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Abstract—Secure pairwise communications for a group of N
nodes can require a large number of keys, O(N2) in the worst
case. This work proposes a two-part algorithm for large-scale
symmetric key pre-distribution: a key assignment algorithm
deterministically assigning O(log2 N) keys to each node, and
a key discovery algorithm requiring O(logq N) computations
and inter-node messages to find the appropriate secure keys
for a pair-wise communication. The lower bound of O(log N)
complexity is achieved by novel applications of the Maximum-
Distance Separable (MDS) codes. Compare to previous works,
our scheme is deterministic, efficient, and has good security
properties against collusion. Using (n, k)q Reed-Solomon codes
as the MDS codes, we show by analysis that (1) in all practical
cases, the lower bound of c log2 N keys per node can be reached
within 2 levels of recursions with a multiplicative constant c
less than 8; (2) by increasing cost to k2O

(
log2

2 N
)
, collusion

of up to (log2 N) /2 nodes can be completely prevented; (3)
channel resilience against r-collusion is roughly 1−Rdmin , with
R = 1− (1− 1/q)2r and dmin = n− k + 1.

Index Terms—Collusion resilience, Maximum-Distance Sep-
arable code, Reed-Solomon code, symmetric key assignment,
symmetric key pre-distribution.

I. INTRODUCTION

D IFFERENT schemes of symmetric key pre-distribution
have been proposed and studied in the context of con-

ference communication [4], wireless sensor networks [5], [6],
[7], [8], [12], and Internet broadcast security [9]. There are
two main stages for a key pre-distribution process: (1) the key
assignment phase, where each node is assigned a set of secret
(symmetric) keys, and (2) the key discovery phase (also called
the key agreement phase), where two nodes discover their
shared keys for secure pairwise communication. To achieve
pairwise security, it is necessary and sufficient to generate
N distributed key sets, one for each node, that possesses
both sharing and exclusion properties [1] among one another.
We call this the key assignment problem of size N , which
must be solved during the beginning of the key assignment
phase. After the key assignment, any two nodes wishing to
communicate with each other securely need to perform a
secure key discovery per channel establishment. Subject to
the properties of the assigned key sets, the two nodes will
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exchange some clear-text information to agree upon the shared
secret keys to use.

The key assignment stage is associated a local and a glocal
key assignment cost, defined to be the number of secret keys
required for each of the N nodes (local) and for all N
nodes in total (global), respectively. The key discovery stage is
associated with additional communicational and computational
complexities. The simplest solution, assigning N − 1 keys to
every node, one for communication with every other node,
requires a local cost of O (N) and a global cost of O

(
N2/2

)
,

and a constant key discovery (just the two node IDs). A
family of more sophisticated, t-composite key distribution [5]
schemes protect each communication channel by t > 1 keys;
they can achieve lower key assignment costs with a more
expensive key discovery.

A t-composite key pre-distribution scheme can be deter-
ministic or probabilistic. In a deterministic scheme, key sets
are assigned in a non-probabilistic manner, which guarantees
some values of node connectivity and channel security. In
a probabilistic scheme, key sets assigned to each node are
drawn randomly from a key pool according to some preset pa-
rameters, inducing probabilistic channel security and/or node
connectivity. A deterministic scheme usually has higher key
assignment costs, whereas a probabilistic scheme has more
complex key discovery.

In this paper, we propose a novel application of the
Maximum-Distance Separable (MDS) codes to the key as-
signment problem. By doing so, we obtain a t-composite key
pre-distribution scheme that is deterministic, achieves optimal
O (logN) key assignments, has low O

(
log2N

)
computa-

tional complexity, and forms a fully connected graph among
all nodes.

