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Abstract1 
 

The X-Bone dynamically deploys and manages Internet 
overlays to reduce their configuration effort and increase 
network component sharing. The X-Bone discovers, 
configures, and monitors network resources to create 
overlays over existing IP networks. Overlays are useful 
for deploying overlapping virtual networks on shared 
infrastructure and for simplifying topology. The X-Bone 
extends current overlay management by adding dynamic 
resource discovery, deployment, and monitoring, and 
allows simultaneous participation in multiple overlays. Its 
two-layer IP in IP tunneled overlays support existing 
applications and unmodified routing, multicast, and DNS 
services in unmodified operating systems. This two-layer 
scheme uniquely supports recursive overlays, useful for 
fault tolerance and dynamic relocation. The X-Bone uses 
multicast to simplify resource discovery, and provides 
secure deployment as well as secure overlays. This paper 
presents the X-Bone architecture, and discusses its 
components and features, and their performance impact.  
 

1. Introduction 

The X-Bone [31] is a system for the dynamic 
deployment and management of Internet overlay 
networks. Overlay networks are used to deploy 
infrastructure on top of existing networks, to isolate tests 
of new protocols, partition capacity, or present an 
environment with a simplified topology. Current overlay 
systems include commercial virtual private networks 
(VPNs) [27], IP tunneled networks (M-Bone [10], 6-
Bone), and emerging research systems providing quality-
of-service guarantees. These systems require OS and/or 
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application modifications, restrict the number of overlays 
a router or host can participate in, or require manual 
component configuration. The X-Bone provides 
automated deployment of overlays, coordinates their 
sharing of network components, and monitors deployed 
overlays. The X-Bone requires no OS or application 
modifications and only basic IP in IP encapsulation, and 
uses existing implementations of dynamic routing, name 
service, and other infrastructure. Finally, the X-Bone is a 
uniform extension of the network to support overlays, and 
supports stacking (recursion) of overlays for fault 
tolerance and capacity sub-provisioning for experiments.  

The X-Bone uses a two-layer tunnel mechanism, rather 
than the single layer in conventional overlays. It is this 
two-layer scheme which supports stacked overlays, as 
well as permitting use of unmodified applications and 
network services (routing, DNS, IPSEC) inside a 
deployed overlay. The X-Bone is the only known overlay 
system that integrates both IPSEC support and dynamic 
routing. This particular aspect of the X-Bone is covered in 
detail in Sections 2.1 and 3. 

The X-Bone system provides a high-level interface 
where users or applications request DWIM (do what I 
mean) deployment, e.g.: create an overlay of 3 hosts 
connected to each of 6 routers in a ring. The X-Bone 
automatically discovers available components, configures, 
and monitors them.  

This paper presents an overview of the X-Bone 
architecture, and discusses the particular techniques 
required to provide an IP layer overlay using existing 
protocols to support existing implementations of 
operating systems, applications, or network services. The 
paper builds on our earlier discussion of the coarse 
architecture and goals [31], by presenting the details of 
the X-Bone’s two-layer encapsulation, which resolves 
support for dynamic routing, the use of a node multiple 
times in a single overlay, and the use of IPSEC to secure 
the tunnels of an overlay. This paper adds performance 
analysis, an extended and updated discussion of related 
work, and presents our vision of the utility of the X-Bone 
to support networking research, networking education, 
dynamic service deployment, and fault tolerance. 

 



 

1.1. What is an overlay? 

An overlay network is an isolated virtual network 
deployed over an existing network. It is composed of 
hosts, routers, and tunnels. Tunnels are paths in the base 
network, and links in the overlay network. Hosts are 
packet sources or sinks, and routers are packet transits, as 
in conventional networks. Individual components (routers 
or hosts) can participate in more than one overlay at a 
time or in multiple ways (router, host) in a single overlay. 
Figure 1 shows an IP network (left); on that network, the 
X-Bone can deploy a ring (center) or star (right), by using 
various subsets of the nodes of the base network, 
connected by a set of tunnels. These tunnels determine the 
overlay topology, and may traverse multiple links in the 
base network, or a single link multiple times. 

