer networks. In virtual cut-through, a packet is forwarded onto the required output port
at an intermediate node (switch) as soon as the head of the packet is received, if the required output
channel is not busy. Upon blocking, the blocked packet is stored in its entirity at the input port buffer.
Instead of storing the blocked packet entirely at the input port buffer, in wormhole routing, the
packet (which is called a worm) composed of a variable number of flow control digits or flits! is stored
across several intermediate nodes as a result of backpressure flow control. The advantage of virtual
cut-through (over the traditional store-and-forward approach) is latency reduction. Consequently,
wormhole routing has been used extensively for internal communication in multiprocessor computers
where low latency is of prime importance [19]. This paradigm is now being extended to high-speed
local area networks. Myrinet [6] is an example asynchronous, high-speed wormhole routing LAN.
Myrinet uses wormhole routing, source routing and backpressure flow control to achieve low latency
while providing high bandwidth (640 Mbps). While Myrinet links span only 25 meters or so, SSN is
extending the reach of such networks to the campus and metropolitan areas by employing an optical

backbone network.

!Qenerally, a flit is a byte.
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Abstract

Wormbhole routing networks have become increasingly popular for low latency, high-speed in-
terconnection of supercomputer and workstation clusters. An example is the Supercomputer Su-
perNet (SSN) at UCLA, which interconnects supercomputers across campus and metropolitan area
distances. SSN employs a two-level network architecture in which an optical backbone network in-
terconnects several high-speed, wormhole-routing local area networks (Myrinets). SSN applications
such as scientific visualization and rendering require that the network support reliable delivery of
traffic characterized by Quality of Service (QoS) parameters. Motivated by this requirement, we
investigate QoS support in Myrinet-like high-speed, wormhole routing networks. Since these net-
works do not provide QoS support, we explore several novel strategies including (a) the use of a
separate subnet for carrying such traffic (along with the use of pacing), (b) superimposing a virtual
synchronous system on the asynchronous network, and (¢) employing virtual channels to provide
QoS support while integrating QoS traffic and non-QoS (or datagram) traffic on the same network.
We discuss the tradeoffs among the different options and evaluate them via selected simulation

experiments.

Keywords: wormhole routing, Quality of Service.

1 Introduction

As part of the Supercomputer SuperNet (SSN) project at UCLA, Jet Propulsion Laboratory and the
Aerospace Corporation a network prototype to interconnect supercomputers situated across campus

and metropolitan areas is being designed and developed [3, 14, 13]. SSN has a two-level architecture
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