II. RELATED WORKS

In [3], Blom describes a Symmetric Key Generation System
that, utilizaing an MDS code, sends only r log(N) bits of
secret information to each node to guarantee pairwise security
against r-collusion. There are however several problems with
this system regarding its practicality. First, to assign keys to N
nodes against r-collusion, the key set generation requires the
use of an (N, r)q MDS code, and the key discovery requires
the multiplication of two size-r and size-(N − r) vectors over
a q-ary alphabet with q ≥ N . The computational complexity
thus increases in the order of O

(
rN2

)
, making the system

impractical when N is more than a few thousands and r is a
few tens. Second, the system has a “hard” collusion resilience;
that is, it is 100% secure against collusion of less than r nodes,
but totally broken when r or more nodes collude.
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Blundo et al. in [4] generalize Blom’s work to securing
dynamic conferences. Their approach reaches the lower bound
of information that must be held by each node in the more
general multi-way conferencing; instead of using an MDS
code, they use a t-variable, k-degree symmetric polynomial
to establish a secure conference among t users against k-
collusion. The scheme solves a more generalized problem,
but has the same high complexity as Blom’s in the reduced
2-conference cases, requiring the evaluation of a degree r
polynomial over an alphabet of size q > N . In [12], Mohaisen
and Nyang add a grid-based hierarchy on top of Blundo’s
approach, allowing the system to scale to larger number of
nodes with most communications occur locally. The memory
requirement in this hierarchical scheme, suppressing the lower-
order terms, is roughly O

(
nk2

)
, where n is the depth of the

hierarchy and k2 the size of the leaf group.
A non-MDS approach is taken by Delgosha et al. in [6],

where nodes are put conceptually onto the grid of a hypercube
and securely communicate only with adjacent nodes. Their
solution trades full pairwise connectivity off for a smaller
key assignment cost and better collusion resilience. A similar,
hypercube grid-based scheme is proposed by Aiyer et al. in
[1]; instead of assigning keys to a node by its hypercube
position, they assign keys by the node’s coordinate projection
onto each of the 2-dimensional planes composed of any 2 axes
of the hypercube; the lowest key assignment cost obtained by
their scheme is 4 log2

2N . In the same paper they also prove
non-constructively the existence of the lower-bound solution
of O (log2N) keys per node.

Of the probabilistic methods, Du et al. extends Blom’s
scheme such that each node is assigned keys from a randomly
chosen t out of w key spaces [8]. Although in this scheme
an arbitrary pair of nodes is not guaranteed to find a set of
shared keys, if they do they can establish a secure channel
with better collusion resilience. Other probabilistic schemes,
like [5], [7], [9], and [13], etc., follow the same basic idea
that lets each node randomly select K distinct keys out of
a pool of P total keys. All these schemes achieve pairwise
connectivity and security with a pre-configured but less-than-
one probability. Their focus are on the higher-layer protocols
that utilize the probabilistic schemes to facilitate efficient key
deployment and discovery. In particular, [13] applies a one-
way hash function to multiple degrees on each of the P root
keys in a pool, and only assigns K hashed keys (with different
hash degrees) to the nodes. It has the same connectivity (two
nodes can always hash forward to find a common key) as
a non-hashed solution, but better collusion resilience (e.g.,
adversary assigned a key with high hashing degree cannot
break communication channels protected by keys with lower
hash degree).

III. MDS KEY SETS DISTRIBUTION

Here are the assumptions we use for the key pre-distribution
problem:

1) We secretly generated M symmetric keys to be dis-
tributed to the N nodes. M is the global key assignment
cost.

2) A key distribution center has a secure channel to each
of the N nodes to send the symmetric keys to the node.

3) Each node is associated with an integer node ID to iden-
tify itself uniquely and universally within the network.

The key distribution scheme consists of a key assignment
algorithm and a key discovery algorithm. Both algorithms
utilize the properties of the MDS codes, reviewed in the
following subsection.

A. Review of MDS Codes

Recall that an (n, k)q MDS code, C, over a finite alphabet F
of size q is a collection of qk codewords of length n satisfying
the condition that no two codewords in C agree in as many
as k coordinate positions. An MDS code can be either linear
or non-linear. In the case of a linear MDS code, F consists
of symbols of the Galois field GF (q), and the code C meets
the Singleton bound of minimum (Hamming) distance, dmin =
n − k + 1. The most commonly used linear MDS codes are
the Reed-Solomon codes (RSC).

The following theorem contains a list of properties of the
MDS codes that are of our concern.

Theorem 1: Let a C be an (n, k)q Maximum-Distance
Separable code. Below is a list of properties of C relevant
to our discussion [11], [14]:

1) For any t ≤ k coordinate positions of C, we can find
exactly qk−t codewords in C with these t coordinate
symbols fixed to any of the qt values.