Ring-ovl Star-ovlIP Base Network  
Figure 1. A ring (center) and a star (right) overlay 

deployed on a base network (left) 

Overlays have three primary uses: containment, 
provisioning, and abstraction. Containment is the ability 
of an overlay to restrict the visibility of its contents. 
Tunneling encapsulates the packets of new protocol so it 
can be tested in a controlled environment. Containment 
was one of the first uses of overlays in the early 1980's 
[20], and motivated their re-emergence in the early 1990's 
for the M-Bone and later 6-Bone [10]. Tunnels allow 
incremental deployment, where (primarily) routers 
lacking new protocol capabilities can be skipped over (or 
through), avoiding the need for contiguous availability. 

Provisioning uses reservation of components and 
capacity along tunnels to provide service guarantees to the 
overlay. Provisioned overlays can be used during 
emergencies to create virtual infrastructure when it is not 
feasible to deploy new physical resources. They can also 
be used to limit the scope and impact of network 
experiments, e.g., to nominal use of surplus capacity. 

Abstraction is a new use of overlay networks. Both 
provisioning and containment imply the interim the use of 
overlays that are supplanted by advanced hierarchical 
reservation in the former case, or more sophisticated 
dynamic services deployment in the latter [28]. In these 
cases, overlays are a way to provide such capabilities 
without requiring contiguous deployment; once a new 
protocol or service is ubiquitous, tunnels (and thus 
overlays) can be avoided. However, abstraction remains a 
useful tool for education (networking classes), deploying 

testbeds, and simplifying applications. For example, a 
single lab can support a large number of concurrent 
experiments, each using a different topology. A testbed 
can be configured using a graphical user interface, in do 
what I mean style. Applications can request a deployed 
topology (e.g., ring) without needing to incorporate 
network management. In each case, manual intervention 
by a network manager is avoided, and applications and 
tools can be simplified. 

1.2. Deploying an overlay 

Conventional overlay deployment is a multi-stage 
process, involving manual intervention at every step. 
Components in the network (routers, hosts) are selected 
according to some criteria, e.g., operating system, 
protocol capability, or permissions. The desired topology 
(e.g., ring) must be mapped to the available components 
and parameters such as addresses, network masks, and 
routes determined. For each component, secure remote 
access is required, typically via SSH/telnet, and then each 
component is manually configured. This includes setting 
tunnel endpoints, configuring interfaces, setting link 
encryption or authentication keys, and configuring routes. 
Each of these steps is manual, often requiring out-of-band 
communication (telephone, e-mail) to locate available 
resources or initiate access. Each of these steps also 
requires external mechanisms for coordination, such as a 
reservation web page or e-mail system. 

Once an overlay is deployed, there is no assurance it 
remains available. Both in-band (over the overlay) and 
out-of-band (in the base network, or via telephone or e-
mail) methods may be required to confirm the state of the 
overlay. Current overlays lack mechanisms for 
monitoring, for repairing an erroneous component, or for 
signaling for attention. Modern dynamic routing protocols 
are typically not available within an overlay, so they are 
susceptible to single-tunnel failures. When an overlay is 
no longer of use, it must be dismantled. This is requires a 
tedious recapitulation of installation steps in reverse.  

The key problems with the current method of overlay 
deployment are manual intervention, the excessive need 
for out-of-band communication, the lack of monitoring, 
and the necessity of separate dismantling procedures. The 
X-Bone is designed to reduce deployment effort, 
involving manual interaction only at the initial request 
phase, e.g., in a graphical user interface, or programmatic 
API. Resource discovery is automatic, such that any 
sufficient available resources can be used to satisfy a 
request. Resource sharing is managed so many overlays 
can simultaneously share the use of a single component. 
An X-Bone overlay can use features of the existing 
Internet, including dynamic addressing (DHCP), dynamic 
routing, and diagnostic tools (traceroute, ping, etc.) 
without modification. The X-Bone also supports existing 



 

operating systems and applications, without modification, 
provided they support basic IP in IP encapsulation. 

The X-Bone extends the current Internet network 
architecture to include support for overlay networks. It 
provides stackable overlay networks, where control can 
be via a web-based GUI (Figure 2) or a program-
controlled API. An X-Bone overlay is an integrated end-
to-end solution, including host configuration, router 
configuration, and support for DNS.  

 
Figure 2. X-Bone graphical user interface 

This paper presents the X-Bone and discusses its 
components and features, their performance impact, and 
the effect of overlays on the Internet architecture. The 
architecture section presents the X-Bone’s components 
and features, including its use of two-layer tunnels to 
avoid OS and application customization and to support 
recursion. The evaluation section discusses the system's 
new capabilities, security, and performance. Related 
efforts and future work are discussed, including 
extensions for fault tolerance and the merging and 
splitting of deployed overlays. 

