

Dynamic Internet Overlay Deployment and Management Using the X-Bone

Joe Touch
USC / Information Sciences Institute

touch@isi.edu

Abstract1

The X-Bone dynamically deploys and manages Internet
overlays to reduce their configuration effort and increase
network component sharing. The X-Bone discovers,
configures, and monitors network resources to create
overlays over existing IP networks. Overlays are useful
for deploying overlapping virtual networks on shared
infrastructure and for simplifying topology. The X-Bone
extends current overlay management by adding dynamic
resource discovery, deployment, and monitoring, and
allows simultaneous participation in multiple overlays. Its
two-layer IP in IP tunneled overlays support existing
applications and unmodified routing, multicast, and DNS
services in unmodified operating systems. This two-layer
scheme uniquely supports recursive overlays, useful for
fault tolerance and dynamic relocation. The X-Bone uses
multicast to simplify resource discovery, and provides
secure deployment as well as secure overlays. This paper
presents the X-Bone architecture, and discusses its
components and features, and their performance impact.

1. Introduction

The X-Bone [31] is a system for the dynamic
deployment and management of Internet overlay
networks. Overlay networks are used to deploy
infrastructure on top of existing networks, to isolate tests
of new protocols, partition capacity, or present an
environment with a simplified topology. Current overlay
systems include commercial virtual private networks
(VPNs) [27], IP tunneled networks (M-Bone [10], 6-
Bone), and emerging research systems providing quality-
of-service guarantees. These systems require OS and/or

1 This work is partly supported by the Defense Advanced Research

Projects Agency (DARPA) and Air Force Research Laboratory, Air
Force Materiel Command, USAF, under agreement number F30602-98-
1-0200. The U.S. Government is authorized to reproduce and distribute
reprints for Governmental purposes notwithstanding any copyright
annotation thereon. The views and conclusions contained herein are
those of the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either expressed or
implied, of the Defense Advanced Research Projects Agency (DARPA),
the Air Force Research Laboratory, or the U.S. Government.

application modifications, restrict the number of overlays
a router or host can participate in, or require manual
component configuration. The X-Bone provides
automated deployment of overlays, coordinates their
sharing of network components, and monitors deployed
overlays. The X-Bone requires no OS or application
modifications and only basic IP in IP encapsulation, and
uses existing implementations of dynamic routing, name
service, and other infrastructure. Finally, the X-Bone is a
uniform extension of the network to support overlays, and
supports stacking (recursion) of overlays for fault
tolerance and capacity sub-provisioning for experiments.

The X-Bone uses a two-layer tunnel mechanism, rather
than the single layer in conventional overlays. It is this
two-layer scheme which supports stacked overlays, as
well as permitting use of unmodified applications and
network services (routing, DNS, IPSEC) inside a
deployed overlay. The X-Bone is the only known overlay
system that integrates both IPSEC support and dynamic
routing. This particular aspect of the X-Bone is covered in
detail in Sections 2.1 and 3.

The X-Bone system provides a high-level interface
where users or applications request DWIM (do what I
mean) deployment, e.g.: create an overlay of 3 hosts
connected to each of 6 routers in a ring. The X-Bone
automatically discovers available components, configures,
and monitors them.

This paper presents an overview of the X-Bone
architecture, and discusses the particular techniques
required to provide an IP layer overlay using existing
protocols to support existing implementations of
operating systems, applications, or network services. The
paper builds on our earlier discussion of the coarse
architecture and goals [31], by presenting the details of
the X-Bone’s two-layer encapsulation, which resolves
support for dynamic routing, the use of a node multiple
times in a single overlay, and the use of IPSEC to secure
the tunnels of an overlay. This paper adds performance
analysis, an extended and updated discussion of related
work, and presents our vision of the utility of the X-Bone
to support networking research, networking education,
dynamic service deployment, and fault tolerance.

1.1. What is an overlay?

An overlay network is an isolated virtual network
deployed over an existing network. It is composed of
hosts, routers, and tunnels. Tunnels are paths in the base
network, and links in the overlay network. Hosts are
packet sources or sinks, and routers are packet transits, as
in conventional networks. Individual components (routers
or hosts) can participate in more than one overlay at a
time or in multiple ways (router, host) in a single overlay.
Figure 1 shows an IP network (left); on that network, the
X-Bone can deploy a ring (center) or star (right), by using
various subsets of the nodes of the base network,
connected by a set of tunnels. These tunnels determine the
overlay topology, and may traverse multiple links in the
base network, or a single link multiple times.

Ring-ovl Star-ovlIP Base Network
Figure 1. A ring (center) and a star (right) overlay

deployed on a base network (left)

Overlays have three primary uses: containment,
provisioning, and abstraction. Containment is the ability
of an overlay to restrict the visibility of its contents.
Tunneling encapsulates the packets of new protocol so it
can be tested in a controlled environment. Containment
was one of the first uses of overlays in the early 1980's
[20], and motivated their re-emergence in the early 1990's
for the M-Bone and later 6-Bone [10]. Tunnels allow
incremental deployment, where (primarily) routers
lacking new protocol capabilities can be skipped over (or
through), avoiding the need for contiguous availability.

Provisioning uses reservation of components and
capacity along tunnels to provide service guarantees to the
overlay. Provisioned overlays can be used during
emergencies to create virtual infrastructure when it is not
feasible to deploy new physical resources. They can also
be used to limit the scope and impact of network
experiments, e.g., to nominal use of surplus capacity.