2) Any fixed k coordinates in C carry the full information
of k symbols. An equivalent description of this is that if
a set of codewords are uniformly and randomly selected
from C, their symbol values in any fixed k coordinates
are also uniformly random.

3) A shortened MDS code is also MDS. Fix any coordinate
j of C and specify an arbitrary value for it, the set of
the resulting codewords, removed of the j-th, coordinate
is an (n− 1, k − 1)q MDS code.

4) A punctured MDS code is also MDS. Removed of any
fixed coordinate of C results in an (n− k, k)q MDS
code.

5) If C is linear, then it can be constructed over a finite
field of GF (q), q ≥ n− 1, using a generator matrix of
dimension k×n with entries from GF (q). In the case of
Reed-Solomon codes, a generator polynomial of degree
n− k with coefficients in GF (q) can be used.

Although most of the steps and proofs in our study do not
require linearity, in this paper we consider only linear MDS
codes, most prominently the Reed-Solomon codes. This is
because little is known about the availability of practical
nonlinear MDS codes; besides, there are already efficient
encoders for the Reed-Solomon codes. We note that our
scheme requires only the encoding of the codes, but not the
more complex decoding process.

B. The Key Assignment Algorithm

The key assignment algorithm solves the key assignment
problem defined below.
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Algorithm 1 The Key Assignment Algorithm
BEGIN

1) For each node A, find its key-assign ID [α](n,k).
2) For each i-th symbol coordinate of the key-assign ID,

i = 0, 1, . . . , n−1, assign the following set of symbol
keys to node A,

si (αi) ≡
⋃

β∈GF(q)

si (αi, β) ,

such that the following two properties hold:
a) Sharing. For all u and v from GF (q), |si (u, v)| > ∅

and si (u, v) = si (v, u);
b) Exclusion. For all u and v and any other x from

GF (q), si (u, v) * si (x).
3) Repeat step 1 and 2 for all nodes.

END

Definition 1: The key assignment problem of size N . Given
N nodes numbered 0, 1, . . . , N−1, for any pair of nodes {i, j}
and any other node k, assign sets of symmetric keys s (i),
s (j), and s (k) to nodes i, j, and k, respectively, satisfying
the following properties:

1) For all i, j, k, there exists some constant t such that

t ≥ {|s (i)| , |s (j)| , |s (k)|} > 0 .

The key assignment is said to have a local cost of t keys
per node.

2) Let s (i, j) = s (i) ∩ s (j); then
a) |s (i, j)| > 0 (sharing)[1].
b) s (i, j) * s (k) (exclusion)[1].

In contrast to the grid-oriented key assignment method used in
[1] and [6] or the value-oriented method used in [3], we adopt
a coordinate-based key assignment scheme (similar to [9]).
Instead of directly using the node IDs, however, we represent
each node ID as a vector of k coordinates and derive its key-
assign ID using the following definition.

Definition 2: The key-assign ID (a q-ary vector),

[α](n,k) ≡ [α1, α2 , . . . , αn−1] ,

of a node A is the value of its node ID (also a q-ary vector),

[a]k ≡ [a0, a1, . . . , ak−1] ,

encoded by an (n, k)q MDS code with n ≥ 2k − 1.
Note that there is a one-to-one mapping between the node
ID and the key-assign ID. Also note that, by definition, n ≥
2k−1. As is shown later in section III-D, this simple constraint
guarantees both sharing and exclusion properties among the
assigned key sets.

Horizontally, Algorithm 1 divides a size-N key assignment
problem into n ≥ 2k−1 units of size-q subproblems (one per
key-assign ID symbol coordinate). Step 2a and 2b asserts the
sharing and exclusion properties among the symbol key sets in
each subproblem. In the cases where q is fairly small (e.g., 8
or less), we can assign q different keys to each symbol value.
That is, the simplest solution for the subproblem at the i-the
symbol can be constructed as follows:

1) For any pair of values u and v in GF (q) , let si (u, v)
be a single key.

2) Assign si (u) = {si (u, 0) , si (u, 1) , . . . , si (u, q − 1)}
to the symbol key set corresponding to a symbol value
u.