2. Architecture 

The X-Bone is a distributed system composed of 
Resource Daemons (RDs) and Overlay Managers (OMs) , 
with a graphical user interface (GUI) and a more direct 
API. These components are shown in Figure 3. 

OMs deploy overlays. A user creates an overlay by 
sending a request to an OM, either via a web-based GUI 
(Figure 2) or by sending a message to the OM API. Each 
overlay is coordinated by a single OM; large overlays are 
created by divide-and-conquer, where a single OM forks 
sub-overlay requests to other OMs. Fault tolerance can be 
achieved by replicating state in multiple backup OMs. 

link 

web 
GUI 

RD 

host 

RD 

OM 
API 

router  
Figure 3. X-Bone architectural components 

An OM creates an overlay in phases, using multicast to 
discover available resources and TCP/SSL [16] to 
configure and monitor resources. The overlay request is 
translated to an invitation, and the invitation is multicast 
using UDP. An invitation indicates a set of simple 
conditions, e.g., a specific operating system, bandwidth 
requirements, etc. Invitations currently fit in a single UDP 
packet; where they do not, IP’s automatic fragmentation 
and reassembly is utilized. Invitations are repeated with 
increasing TTLs until a sufficient number of invitees 
respond, or until a preset search limit is exceeded: i.e., an 
expanding ring search (Figure 4) [21]. 

OCD

CCDs

Multicast
Invitation

low TTL
finds 1

larger TTL
finds 4

largest TTL
finds 6  

Figure 4. Resource discovery using increasing-TTL 
multicast invitations 

RDs are daemons that configure and monitor the 
resources of routers and hosts. RDs listen for multicast 
invitations, and respond when their available resources 
and permissions match. Responses are in the form of 
TCP/SSL (X.509 encrypted) connections back to the 
source OM, where each RD indicates its particular 
capabilities (Figure 5). The OM selects an appropriate 
from among the responding RDs. The OM determines 
configuration information, such as tunnel endpoint 
addresses and routing table entries, and sends specific 
configuration information to each RD. Once an overlay is 
deployed, the TCP/SSL connections are released and the 
overlay is up. Subsequent overlay actions initiated by the 



 

OM include keep-alive pings, liveness and status requests, 
and modifying or dismantling configurations.  

TCP/SSL [16] is used for secure configuration to take 
advantage of TCP's reliable channel, and reduce the 
number of different security schemes required. The X-
Bone uses a web-based GUI; web browsers already 
support SSL, so the user's request is secure on the path to 
the OM. For simplicity, the same mechanism is used 
between the OMs and RDs. Other schemes, such as PGP, 
would require multiple solutions.  

6 connect
via TCP/SSL

Pick 5
for overlay

Configure

 
Figure 5. Responding to invites, selecting, and 

configuring the overlay 

This architecture utilizes a single, well-known 
multicast channel for invitation announcements, and 
separate reliable channels for configuration and 
monitoring. It is based on the multicast announcements in 
M-Bone teleconferencing; in fact, the X-Bone deploys an 
overlay as if it were a teleconference between its OM and 
the RDs of its router and host components. 

2.1. Functions 

There are several key functions performed by the X-
Bone. Primary among these is resource discovery, in 
which an expanding-ring search over a well-known 
multicast address [21] replaces rendezvous or registry 
systems. The X-Bone’s invitation-based system promotes 
privacy and security, because participating components 
(hosts and routers) need not publicly post their availability 
or configuration. The invitation itself is public or 
encrypted to be private to a pre-arranged subset of 
components. Components each decide for themselves 
whether to respond, based on a match between their 
capabilities, availability of resources, and permissions.  

The X-Bone uses two-level tunnels (Figure 6). Each 
overlay IP packet is wrapped in two additional IP headers. 
The innermost (overlay) header indicates the endpoints in 
the overlay. The next layer acts as a link layer in the 
overlay, and indicates the endpoints of the tunnel over 
which the packet is currently traversing. Overlay link 
addresses are a separate set of IP addresses, also internal 
to the overlay. The final header indicates the tunnel 
endpoints in the base network. The base network can 
itself be an overlay, providing stacking (recursion).  