Abstraction is a new use of overlay networks. Both
provisioning and containment imply the interim the use of
overlays that are supplanted by advanced hierarchical
reservation in the former case, or more sophisticated
dynamic services deployment in the latter [28]. In these
cases, overlays are a way to provide such capabilities
without requiring contiguous deployment; once a new
protocol or service is ubiquitous, tunnels (and thus
overlays) can be avoided. However, abstraction remains a
useful tool for education (networking classes), deploying

testbeds, and simplifying applications. For example, a
single lab can support a large number of concurrent
experiments, each using a different topology. A testbed
can be configured using a graphical user interface, in do
what I mean style. Applications can request a deployed
topology (e.g., ring) without needing to incorporate
network management. In each case, manual intervention
by a network manager is avoided, and applications and
tools can be simplified.

1.2. Deploying an overlay

Conventional overlay deployment is a multi-stage
process, involving manual intervention at every step.
Components in the network (routers, hosts) are selected
according to some criteria, e.g., operating system,
protocol capability, or permissions. The desired topology
(e.g., ring) must be mapped to the available components
and parameters such as addresses, network masks, and
routes determined. For each component, secure remote
access is required, typically via SSH/telnet, and then each
component is manually configured. This includes setting
tunnel endpoints, configuring interfaces, setting link
encryption or authentication keys, and configuring routes.
Each of these steps is manual, often requiring out-of-band
communication (telephone, e-mail) to locate available
resources or initiate access. Each of these steps also
requires external mechanisms for coordination, such as a
reservation web page or e-mail system.

Once an overlay is deployed, there is no assurance it
remains available. Both in-band (over the overlay) and
out-of-band (in the base network, or via telephone or e-
mail) methods may be required to confirm the state of the
overlay. Current overlays lack mechanisms for
monitoring, for repairing an erroneous component, or for
signaling for attention. Modern dynamic routing protocols
are typically not available within an overlay, so they are
susceptible to single-tunnel failures. When an overlay is
no longer of use, it must be dismantled. This is requires a
tedious recapitulation of installation steps in reverse.

The key problems with the current method of overlay
deployment are manual intervention, the excessive need
for out-of-band communication, the lack of monitoring,
and the necessity of separate dismantling procedures. The
X-Bone is designed to reduce deployment effort,
involving manual interaction only at the initial request
phase, e.g., in a graphical user interface, or programmatic
API. Resource discovery is automatic, such that any
sufficient available resources can be used to satisfy a
request. Resource sharing is managed so many overlays
can simultaneously share the use of a single component.
An X-Bone overlay can use features of the existing
Internet, including dynamic addressing (DHCP), dynamic
routing, and diagnostic tools (traceroute, ping, etc.)
without modification. The X-Bone also supports existing

operating systems and applications, without modification,
provided they support basic IP in IP encapsulation.

The X-Bone extends the current Internet network
architecture to include support for overlay networks. It
provides stackable overlay networks, where control can
be via a web-based GUI (Figure 2) or a program-
controlled API. An X-Bone overlay is an integrated end-
to-end solution, including host configuration, router
configuration, and support for DNS.

Figure 2. X-Bone graphical user interface

This paper presents the X-Bone and discusses its
components and features, their performance impact, and
the effect of overlays on the Internet architecture. The
architecture section presents the X-Bone’s components
and features, including its use of two-layer tunnels to
avoid OS and application customization and to support
recursion. The evaluation section discusses the system's
new capabilities, security, and performance. Related
efforts and future work are discussed, including
extensions for fault tolerance and the merging and
splitting of deployed overlays.

2. Architecture

The X-Bone is a distributed system composed of
Resource Daemons (RDs) and Overlay Managers (OMs) ,
with a graphical user interface (GUI) and a more direct
API. These components are shown in Figure 3.

OMs deploy overlays. A user creates an overlay by
sending a request to an OM, either via a web-based GUI
(Figure 2) or by sending a message to the OM API. Each
overlay is coordinated by a single OM; large overlays are
created by divide-and-conquer, where a single OM forks
sub-overlay requests to other OMs. Fault tolerance can be
achieved by replicating state in multiple backup OMs.

link

web
GUI

RD

host

RD

OM
API

router
Figure 3. X-Bone architectural components

An OM creates an overlay in phases, using multicast to
discover available resources and TCP/SSL [16] to
configure and monitor resources. The overlay request is
translated to an invitation, and the invitation is multicast
using UDP. An invitation indicates a set of simple
conditions, e.g., a specific operating system, bandwidth
requirements, etc. Invitations currently fit in a single UDP
packet; where they do not, IP’s automatic fragmentation
and reassembly is utilized. Invitations are repeated with
increasing TTLs until a sufficient number of invitees
respond, or until a preset search limit is exceeded: i.e., an
expanding ring search (Figure 4) [21].

OCD

CCDs

Multicast
Invitation

low TTL
finds 1

larger TTL
finds 4

largest TTL
finds 6

Figure 4. Resource discovery using increasing-TTL
multicast invitations

RDs are daemons that configure and monitor the
resources of routers and hosts. RDs listen for multicast
invitations, and respond when their available resources
and permissions match. Responses are in the form of
TCP/SSL (X.509 encrypted) connections back to the
source OM, where each RD indicates its particular
capabilities (Figure 5). The OM selects an appropriate
from among the responding RDs. The OM determines
configuration information, such as tunnel endpoint
addresses and routing table entries, and sends specific
configuration information to each RD. Once an overlay is
deployed, the TCP/SSL connections are released and the
overlay is up. Subsequent overlay actions initiated by the

OM include keep-alive pings, liveness and status requests,
and modifying or dismantling configurations.

TCP/SSL [16] is used for secure configuration to take
advantage of TCP's reliable channel, and reduce the
number of different security schemes required. The X-
Bone uses a web-based GUI; web browsers already
support SSL, so the user's request is secure on the path to
the OM. For simplicity, the same mechanism is used
between the OMs and RDs. Other schemes, such as PGP,
would require multiple solutions.