The simple assignment assigns q out of q2/2 keys to each
symbol coordinate of a key-assign ID, resulting in a total of
(2k − 1) q keys per node, out of (2k − 1) q2/2 keys for all
nodes. It has a local key assignment cost of O

(
2q logq N

)
and a global cost of O

(
q2 logq N

)
; this is better than the best

previous result O(log2
2N) [1], although still higher than the

optimal O (logN), especially when N is large and q (a non-
arbitrary design constant) is in the order of O (logN).

C. Recursive and Mixed Key Assignments

Fortunately, we can take advantage of the recursive nature
of Algorithm 1 to further reduce the key assignment cost of
every size-q subproblems.

More specifically, we treat each of the n symbols in the
key-assign ID as a sub-node ID, which can be represented
by a vector of k1 elements over GF (q1) with qk11 ≥ q. We
then apply Algorithm 1 to every sub-node ID, choosing a
proper (n1, k1) MDS code with n1 ≥ 2k1 − 1 to derive a
solution for the corresponding size-q subproblem. These sub-
problem solutions will have local and global key assignment
costs O

(
2q1 logq1 q

)
and O

(
q21 logq1 q

)
, respectively. With

n ≈ 2 logq N , we get local and global costs for the full
problem O

(
4q1 logq1 N

)
and O

(
2q21 logq1 N

)
, respectively.

If q1 is still large, we can repeat the above pro-
cess recursively. With j-level recursion we get local cost
O
(
2j+1qj logqj

N
)

and global cost O
(
2jq2j logqj

N
)

. Al-
though every additional level of recursion adds a multiplicative
constant 2 to the costs of the full problem, the sequence of
N, q, q1, . . . , however, can decrease super-exponentially
(qj+1 ≈ logqj

qj).
We notice that Algorithm 1 poses no other requirement

on the symbol key sets for the subproblems as long as they
constitute one solution to the key assignment problem of
size q. The subproblems can use the simplest O (q) solution,
another recursion of the algorithm, or a totally different key
assignment solution (e.g., from [1] or [3]). Thus by design,
Algorithm 1 can be used to assemble a few (at least 2k − 1)
existing key assignment solutions of size q to construct a key
assignment solution of size qk. Inversely, it can be used to
dissect a large key assignment problem into multiple smaller
ones, each to be solved by a different authority, for example,
for security reasons.

The ability to mix different key assignment solutions in the
lower level is more powerful than just recursion. For example,
a major problem of the Symmetric Key Generation System in
[3] is the use of high-degree MDS codes when the problem
size (N ) is large. However, such a system would work well
for the lower (recursed) level in our scheme, where the size
of the subproblem is a much smaller q. If we make n ≥ q, we
can even reuse the (n, k)q MDS code of the full problem for
all the subproblems being solved by SKGS.
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Algorithm 2 The Key Discovery Algorithm
BEGIN

1) Nodes A and B exchange their key-assign IDs ([α](n,k)
and [β](n,k), respectively) with each other.

2) Nodes A and B initialize their respective shared key sets,
SA and SB , to the empty set.

3) For each (key-assign ID) symbol coordinate i =
0, 1, . . . , n − 1, A adds the set of symbol keys
si(αi, βi) to SA and B adds the set of symbol keys
si(βi, αi) to SB .

4) Repeat step 3 for every key-assign ID coordinate.
END

D. The Key Discovery Algorithm

The key discovery algorithm is used to find the common
keys assigned to any two of the N nodes (A and B) for secure
pairwise communication.

We note that the first step in this algorithm do not require
additional authentication; the ability to construct the shared
key set S in the end will implicitly authenticate the exchanged
key-assign ID. Also, Algorithm 2 works as-is when Algorithm
1 is applied recursively; the only difference is in the construc-
tion of si(αi, βi) and si(βi, αi), where under recursion these
two (identical) sets must also be derived recursively by both
A and B.

For Algorithm 2 to establish a secure channel, we need
2 logq N symbol value comparisons to find the shared key set.
The message exchange is just the two key-assign ID vectors of
length n, making the communication cost also in O

(
logq N

)
.

E. Secure Pairwise Communication

Lemma 1: Assume nodes A, B, and X have key-assign ID
vectors [α](n,k), [β](n,k), and [χ](n,k), respectively, and are
assigned symmetric keys according to Algorithm 1. If the set
of shared keys S constructed by A and B following Algorithm
2 is wholly assigned to X, then dαχ + dβχ = dαβ .