DATA Ovl-Src, Ovl-Dst OLink-Src, OLink-Dst Base-Src, Base-Dst  
Figure 6. Double tunneling results in three headers 

The additional tunnels are required to allow multiple 
tunnels between two components, even within the same 
overlay. Such doubly connected components are useful to 
emulate systems with larger numbers of components, i.e., 
50-node rings simulated by using 10 router nodes. The 
additional layer also permits the use of multicast and 
dynamic routing algorithms inside the overlay, because 
such systems effectively operate on the link IP layer. 
Without that layer, it would be impossible to decouple 
intra-overlay routing from base-layer routing. 

The two layers of the encapsulation change at every 
overlay hop, as shown in Figure 7. Note the hosts, 
indicated by their single overlay interface and overlay link 
addresses, and the router, indicated by its pair of overlay 
interface and overlay link addresses. Each component is 
shown as using a single, canonical base address for base-
layer routing; this can be relaxed for multihomed systems. 
The X-Bone requires that routers are multihomed inside 
the overlay, according to the standard Internet practice.  
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Figure 7. A single packet traverses the overlay – 

modifying both outer IP headers at each hop 

The X-Bone is currently implemented using separate 
IP address spaces both for the overlay endpoint addresses 
and the overlay link addresses. The use of separate 
address spaces effectively encodes the overlay identifier 
inside the IP addresses, allowing conventional dynamic 
routing and forwarding at the routers, and conventional IP 
demultiplexing at the destination host. This can be relaxed 
to allow address reuse, provided the decapsulation steps 
in routers (for forwarding) and end hosts (for 
demultiplexing) keep sufficient context of the discarded 
layers of IP headers. Current implementations discard this 
state, requiring global addresses. Overlay addresses can 
be reused among overlays that do not overlap, as can be 
determined during the negotiation process. These issues 
are covered further in Section 3’s discussion of IPSEC. 

The OM emits heartbeat pings to refresh the state of 
the RD components. When a RD no longer hears from an 
OM, all overlays of that OM are released from the RD 
state. Both RD and OM state are kept on disk, and 
reloaded after reboots or restarts. 

3. Features 

The X-Bone exhibits unique overlay capabilities, 
largely due to a combination of its focus on IP, and the 
use of two IP in IP encapsulation tunnels for each overlay 



 

link. The X-Bone can be deployed on unmodified 
operating systems, requiring only support for IP 
encapsulation. For FreeBSD, this requires the KAME 
IPSEC [18] or CAIRN IPSEC patches [4]. Alternately, 
DIVERT sockets in standard FreeBSD can be used in 
conjunction with the X-Bone project’s user-level IP in IP 
encapsulation daemon, ip-tun [9]. Linux supports similar 
tunnels, and support for these variants is included in the 
current software release (http://www.isi.edu/xbone). 

The X-Bone allows applications to be used unmodified 
inside overlays, by virtue of its use of two-layer IP 
encapsulation. On a host, an overlay is selected either 
directly by IP address, or indirectly by overriding the 
DNS resolver parameters of a process environment. A 
deployed overlay includes dynamically configured DNS 
entries for variants of the names of the participating 
components. For example, if blue.abc.com belongs to an 
overlay called apple, then a DNS near the OM (part of the 
X-Bone deployment) is updated with the name 
blue.apple.diode.net as part of the overlay configuration. 
Both FreeBSD and Linux support the use of per-process 
overrides to the resolver default suffix; setting this 
parameter allows the name blue to resolve to either 
blue.abc.com or blue.apple.diode.net, depending on the 
process setting. Different processes on the same host can 
easily refer to different overlays, even using the same 
endpoint names. An example of how the overlays and 
base network from Figure 1would appear is shown in 
Figure 8. Base component names (here only hosts are 
shown named) remain the same; the DNS suffix in each 
window differs. A standard network mapping utility can 
thus show different network views in different windows. 