6 connect
via TCP/SSL

Pick 5
for overlay

Configure

Figure 5. Responding to invites, selecting, and

configuring the overlay

This architecture utilizes a single, well-known
multicast channel for invitation announcements, and
separate reliable channels for configuration and
monitoring. It is based on the multicast announcements in
M-Bone teleconferencing; in fact, the X-Bone deploys an
overlay as if it were a teleconference between its OM and
the RDs of its router and host components.

2.1. Functions

There are several key functions performed by the X-
Bone. Primary among these is resource discovery, in
which an expanding-ring search over a well-known
multicast address [21] replaces rendezvous or registry
systems. The X-Bone’s invitation-based system promotes
privacy and security, because participating components
(hosts and routers) need not publicly post their availability
or configuration. The invitation itself is public or
encrypted to be private to a pre-arranged subset of
components. Components each decide for themselves
whether to respond, based on a match between their
capabilities, availability of resources, and permissions.

The X-Bone uses two-level tunnels (Figure 6). Each
overlay IP packet is wrapped in two additional IP headers.
The innermost (overlay) header indicates the endpoints in
the overlay. The next layer acts as a link layer in the
overlay, and indicates the endpoints of the tunnel over
which the packet is currently traversing. Overlay link
addresses are a separate set of IP addresses, also internal
to the overlay. The final header indicates the tunnel
endpoints in the base network. The base network can
itself be an overlay, providing stacking (recursion).

DATA Ovl-Src, Ovl-Dst OLink-Src, OLink-Dst Base-Src, Base-Dst
Figure 6. Double tunneling results in three headers

The additional tunnels are required to allow multiple
tunnels between two components, even within the same
overlay. Such doubly connected components are useful to
emulate systems with larger numbers of components, i.e.,
50-node rings simulated by using 10 router nodes. The
additional layer also permits the use of multicast and
dynamic routing algorithms inside the overlay, because
such systems effectively operate on the link IP layer.
Without that layer, it would be impossible to decouple
intra-overlay routing from base-layer routing.

The two layers of the encapsulation change at every
overlay hop, as shown in Figure 7. Note the hosts,
indicated by their single overlay interface and overlay link
addresses, and the router, indicated by its pair of overlay
interface and overlay link addresses. Each component is
shown as using a single, canonical base address for base-
layer routing; this can be relaxed for multihomed systems.
The X-Bone requires that routers are multihomed inside
the overlay, according to the standard Internet practice.

Ovl-D

OLink-T

Base-Z

Ovl-A

OLink-Q

Base-X

Ovl-C

OLink-S

Ovl-B

OLink-R

Base-Y

DATA A to D Q to R X to Y DATA A to D S to T Y to Z

HOSTHOST ROUTER

Figure 7. A single packet traverses the overlay –

modifying both outer IP headers at each hop

The X-Bone is currently implemented using separate
IP address spaces both for the overlay endpoint addresses
and the overlay link addresses. The use of separate
address spaces effectively encodes the overlay identifier
inside the IP addresses, allowing conventional dynamic
routing and forwarding at the routers, and conventional IP
demultiplexing at the destination host. This can be relaxed
to allow address reuse, provided the decapsulation steps
in routers (for forwarding) and end hosts (for
demultiplexing) keep sufficient context of the discarded
layers of IP headers. Current implementations discard this
state, requiring global addresses. Overlay addresses can
be reused among overlays that do not overlap, as can be
determined during the negotiation process. These issues
are covered further in Section 3’s discussion of IPSEC.

The OM emits heartbeat pings to refresh the state of
the RD components. When a RD no longer hears from an
OM, all overlays of that OM are released from the RD
state. Both RD and OM state are kept on disk, and
reloaded after reboots or restarts.

3. Features

The X-Bone exhibits unique overlay capabilities,
largely due to a combination of its focus on IP, and the
use of two IP in IP encapsulation tunnels for each overlay

link. The X-Bone can be deployed on unmodified
operating systems, requiring only support for IP
encapsulation. For FreeBSD, this requires the KAME
IPSEC [18] or CAIRN IPSEC patches [4]. Alternately,
DIVERT sockets in standard FreeBSD can be used in
conjunction with the X-Bone project’s user-level IP in IP
encapsulation daemon, ip-tun [9]. Linux supports similar
tunnels, and support for these variants is included in the
current software release (http://www.isi.edu/xbone).

The X-Bone allows applications to be used unmodified
inside overlays, by virtue of its use of two-layer IP
encapsulation. On a host, an overlay is selected either
directly by IP address, or indirectly by overriding the
DNS resolver parameters of a process environment. A
deployed overlay includes dynamically configured DNS
entries for variants of the names of the participating
components. For example, if blue.abc.com belongs to an
overlay called apple, then a DNS near the OM (part of the
X-Bone deployment) is updated with the name
blue.apple.diode.net as part of the overlay configuration.
Both FreeBSD and Linux support the use of per-process
overrides to the resolver default suffix; setting this
parameter allows the name blue to resolve to either
blue.abc.com or blue.apple.diode.net, depending on the
process setting. Different processes on the same host can
easily refer to different overlays, even using the same
endpoint names. An example of how the overlays and
base network from Figure 1would appear is shown in
Figure 8. Base component names (here only hosts are
shown named) remain the same; the DNS suffix in each
window differs. A standard network mapping utility can
thus show different network views in different windows.