Proof: Let S consists of n subsets of keys,
s0, s1, . . . , sn−1, one for each coordinate of the key-
assign ID. For any i-th coordinate, step 3 of Algorithm 2
ensures that si ≡ si(αi, βi) = si(βi, αi). According to step
2b of Algorithm 1, for X to receive all the keys in si, χi must
be equal to either αi or βi. Applying this argument to every
coordinate i = 0, 1, . . . , n− 1, we have dαχ + dβχ = dαβ .
Note that the proof does not depend on how the key set si
for the i-th symbol coordinate is derived, as long as the q
sets of si, i = 0, 1, . . . , n − 1, form a solution to the key
assignment problem of size q. Therefore Lemma 1 holds even
when Algorithm 1 is applied recursively.

Theorem 2: The key assignment in Algorithm 1 and key
discovery in Algorithm 2 allow a secure channel to be estab-
lished by a unique set of shared keys between any pair of the
N nodes.

Proof: The Hamming distance between any two code-
words of an (n, k) MDS code is at most n (total number of
symbols) and at least n − k + 1, i.e., n ≥ dαβ ≥ n − k + 1.
Assume a third node X is necessarily assigned all the keys

shared by A and B. According to Lemma 1, this implies
n ≥ dαβ = dαχ + dβχ. On the other hand, dαχ + dβχ ≥
2 (n− k + 1) = n + 1 + n − (2k − 1) > n (by design,
n ≥ 2k − 1). By contradiction such a node X does not exist.

As a side note, from proves above we can see that the MDS
codes are not the only type of codes that can be used in our
scheme. In general, as long as an (n, k) code has maximum
distance dmax and minimum distance dmin such that dmax <
2dmin, it can be used by Algorithm 1 to transform the node
ID to the key-assign ID. The (n, k) MDS codes with n ≥
2k−1 is only a special case where dmax = n (implicitly) and
dmin = n− k + 1.

IV. COLLUSION ANALYSIS

While no single third node in our scheme possesses all the
keys used in any pair-wise communication, two or more nodes
can collude to pool their assigned keys together, allowing all
colluding nodes to break a secure channel between some other
pairs of nodes in the system. The process of r nodes pooling
their keys together for such purpose is called r-collusion.

A. Collusion Prevention

Assume two nodes A and B share the key set si (αi, βi) on
the i-th coordinate of the key-assign ID. It’s obvious that this
key set is compromised (covered) by a third node X if and
only if χi equals either αi or βi. Extending this argument to
r ≥ 2 colluding nodes results in the following lemma.

Lemma 2: In general, the secure channel established by the
shared keys between two nodes A and B is compromised by r
colluding nodes, X(j), j = 0, 1, . . . , r−1, if and only if some
χ

(j)
i equals either αi or βi (or both if αi = βi) for every

key-assign ID coordinate i = 0, 1, . . . , n− 1.
Proof: Similar to what is described in the paragraph

above.
Theorem 3: The communication channel established by the

shared keys between any two nodes is resilient against r-
collusion (i.e., r-collusion is prevented) if the key assignment
is performed with an (n, k)q MDS code where n > 2r (k − 1).

Proof: The minimum distance of an MDS code, dmin =
n−k+1, implies that the maximum number of equal symbols
between any two codewords is emax = n−dmin = k−1. Thus
outside of a pair of nodes A and B, any third node can have at
most emax symbols equal to those of A and another emax to
those of B, and r colluding nodes can pool together at most
2remax = 2r (k − 1) symbol key sets used between A and B.
As long as (the number of symbol key sets shared by A and
B) n > 2r (k − 1), the channel between A and B is secure
against r-collusion.
Increasing the length of the MDS code to prevent collusion
is rather expensive. For each increase in r, one must pay
2 (k − 1) ≈ 2O

(
logq N

)
extra key assignment cost. For

large r this may not even be possible, since the existence
of the MDS code is mostly bounded by n ≤ q + k − 3,
although the exact bound is still an open question [2]. Let
k ≈ q/ log2N and use n ≈ q, the key assignment cost
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becomes qn ≈ k2 log2
2N and can prevent collusion of up to

(log2N)/2 nodes.
As an example, for N = 232, the key assignment using

an RS code of (n, k)q = (120, 5)125 can prevent collusion
of up to 120/8 = 15 nodes with ~1800 keys per node. The
key assignment cost in this example is comparable to the best
result in [1]; our scheme, however, has the benefit of absolute
security against up to 15 colluding nodes.