The X-Bone's dual-layer tunnels allow existing 
dynamic routing and network diagnostic tools to be used 
inside an overlay, transparent to the base network. This 
has been used to deploy dynamic routing across non-
cooperating administrative domains, where only the hosts 
involved need participate in the routing algorithms. This 
has been demonstrated in the X-Bone system, and 
dynamic routing using RIP (via gated) and multicast 
(mrouted) are supported inside deployed overlays. 
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Figure 8. User views of a network mapping utility; 

different views in different windows 

The use of multicast for invitations provides privacy 
and avoids the need for preconfiguration of the OMs or 
RDs. A single channel can be used for all invitations, 
because invitations are not expected to produce 
significant traffic. Resources in the current 
implementation are centered on the OM; alternately, loose 
source route [22] or an explicit proxy to a remote OM can 
center the invitation wherever useful. Invitations can be 
general (5 routers and 15 hosts), system or capability 
specific (FreeBSD/KAME, IPSEC/3DES), permission-
based (userid=jones), or specific down to the site 
(loc=blue.abc.com). Topologies can be selected from a 
generic set (ring, line, and star are currently 
implemented), or provided by a netlist to the API. 

The X-Bone also supports IPSEC in the overlay [19]. 
Again, the use of two layers of IP encapsulation simplifies 
the architecture. The overlay IPSEC parameters are 
attached to the overlay link IP header, according to the 
IPSEC protocol. This allows separate IPSEC associations 
to exist between base network hosts (or in the underlying 
overlay, if the base is itself an overlay), as well as 
allowing IPSEC end-to-end by applications in the overlay. 
It also allows applications to benefit from a secure 
overlay network without requiring specific application 
support for IPSEC, assuming the components (hosts, 
routers) in the overlay are reasonably secure. 

IPSEC in an X-Bone overlay is configured out-of-
band, via the OM using TCP/SSL. Keys are exchanged 
over these secured channels, rather than via IPSEC key 
exchange protocols. The X-Bone uses explicit key 
distribution for simplicity; IPSEC key exchange 
mechanisms are not widely available, and are currently in 
a high state of flux. The X-Bone uses transport mode 
IPSEC on an IP in IP encapsulated overlay link packet, 
then wraps the result with the outermost base layer IP in 
IP encapsulation. This is simpler to manage, because 
tunneling is independent of whether IPSEC is enabled on 
a particular overlay hop. 

Dynamic routing in an overlay network can interfere 
with the use of IPSEC to secure overlay links [30]. IPSEC 
authenticates or encrypts links in an X-Bone overlay. 
IPSEC can interfere with forwarding decisions in overlay 
routers, however. Consider a packet P entering router A, 
destined ultimately for host Z (Figure 9). There are two 
possible paths to Z, one through B, the other through C. 
The B path begins with an overlay link keyed with K1; 
the C path, with K2. Per-link keys are required for 
robustness, to avoid needlessly compromising keys. In an 
implementation where IPSEC processing precedes 
forwarding decisions, Router A must decide which key to 
use (K1 or K2) before it has decided which path to take 
(via B or via C). Some of the forwarding decisions (i.e., 
routing table) must then be represented in the IPSEC rule 
base, so that packets destined for Z are tagged to use K1. 
The IPSEC rules must reflect the current routing table, 



 

imposing configuration and synchronization effort on the 
routing protocol implementation. Current routing 
protocols do not support synchronous IPSEC rule updates. 

A

B

C

Z

K1

K2  
Figure 9. Dynamic routing interferes with per-hop 

IPSEC 

IPSEC relies on policy databases to determine key 
usage and requires that keying precedes forwarding [19]. 
This is not consistent with the use of per-hop keys and 
dynamic routing protocols. An alternative to binding keys 
to rules is to bind keys to virtual interfaces, as in the NIST 
Linux implementation. Keys are bound to links by 
conventional routing rules, rather than policy-based rules 
in a separate key database. This allows the key decision to 
come after forwarding. A forwards via B by using virtual 
interface V1; everything from V1 is encrypted with K1, 
then sent to B Figure 10.  
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K2V2

V1

 
Figure 10. Binding keys to virtual interfaces allows 

per-hop IPSEC 

The X-Bone takes advantage of this scheme, even in 
systems that bind keys to IPSEC rule bases. In the X-
Bone, tunneling is decoupled from keying, and tunneling 
is always performed first [30]. E.g., V1 performs the link-
layer encapsulation, and K1 would add the link key. This 
allows the IPSEC rules to remain static, as in “encrypt 
everything wrapped in this overlay link header.” Dynamic 
routing algorithms update the routing table, and determine 
which virtual interface, and, by consequence, which key. 
The X-Bone is the only known overlay system that 
integrates both IPSEC support and dynamic routing. 