The X-Bone's dual-layer tunnels allow existing
dynamic routing and network diagnostic tools to be used
inside an overlay, transparent to the base network. This
has been used to deploy dynamic routing across non-
cooperating administrative domains, where only the hosts
involved need participate in the routing algorithms. This
has been demonstrated in the X-Bone system, and
dynamic routing using RIP (via gated) and multicast
(mrouted) are supported inside deployed overlays.

star-ovl

A
B

DC

ring-ovl

A
B

DC

IPv4

A
B

DC

Figure 8. User views of a network mapping utility;

different views in different windows

The use of multicast for invitations provides privacy
and avoids the need for preconfiguration of the OMs or
RDs. A single channel can be used for all invitations,
because invitations are not expected to produce
significant traffic. Resources in the current
implementation are centered on the OM; alternately, loose
source route [22] or an explicit proxy to a remote OM can
center the invitation wherever useful. Invitations can be
general (5 routers and 15 hosts), system or capability
specific (FreeBSD/KAME, IPSEC/3DES), permission-
based (userid=jones), or specific down to the site
(loc=blue.abc.com). Topologies can be selected from a
generic set (ring, line, and star are currently
implemented), or provided by a netlist to the API.

The X-Bone also supports IPSEC in the overlay [19].
Again, the use of two layers of IP encapsulation simplifies
the architecture. The overlay IPSEC parameters are
attached to the overlay link IP header, according to the
IPSEC protocol. This allows separate IPSEC associations
to exist between base network hosts (or in the underlying
overlay, if the base is itself an overlay), as well as
allowing IPSEC end-to-end by applications in the overlay.
It also allows applications to benefit from a secure
overlay network without requiring specific application
support for IPSEC, assuming the components (hosts,
routers) in the overlay are reasonably secure.

IPSEC in an X-Bone overlay is configured out-of-
band, via the OM using TCP/SSL. Keys are exchanged
over these secured channels, rather than via IPSEC key
exchange protocols. The X-Bone uses explicit key
distribution for simplicity; IPSEC key exchange
mechanisms are not widely available, and are currently in
a high state of flux. The X-Bone uses transport mode
IPSEC on an IP in IP encapsulated overlay link packet,
then wraps the result with the outermost base layer IP in
IP encapsulation. This is simpler to manage, because
tunneling is independent of whether IPSEC is enabled on
a particular overlay hop.

Dynamic routing in an overlay network can interfere
with the use of IPSEC to secure overlay links [30]. IPSEC
authenticates or encrypts links in an X-Bone overlay.
IPSEC can interfere with forwarding decisions in overlay
routers, however. Consider a packet P entering router A,
destined ultimately for host Z (Figure 9). There are two
possible paths to Z, one through B, the other through C.
The B path begins with an overlay link keyed with K1;
the C path, with K2. Per-link keys are required for
robustness, to avoid needlessly compromising keys. In an
implementation where IPSEC processing precedes
forwarding decisions, Router A must decide which key to
use (K1 or K2) before it has decided which path to take
(via B or via C). Some of the forwarding decisions (i.e.,
routing table) must then be represented in the IPSEC rule
base, so that packets destined for Z are tagged to use K1.
The IPSEC rules must reflect the current routing table,

imposing configuration and synchronization effort on the
routing protocol implementation. Current routing
protocols do not support synchronous IPSEC rule updates.

A

B

C

Z

K1

K2
Figure 9. Dynamic routing interferes with per-hop

IPSEC

IPSEC relies on policy databases to determine key
usage and requires that keying precedes forwarding [19].
This is not consistent with the use of per-hop keys and
dynamic routing protocols. An alternative to binding keys
to rules is to bind keys to virtual interfaces, as in the NIST
Linux implementation. Keys are bound to links by
conventional routing rules, rather than policy-based rules
in a separate key database. This allows the key decision to
come after forwarding. A forwards via B by using virtual
interface V1; everything from V1 is encrypted with K1,
then sent to B Figure 10.

A

B

C

Z

K1

K2V2

V1

Figure 10. Binding keys to virtual interfaces allows

per-hop IPSEC

The X-Bone takes advantage of this scheme, even in
systems that bind keys to IPSEC rule bases. In the X-
Bone, tunneling is decoupled from keying, and tunneling
is always performed first [30]. E.g., V1 performs the link-
layer encapsulation, and K1 would add the link key. This
allows the IPSEC rules to remain static, as in “encrypt
everything wrapped in this overlay link header.” Dynamic
routing algorithms update the routing table, and determine
which virtual interface, and, by consequence, which key.
The X-Bone is the only known overlay system that
integrates both IPSEC support and dynamic routing.

This example highlights the issue of lost context.
When an encapsulated packet is received, it is unwrapped,
and forwarded by the router or demultiplexed to endpoint
connections in the host. Forwarding and demultiplexing
decisions do not depend on the state of the additional
encapsulation headers; this state is discarded as it is
removed, so is not available anyway. This means that the
interior packet addresses must be globally unique, unless
host kernel and router firmware modifications are made to
support retaining this state. Uniqueness is per-component.
Addresses can be reused on overlays that do not share
components, i.e., that participate in both overlays. Routers

that provide tunneling only (i.e., intermediate on the
tunnel path) do not count as part of an overlay.

4. Performance

The performance of the X-Bone has been measured in
a lab testbed using 300 MHz Pentium II PCs running
FreeBSD 3.2 with KAME IPSEC extensions, FreeBSD
2.2.5 with CAIRN IPSEC extensions, and Linux RedHat
6.0 with NIST IPSEC extensions. These PCs were
connected using a private, switched 100 Mbps Ethernet.
The primary focus of overlay deployment is connectivity,
but it is useful to consider the performance of this
implementation using untuned tunneling and IPSEC code.