B. Collusion Resilience

Definition 3: The r-collusion resilience, or r-resilience, of
a key pre-distribution scheme is the probability of a com-
munication channel being secure when established outside of
a random set of r colluding nodes. This probability can be
calculated as the ratio of secure over total number of pairwise
communication channels under the r-collusion.
To calculate the collusion resilience of our key assignment
scheme, we first introduce the concept of pair-group of r-
resilience, whose size equals the number of resilient channels
under r-collusion. Then we estimate the pair-group size using
the number of collusion-free symbol values under the r-
collusion.

1) Pair-group of r-resilience: For any pair of nodes A and
B to establish a secure channel against the 2-collusion between
nodes X and Y, there must be at least one key-assign ID
coordinate at which both A and B have values different from
those that both X and Y have. We say all such {A,B} forms
a pair-group of 2-resilience against X and Y. The following
definition extends this pair-group notion to r-resilience.

Definition 4: The pair-group of r-resilience against a ran-
dom set of r colluding nodes X(j), j = 1, 2, . . . , r, consists
of all pairs of nodes {A,B} such that, at some i-th symbol of
the key-assign ID, αi 6= χ

(j)
i and βi 6= χ

(j)
i for all j.

In other words, the pair-group of r-resilience consists of all
pairs of nodes which can still establish secure channels amid
the r-collusion. Note the pair-group definition does not require
any MDS property nor a solution to the key assignment
problem. To estimate the size of the pair-group we need to
following definition and lemma.

Definition 5: Assume a key assignment is under r-
collusion. A collusion-free symbol value at an arbitrary co-
ordinate of the key-assign ID is a symbol value not held by
any of the r colluding nodes at that coordinate.

Lemma 3: Assume a key assignment under r-collusion is
performed with an (n, k)q MDS code. Let G (n, k) be the size
of the pair-group of r-resilience. Then the following recursive
equation holds:

G (n, k) = u2 × q2(k−1) +
(

1− u2

q2

)
×G (n− 1, k) , (1)

where u is the number of collusion-free symbol values at the
(arbitrary) coordinate where the recursion takes place.

Proof: Without loss of generality, assume the recursion
takes place at the first coordinate (i.e., index 0) of the key-
assign ID. Every pair of nodes resilient to the r-collusion falls
in either one of the two following cases:

Case 1: The channel is protected by the first symbol coor-
dinate. Both communicating nodes hold collusion-free symbol
values at the first symbol coordinate. There are u2 (out of q2)
such value pairs in total. According to property 1 of Theorem
1, each such value pair can make qk−1×qk−1 = q2(k−1) pairs
of codewords, giving the first term of (1).

Case 2. The channel is not protected by the first, but the rest
n−1 symbol coordinates. Ignoring the first symbol coordinate
of the key-assign ID, the rest n − 1 symbols constitute an
(n− 1, k)q MDS code (property 3 of Theorem 1), where every
u2 out of q2 codewords were already counted in Case 1. There
are thus 1 − u2/q2 times G (n− 1, k) additional codeword
pairs resilient to the r-collusion, giving the second term of
(1).
The recursion in (1) reduces the pair-group size of an (n, k)q
MDS code to that of an (n− 1, k)q MDS code, assuming we
know the value of u at the (arbitrary) first coordinate. After
n−k steps the recursion will leave only k symbols in a trivial
(k, k)q MDS code (all the q-ary vectors of length k), where
we calculate G (k) ≡ G (k, k) in the following lemma.

Lemma 4: Assume a key assignment performed with the set
of q-ary vectors of length k is under r-collusion. Let G (k) be
the size of the pair-group of r-resilience and u the number of
collusion-free symbol values at an arbitrary coordinate. Then,

G (k) = u2 × q2(k−1) +
(

1− u2

q2

)
×G (k − 1) . (2)

Obviously, G (0) = 0.
Proof: We have the same two cases and the same number

of collusion-resilient pairwise communicating channels as in
Lemma 3. Here, however, the “removal” of any coordinate also
reduces k by one. This reduction goes on until no symbol is
left to protect against r-collusion and G (0, 0) = 0.