The primary performance impacts are an increase in
per-hop latency and a decrease in end-to-end bandwidth.
Because modest (300 MHz) hosts and a modest network
(100 Mbps) were used, processing overheads were not
measured at this time, though we will have sample
numbers by publication. The X-Bone’s two-layer
tunneling adds 30% to per-hop latency and decreases
bandwidth similarly, compared to the base network.
Compared to M-Bone-style single-layer tunnels, the X-
Bone’s additional tunnel layer adds 6% to the per-hop
latency, and 20% to the end-to-end bandwidth decrease.
Limited processing capability of our current hosts is the
likely reason for the substantial bandwidth impact.

Figure 11 shows the per-hop latency increases,
measured using ICMP ping messages. The first three bars
(from the left) indicate the per-hop latency in the base
network with a single-layer tunnel, and with the X-Bone’s
two-layer tunnel. Subsequent pairs compare the base
network and two-layer solutions for IPSEC authentication
(AH), encryption (ESP), and combined (AH/ESP)
processing. Where IPSEC is used, it is performed on only
one tunnel layer.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

La
te

nc
y

(m
s)

Latency 0.2032 0.2485 0.2649 0.3791 0.469 0.4234 0.5244 0.6269 0.7423

Clean 1L 2L AH 2L/AH ESP 2L/ESP AH/ES
P

2L/AH/
ESP

Figure 11. Per-hop increases in latency using single

and two-level tunnels

Figure 12 compares end-to-end throughput of TCP and
UDP streams, in similar three- and two-way comparison.
Note that the effects of multiple tunnels are masked where
encryption is used, because encryption processing dwarfs
the overhead of additional encapsulation and
decapsulation processing.

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

1 0 0

B
an

dw
id

th
 (M

bp
s)

U D P 8 8 .0 5 8 6 .3 8 7 9 .1 1 8 8 .2 5 6 4 .1 2 1 .2 4 1 8 .8 1 1 8 .9 3 1 5 .7 7
T C P 7 1 .7 4 6 4 .3 5 5 2 .7 8 6 4 .6 8 4 5 .2 1 1 8 .2 7 1 6 .1 8 1 5 .1 2 1 3 .4 6

C le a n 1 L 2 L A H 2 L /A H E S P 2 L /E S
P

A H /E
S P

2 L /A H
/E S P

Figure 12. End-to-end decrease in throughput using

single and two-level tunnels

The X-Bone also decreases the effective MTU
(maximum transmission unit) or packet size in the overlay
network. On multihop paths in the base network an MTU
of 576 bytes is required by IP, of which 20 bytes are IP
and another 20 bytes by the transport layer (typically TCP
or UDP). This leaves 536 bytes for application data,
although many implementations round this down to a
power of two (512 bytes), for efficiency. This leaves a
slack of 24 bytes that can be used by additional
encapsulation layers without significant impact on
applications. Note that these limits can be overcome using
path MTU discovery, but successful discovery depends on
contiguous deployment of P-MTU, not currently the case.

Each layer of tunneling adds an additional IP layer,
which consumes 8-20 bytes, when using minimal-
encapsulation [26] or standard IP in IP encapsulation
tunnels [25]. The X-Bone uses the standard IP in IP
tunnels in the FreeBSD/CAIRN, FreeBSD/KAME, and
Linux/NIST stacks. As a result, our effective MTU is
576-40-40 = 496 bytes. The additional two headers
increase packet overhead by 7%. More importantly, they
reduce the effective application MTU to a non-power-of-
two, which may have more significant effects. If IP in IP
encapsulation were replaced with minimal encapsulation
IP, the overhead would be cut nearly in half, and 512-byte
MTUs would be supported again.

5. Related Work

The X-Bone is related to other overlay networks and
overlay deployment systems, as well as to the abstraction
of network components. Other manually deployed overlay
systems include the M-Bone [10], which first used IP in
IP encapsulation for tunnels and the more recent 6-Bone
(for IPv6), both used to test new protocols. The M-Bone
was developed to incrementally deploy a testbed for
multicast IP. Not all systems under test were directly
connected; tunnels were used to avoid this need for
contiguity. The first M-Bone tunnels used IP's loose
source route (LSR) option [22], but this was replaced by
IP in IP tunneling [25], because the former is more

computationally intensive and requires contiguous
deployment of loose source routing in intermediate
routers along a tunnel path, as noted in Section 4. IP in IP
tunneling presents a conventional IP packet to
intermediate router hops, so takes the fast path, and does
not stress these routers' implementation of infrequently
used options. IP in IP tunneling requires new software at
both tunnel endpoints, whereas LSR needs encapsulation
software only at the source end of the tunnel, but also
relies on proper option processing at all intermediate
steps, as well as at the destination end of the tunnel.

Both M-Bone and 6-Bone are manually-deployed
overlays, requiring network managers to design, deploy,
and monitor network configuration. There are a number
of systems for automatic deployment of overlays as well.
Argonne's MORPHnet [1] is an overlay system that
supports virtual networks at all layers, from virtual
physical, to link, to network, on up to application.
MORPHnet was designed for use in supercomputer
networks, where performance requirements necessitate
low- and multi-layer solutions. CRATO's Supranet [8]
extends this multi-layer notion with multi-layer
optimizations. Columbia's Virtual Active Networks
(VANs) are part of the Netscript project [32] and deploy
link-layer virtual networks. These systems focus on multi-
layer or low-layer virtual network support; the X-Bone
[31] has more in common with Cornell's VON [23],
focusing on IP. The X-Bone’s IP focus supports stackable
networks and the use of standard network protocols and
applications within an overlay. It differs from application
solutions, e.g., Yallcast [12], and pseudo-network
overlays, e.g., the A-Bone [2]. In both cases virtual
networks exist inside application environments
interconnected by UDP or TCP tunnels.

Several overlay systems focus on QoS support for
overlay deployment, e.g., Supranet and DARWIN [7], the
latter of which includes a subcomponent called VNS [8],
addressing dynamic overlay deployment. The X-Bone
does not require QoS support, though there are hooks to
use standard QoS mechanisms, such as RSVP [33] and
tunnel mode RSVP [29], where available.

The X-Bone focuses on end-to-end deployment of an
entire overlay, including end host configuration, router
configuration, and network services such as DNS. This is
similar to the goal of VONs, but differs from the partial
deployment of Darwin/VNS [7], Detour [24], and VANs
[32]. In Darwin, the overlay is deployed among a set of
routers via tunnels, and end hosts are attached via filter-
based translators, stationed upstream of the end-hosts.
This supports unmodified end-host applications, even
though VNS requires OS modifications in the remainder
of its deployment. Detour [24] deploys individual tunnels
to override inefficient or inoperative routing, rather than
deploying an entire overlay network. VANs [32] deploy
only links, inside an active networks layer. Even VONs

[23], though end-to-end, do not address the issue of
automation of the deployment process. Both the X-Bone
and VONs allow access of different overlays via dynamic,
partitioned namespaces, but in VONs the namespace is
per-login, whereas in the X-Bone it is per-process.

The X-Bone differs from commercial VPNs [27] by
supporting components being shared by multiple
overlays, and multiple times in a single overlay. VPN
components are typically a member of only one VPN at a
time, and VPN deployment is an increment to an existing,
deployed network. VANs and VONs support components
shared in multiple overlays, but do not address single
components appearing multiple times in a single overlay.
This latter use enables testbeds to emulate larger
networks, such as 5 routers emulating a 50-router ring,
enabling large-scale experiments using limited resources.

The X-Bone avoids OS and application modifications,
and supports the use of existing dynamic network
services, such as routing, multicast, and nameservers,
inside the overlay. Supranet, MORPHnet, VONs and
VNS require OS modifications for custom tunneling and
QoS. VANs push these modifications to an application
layer emulation of the OS, in an Active Networks
environment. In each case some network services can be
reimplemented to operate within the overlay, though only
VONs and VANs purport to support dynamic routing.

The X-Bone uses multicast for resource discovery,
avoiding explicit configuration. Yallcast [12] and some
other overlay systems (e.g., USC/ISI and SRI's A-Bone
[2]) rely on central registries or rendezvous points, which
must be configured explicitly. Zeroconf [14], a recent
IETF effort at specifying zero-configuration network
deployment, focuses on the base network, and relies on
broadcast. This limits Zeroconf to a single LAN, as with
BOOTP and DHCP protocols. The X-Bone uses
multicast, which is not limited to a single network.

The X-Bone presents an IP overlay built on an IP base
network, and is intended to be recursive, or stackable.
Stackability is a feature of the X-Bone and VONs, though
VONs use of global identifiers, e.g., the IETF's VPN ID
[11] limits the scope of the recursion. The X-Bone differs
from the IETF's VPN and VONs by allowing non-
overlapping reuse of global addresses, rather than
requiring VPN ID [11] and protocol modifications [13] to
support their use. This contrasts to inherently single-level
solutions, such as the M-Bone and A-Bone, where
recursion is not feasible due to the tunneling mechanisms
used. Genesis supports a retrograde variant of recursion –
deploying parent overlays, where each parent can spawn
multiple child overlays. Genesis goes up two levels, and
back one, allowing testbed overlays to deploy subset
overlays to coordinate and separate multiple concurrent
experiments in each testbed. The X-Bone supports
arbitrary recursion, due to its use of two-level tunnels,
thus allowing testbeds on testbeds ad infinitum.

The X-Bone uses two-level tunneling and global
address space to abstract its hosts and routers. Address
partitioning allows a single routing table to contain non-
interfering entries for multiple overlays as well as a base
network. Preprocessed routing configuration scripts
provide partitioned dynamic routing and multicast without
OS or router modification. Competing proposals support
partitioned routing tables without modification, including
policy routing, multi-table gated and mrtd host-based
router routing protocol systems. The X-Bone explicitly
configures both ends of a tunnel; this can be replaced with
single-ended tunnel deployment mechanisms, such as
Ascend's Tunnel Management Protocol (TMP) [15].
Future versions of the X-Bone are expected to replace
scripting with advanced variants of automated
configuration, such as MPLS, DHCP, and SNMP. MPLS
[5] will allow fine-grained control over the path a tunnel
uses. DHCP will allow standard configuration of an end-
host, but must be modified to allow the DHCP server to
initiate the reconfiguration of the host, rather than
supporting only client-initiated transactions. SNMP is a
reasonable replacement to our explicit scripting
mechanism, but was not necessary for a proof-of-concept.

The X-Bone supports security at multiple levels,
allowing encrypted or authenticated invitations with
private response, using TCP/SSL for configuration, and
supporting existing IPSEC to secure the deployed overlay
links. IPSEC is supported, but not strictly required. There
may be cases where, for performance reasons, a secure
tunnel is neither required nor desired, such as for lab
testbeds. Other overlay systems do not address security,
or use custom integrated packet security, e.g., VONs [23].

The X-Bone system shares much in common with the
IETF's emerging VPN framework, and with the goals of
VONs. All three abstract network infrastructure for the
purposes of simplicity, scalability, provisioning, and
containment. Like VONs [23] (and Detour [24]), the X-
Bone supports fault tolerance. The X-Bone uniquely uses
the ability to deploy existing dynamic routing protocols to
support fault tolerance within an overlay, and its
capability to support stackable overlays to support more
advanced fault tolerance (see future work, below).