2) Number of Collusion-free Symbol Values: The main
difficulty in expanding the recursions in (1) and (2) lies in
the unknown number of collusion-free symbol values against
the r-collusion, i.e., the value of u. Clearly, the actual value
of u depends on the particular key-assign ID patterns of the r
colluding nodes. However, since the symbol values of an MDS
code at any coordinate is randomly and uniformly distributed
if the codewords are chosen the same way (property 2 of
Theorem 1), we can estimate G (n, k) and G (k) by using
an expected value of u.

Assume the r colluding nodes collectively hold w unique
symbol values, 1 ≤ w ≤ r, at some key-assign ID coordinate
where the recursion takes place. The number of collusion-free
symbol values is thus u = q − w, q − r ≤ u ≤ q − 1. In
addition, 1 ≤ w ≤ n and thus 0 ≤ u ≤ n − 1. We define
ŵ ≡ ŵq,r as the expected number of unique values from r
random picks out of q values with replacement (i.e., let the
r colluding nodes each pick one value out of the q symbol
values at the symbol coordinate):

ŵq,r = q − q
(

1− 1
q

)r
, û = q − ŵ = q

(
1− 1

q

)r
(3)

Equation (3) above is derived from the following recursion:
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ŵq,r =
ŵq,r−1

q
ŵq,r−1 +

q − ŵq,r−1

q
(1 + ŵq,r−1)

= 1 +
(

1− 1
q

)
ŵq,r−1 =

i=r−1∑
i=0

(
1− 1

q

)i
.

Using the expected value of û in (3), we define the collusion
ratio at the symbol position to be the number of symbol value
pairs compromised by the r-collusion,

R ≡ 1− û2

q2
= 1−

(
1− 1

q

)2r

. (4)

The recursions in (1) and (2) can then be estimated as
follows:

G(n, k) ≈ û2q2(k−1)
[
1 +R+ . . .+Rn−k−1

]
+ Rn−kG(k) (5)

G(k) ≈ û2q2(k−1)

[
1 +

R

q2
+ . . .+

(
R

q2

)k−1
]
. (6)

Merging (5) and (6) and adding up the geometric sums with
dmin = n− k + 1, we get

G(n, k) ≈ q2k
(
1−Rdmin

)
+ û2R

[
q2(k−1) −Rk−1

q2 −R

]
≈ q2k

[
1−Rdmin +

R (1−R)
q2

]
. (7)

The last approximation in (7) comes from û2 = q2(1−R)
in (4) and the fact that R < 1� q2.

From above we get the following theorem.
Theorem 4: The r-resilience in Definition 4 of an MDS key

distribution scheme using an (n, k)q MDS code for the key
assignment is roughly

1−Rdmin +
R (1−R)

q2
, (8)

where dmin = n− k + 1 and R = 1− (1− 1/q)2r.
Proof: Dividing (7) by the total number of pairwise

channels,
(
qk
)2 = q2k.

To get higher r-resilience in our key distribution scheme we
could use an MDS code with either higher dmin or a lower R
(i.e., higher q). The dependencies of resilience on n (codeword
length) and k (information size) are carried by both dmin and
R implicitly (a higher value of q implies a higher maximum
value of n, as described in the end of section IV-A).

Fig. 1 plots r-resilience of several key assignments for 4096
nodes versus the number of colluding nodes. With larger q,
resilience drops much more slowly against increasing r; the
price however is the higher key assignment cost and the MDS
code complexity.

For q = 16 and 64, resilience to r-collusion with different
values of dmin are also examined. From the graph we see
that doubling dmin has the effect of right-shifting the curve
against r by roughly q/4; in other words, by assigning 50%
more keys to each node, the key distribution can withstand
collusion among q/4 more nodes with the same probability.

Figure 1. Graph of r-resilience of key assignments for 4096 nodes. The
label convention is (n,k)_q [# keys].