Finally, the X-Bone is currently implemented and
available, and is being deployed in a number of regional
and national testbeds, as well as used in several
networking courses. Many other proposals, such as
MORPHnet [1], VON [23], and Genesis [6] are only at
the planning stages thus far.

6. Current Status and Future work

We released our first distribution of the X-Bone,
including source code, in Feb. 2000; it’s most recent
release is v1.3 (Aug. 2000). The latest distribution

supports FreeBSD 3.4/KAME, FreeBSD4.12, Linux
RedHat 6.0/NIST (kernel 2.2.5) (later versions also
supported); indicated patches (KAME, NIST) are optional
and required only to support IPSEC (excepting
FreeBSD4.1). FreeBSD pre-4.x requires use of available
DIVERT sockets together with a user-level IP in IP tunnel
daemon (ip-tun [30]), developed as part of the project.
Our current release uses non-encrypted multicast
invitations, and configures components securely via
TCP/SSL. It supports dynamic DNS with per-overlay
namespaces, and currently requires configuration via the
GUI from among a fixed set of topologies, including ring,
star, and line. The current release also supports static
intra-overlay routing, either via conventional static routes
or via explicit entries in the gated configuration of the
dynamic routing of the base network. The X-Bone has
multiple levels of logging, and includes heartbeat refresh
and timeout, as well as state recovery on restart or reboot.
Support for dynamic intra-overlay routing via gated using
the RIPv2 protocol, and support for intra-overlay
multicast have been developed, and are currently
undergoing tests for robustness.

Future releases over the next year are expected to
include richer topologies and the explicit API. A system
for deploying applications, e.g., Squid proxy cache or
anetd (Active Nets) daemons, is also under current
testing. We are also developing an explicit recursive X-
Bone, deploying OMs and RDs inside an overlay. Support
for other dynamic routing systems, namely mrtd, as well
as an interface to resource reservation (RSVP) is
underway. The X-Bone's out-of-band configuration will
eventually be replaced with emerging standards for in-
band control, such as tunnel configuration (TMP,
including MPLS tunnel pinning), IPSEC key exchange,
dynamic DNS, and SNMP. Security of the invitations is
also under investigation, including authentication,
privacy, and traffic confidentiality of invitation activity.

The X-Bone is currently used for networking research
and networking education. Various research groups are
using the X-Bone to facilitate concurrent overlapping
virtual testbeds on a shared, interdomain infrastructure
(CAIRN, including a total of 30 nodes). The X-Bone is
being augmented to assist in the deployment of the A-
Bone, and is being deployed in several advanced
showcase testbeds. It is also being used for USC’s
graduate networking laboratory class (a 24 node lab), for
overlapping concurrent student experiments.

The X-Bone has been especially affected by the dearth
of support for multihoming. Hosts in an overlay system
are necessarily multihomed [3], belonging to both the
base network and perhaps several overlays. Multihoming
requires context-sensitive demultiplexing, such that

2 FreeBSD 4.0 has a bug in the IPSEC setkey command that affects

the X-Bone. It is fixed in FreeBSD 4.1 and higher.

daemons not attach to every incoming packet addressed to
a particular protocol's port. While this is supported in
current operating systems, most protocol daemons are not
written to bind to a subset of addresses. In addition,
applications need control of the source IP address of a
packet, i.e., to indicate which of a host's multiple
addresses is to be used as the source (not currently
implemented). Multihomed hosts often require support for
an internal, virtual router, such as support for dynamic
routing protocols, support for proxy ARP, etc.

Routers are similarly multirouted (our term for a
multihomed router), needing similar partitioning. In a
router, this translates to context-sensitive forwarding, and
context-sensitive routing algorithms. Packet processing
and routing packet exchanges need to be predicated on the
address of the incoming packet and its interface. In both
routers and hosts this context is both address, and overlay
identifier specific. For overlays, this means that the IP
decapsulation must retain portions the outer headers, to be
used as context for further processing. Other host
services, such as DNS resolution, require this context to
differentiate namespaces among overlays. Our future
work includes these extensions.

We are investigating extensions for fault tolerance and
optimization. It would be useful to avoid deploying
multiple overlays over the same physical link, or to
provide redundant links within a single overlay. It would
also be useful to map requested ring overlays onto rings in
the base network, somewhat matching topologies.
Strictly, such overlay optimizations are graph embedding
problems, which are difficult to optimize efficiently. The
Internet's strict layering further complicates redundancy
detection; even purchasing separate physical links from
different networks providers can result in unintentional
fate-sharing. We are investigating protocols for voluntary
labeling to enable automated fate-sharing detection.

We are investigating many of the features described in
the architecture as possibilities, such as proxy-based
resource discovery, and divide-and-conquer deployment.
These features determine the scale of an overlay that the
X-Bone can deploy; the current system has been tested for
tens of nodes, and while larger scale tests are underway, it
is not realistic to expect a single OM to coordinate
thousands or tens of thousands of nodes. A related issue is
fusion and fission, the ability to split an existing overlay,
or merge two overlays into a single meta-overlay, which
are useful for policy-based coordination, where
organizations create their own overlays and subdivide
them for internal use (ala Genesis), or merge them for
inter-organization testbeds (e.g., CAIRN).