Table I
SMALL-SCALE KEY ASSIGNMENT EXAMPLES

Size N log2 N RS code # keys Cost
16 4 (3, 2)4 12 3.0× log2 N
25 4.6 (3, 2)5 15 3.2× log2 N
64 6 (5, 3)4 20 3.3× log2 N

343 8.4 (5, 3)7 35 4.2× log2 N
4096 12 (7, 4)8 56 4.7× log2 N
32k 15 (9, 5)8 72 4.8× log2 N

V. REED-SOLOMON CODES EXAMPLES

In this section we look at some examples of our scheme
implemented by the Reed-Solomon (RS) codes. RS codes are
a special family of MDS codes; with RS codes, q (order of
the Galois Field) must be in the form of ph where p is prime
and h is a natural number. It is conceivable to find a different
MDS code with less restriction, which is out of the scope of
this study.

A. Non-recursive Examples

Table I lists a few small-scale key assignment examples
using Algorithm 1. As can be seen from the table, the constant
c in the local cost of c log2N increases slowly with larger
q. Since qk = N and q increases exponentially slower than
log2N , the value of c is well below 10 in all cases.

B. Recursive Examples

To assign a set of symmetric keys to every IPv4 address so
that any pair of the 232 hosts can establish a secure channel
between them, we could apply Algorithm 1 first to the full
problem with a (15, 8)16 RS code, then to every size-16
subproblem with a (3, 2)4 RS code, assigning 12 keys (3× 4)
to the node on each subproblem. Without recursion, a host is
assigned 15×16 = 240 keys; with the two-level recursion, the
host is assigned 15×12 = 180 keys, or a local key assignment
cost of 5.6× log2N .

In a practically limiting case, assume the problem size is
2256 (about one node per atomic particle in the universe).
The node ID can be represented as 37 symbols in GF (125).
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Table II
TWO-LEVEL KEY ASSIGNMENTS USING RS CODES

Size N Level 1 Level 2 # keys Cost
220 (9, 5)16 (3, 2)4 108 5.4× log2 N
232 (15, 8)16 (3, 2)4 180 5.6× log2 N
2128 (43, 22)64 (5, 3)4 860 6.5× log2 N
2256 (73, 37)125 (5, 3)5 1825 7.1× log2 N

Figure 2. Comparisons of key assignment costs between non-recursive
(“cost0”) and recursive (“cost1”) applications of Algorithm 1.

We could apply Algorithm 1 first to the full problem with
a punctured (73, 37)125 RS code, then to each of the 73
subproblems with a (5, 3)5 RS code . The two-level recursion
assigns 73 × 5 × 5 = 1825 keys per node, or a local key
assignment cost of 7.1× log2N .

Table II lists a few more recursion examples of Algorithm
1. In all practical cases, the multiplicative constant c in the
local cost c log2N is always less than 8. In [1], the lower
bound key assignment cost was proved to be 9× log2N .

C. Recursion on Key Assignment Cost

Fig. 2 compares non-recursive (label “cost0”) and recursive
(label “cost1”) local key assignment costs of different problem
sizes. The log2

2N line is provided to compare our solutions to
the lowest costs in [1].

A major advantage of recursion is that it allows better collu-
sion resilience (larger q or higher dmin) with the same range of
key assignment costs. For example, for 15k nodes, a recursive
key assignment using a (24, 3)25 RS code assigns 360 (a bit
less than 2 × log2

2N ) keys per node, can completely prevent
all 6-collusions, and have > 99% resilience to any random
20-collusion. Without recursion, the same key assignment cost
will be 600 keys per node, 67% more than if recursion is used.
Alternatively, we could use a very sparse key assignment (e.g.,
only one out of 1000 codewords is an actual key-assign ID)
to increase overall security with minor (e.g., less than a factor
of 10) cost overhead.

VI. CONCLUSION

We propose a symmetric key pre-distribution scheme based
on the Maximum-Distance Separable (MDS) codes. The

scheme is deterministic, optimal, and can be recursive and
used in conjunction with other key distribution schemes. Two
trade-offs are investigated against the key assignment costs:
one for collusion prevention and one for collusion resilience.

We use Reed-Solomon codes of different lengths as
exmaples to calculate actual key assignment costs. In all prac-
tical cases, our scheme meets the lower bound O (c log2N)
with a multiplicative constant c less than 8. The resilience of
our scheme against r-collusion is roughly 1 − Rdmin , where
R = 1− (1− 1/q)2r and dmin = n− k + 1.
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