Fault tolerance is a specific focus of future
development. The X-Bone's support of stackable overlays
supports dynamic relocation of a running overlay, without
renumbering that overlay, which can remap a faulty
underlying overlay to a working overlay. Consider our

first example, of a base network on which various
overlays are deployed (Figure 1). The X-Bone can deploy
stacked overlays, such as three ring networks on the base
network, and a star on one of those rings (Figure 13).
When a fault is detected in one ring, the star can be
remapped to a different ring. The challenge is deploying
multiple rings that are known not to share physical
resources. The X-Bone's layering provides a level of
indirection to IP addressing in the star overlay, which
allows it to be renumbered with respect to the base
network, without renumbering within the star (the virtual
network equivalent of virtual memory paging).

Figure 13. Multi-layered overlays allows dynamic

re-mapping, supporting fault tolerance

Current members of the X-Bone project include
Gregory G. Finn and graduate students Amy S. Hughes,
Lars Eggert, Yu-Shun Wang, and Ankur Sheth. The
author wishes to acknowledge Steve Hotz, Anindo
Banerjea, Wei-Chun Chao, Oscar Ardaiz, and Stephen
Suryaputra for their earlier contributions, as well as Ted
Faber and the anonymous reviewers of ICNP.

7. References

[1] Aiken, R., et al., “Architecture of the Multi-Modal
Organizational Research and Production Heterogeneous
Network (MORPHnet),” ANL-97/1, Argonne National Lab, IL,
Jan. 1997.
[2] Braden, B., “A Plan for a Scalable ABone - A Modest
Proposal,” (work in progress), July 1999.
[3] Braden, R., ed. “Requirements for Internet Hosts --
Application and Support,” RFC-1123, Oct. 1989.
[4] CAIRN IPSEC patches, http://www.cairn.net
[5] Callon, R., Viswanathan, A., Rosen, E. “Multiprotocol
Label Switching Architecture,” (work in prog.), Aug. 1999.
[6] Campbell, A., et al., “Spawning Networks,” IEEE Network,
July/Aug. 1999, pp. 16-29.
[7] Chandra, P., et al., “Darwin: Resource Management for
Value-Added Customizable Network Service,” Sixth IEEE Int’l
Conference on Network Protocols (ICNP'98), Austin, Oct. 1998.
[8] Delgrossi, L., Ferrari, D., “A Virtual Network Service for
Integrated-Services Internetworks,” 7th Int’l Workshop on
Network & OS Support for Digital Audio & Video, May 1997.

[9] Divert sockets man pages, FreeBSD
http://www.freebsd.org
[10] Eriksson, H., “MBone: The Multicast Backbone,”
Communications of the ACM, Aug. 1994, pp.54-60.
[11] Fox, B., Gleeson, B., “Virtual Private Networks Identifier,”
RFC-2685, Sept. 1999.
[12] Francis, P., “Yallcast: Extending the Internet Multicast
Architecture,” (work in prog.) Sept. 1999.
[13] Gleeson, B., et al., “A Framework for IP Based Virtual
Private Networks,” (work in prog.), Feb. 1999.
[14] Hattig, M. (ed), “Zeroconf Requirements,” (work in prog.),
Jan. 2000.
[15] Hamzeh, K., “Ascend Tunnel Management Protocol -
ATMP,” RFC-2107, Feb. 1997.
[16] Hickman, Kipp, “The SSL Protocol,” Netscape
Communications Corp., Feb. 1995.
[17] Ip-tun man pages http://www.isi.edu/xbone.
[18] KAME IPSEC patches, http://www.kame.net
[19] Kent, S., Atkinson, R., “Security Architecture for the
Internet Protocol,” RFC-2401, Nov. 1998.
[20] MacGregor, W., Tappan, D., “The Cronus Virtual Local
Network,” RFC-824, Aug. 1982.
[21] Moy, J., “Multicast Extensions to OSPF,” RFC-1584,
March 1994.
[22] Postel, J., “Internet Protocol,” RFC-791, Sept. 1981.
[23] Rodeh, O., Birman, K., Hayden, M., Dolev, D., “Dynamic
Virtual Private Networks,” TR98-1695, Dept. of Computer
Science, Cornell University, Aug. 1998.
[24] Savage, S., Anderson, T., et al., “Detour: a Case for
Informed Internet Routing and Transport,” IEEE Micro, V19,
N1, Jan. 1999, pp. 50-59.
[25] Perkins, C., “IP Encapsulation within IP,” RFC-2003, Oct.
1996.
[26] Perkins, C., “Miminal Encapsulation within IP,” RFC-
2004, Oct. 1996.
[27] Scott, C., Wolfe, P., Erwin, M., Virtual Private Networks,
O'Reilly & Assoc., Sebastapol, CA, 1998.
[28] Tennenhouse, D., et al., “A Survey of Active Network
Research,” IEEE Comm. Mag., Jan. 1997, pp. 80-86.
[29] Terzis, A., Krawczyk, J., Wroclawski, J., Zhang, L.,
“RSVP Operation Over IP Tunnels,” RFC-2746, Jan. 2000.
[30] Touch, J., Eggert, L., “Use of IPSEC Transport Mode for
Virtual Networks,” (work in progress), Mar. 2000.
[31] Touch, J., Hotz, S., “The X-Bone,” Proc. Global Internet
Mini-Conference / Globecom, Nov. 1998.
[32] Yemini, Y., da Silva, S., “Towards Programmable
Networks,” IFIP/IEEE International Workshop on Distributed
Systems: Operations & Management, L’Aquila, Italy, Oct. 1996.
[33] Zhang, L., Deering, S., Estrin, D., Shenker, S., and
Zappala, D., “RSVP: A New Resource ReSerVation Protocol,”
IEEE Network, Sept. 1993.

http://www.isi.edu/xbone
http://www.kame.net/

	Introduction
	What is an overlay?
	Deploying an overlay

	Architecture
	Functions

	Features
	Performance
	Related Work
	Current Status and Future work
	References