This example highlights the issue of lost context. 
When an encapsulated packet is received, it is unwrapped, 
and forwarded by the router or demultiplexed to endpoint 
connections in the host. Forwarding and demultiplexing 
decisions do not depend on the state of the additional 
encapsulation headers; this state is discarded as it is 
removed, so is not available anyway. This means that the 
interior packet addresses must be globally unique, unless 
host kernel and router firmware modifications are made to 
support retaining this state. Uniqueness is per-component. 
Addresses can be reused on overlays that do not share 
components, i.e., that participate in both overlays. Routers 

that provide tunneling only (i.e., intermediate on the 
tunnel path) do not count as part of an overlay. 

4. Performance 

The performance of the X-Bone has been measured in 
a lab testbed using 300 MHz Pentium II PCs running 
FreeBSD 3.2 with KAME IPSEC extensions, FreeBSD 
2.2.5 with CAIRN IPSEC extensions, and Linux RedHat 
6.0 with NIST IPSEC extensions. These PCs were 
connected using a private, switched 100 Mbps Ethernet. 
The primary focus of overlay deployment is connectivity, 
but it is useful to consider the performance of this 
implementation using untuned tunneling and IPSEC code. 

The primary performance impacts are an increase in 
per-hop latency and a decrease in end-to-end bandwidth. 
Because modest (300 MHz) hosts and a modest network 
(100 Mbps) were used, processing overheads were not 
measured at this time, though we will have sample 
numbers by publication. The X-Bone’s two-layer 
tunneling adds 30% to per-hop latency and decreases 
bandwidth similarly, compared to the base network. 
Compared to M-Bone-style single-layer tunnels, the X-
Bone’s additional tunnel layer adds 6% to the per-hop 
latency, and 20% to the end-to-end bandwidth decrease. 
Limited processing capability of our current hosts is the 
likely reason for the substantial bandwidth impact. 

Figure 11 shows the per-hop latency increases, 
measured using ICMP ping messages. The first three bars 
(from the left) indicate the per-hop latency in the base 
network with a single-layer tunnel, and with the X-Bone’s 
two-layer tunnel. Subsequent pairs compare the base 
network and two-layer solutions for IPSEC authentication 
(AH), encryption (ESP), and combined (AH/ESP) 
processing. Where IPSEC is used, it is performed on only 
one tunnel layer. 
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Figure 11. Per-hop increases in latency using single 

and two-level tunnels 

Figure 12 compares end-to-end throughput of TCP and 
UDP streams, in similar three- and two-way comparison. 
Note that the effects of multiple tunnels are masked where 
encryption is used, because encryption processing dwarfs 
the overhead of additional encapsulation and 
decapsulation processing. 
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Figure 12. End-to-end decrease in throughput using 

single and two-level tunnels 

The X-Bone also decreases the effective MTU 
(maximum transmission unit) or packet size in the overlay 
network. On multihop paths in the base network an MTU 
of 576 bytes is required by IP, of which 20 bytes are IP 
and another 20 bytes by the transport layer (typically TCP 
or UDP). This leaves 536 bytes for application data, 
although many implementations round this down to a 
power of two (512 bytes), for efficiency. This leaves a 
slack of 24 bytes that can be used by additional 
encapsulation layers without significant impact on 
applications. Note that these limits can be overcome using 
path MTU discovery, but successful discovery depends on 
contiguous deployment of P-MTU, not currently the case.  

Each layer of tunneling adds an additional IP layer, 
which consumes 8-20 bytes, when using minimal-
encapsulation [26] or standard IP in IP encapsulation 
tunnels [25]. The X-Bone uses the standard IP in IP 
tunnels in the FreeBSD/CAIRN, FreeBSD/KAME, and 
Linux/NIST stacks. As a result, our effective MTU is 
576-40-40 = 496 bytes. The additional two headers 
increase packet overhead by 7%. More importantly, they 
reduce the effective application MTU to a non-power-of-
two, which may have more significant effects. If IP in IP 
encapsulation were replaced with minimal encapsulation 
IP, the overhead would be cut nearly in half, and 512-byte 
MTUs would be supported again. 

5. Related Work 

The X-Bone is related to other overlay networks and 
overlay deployment systems, as well as to the abstraction 
of network components. Other manually deployed overlay 
systems include the M-Bone [10], which first used IP in 
IP encapsulation for tunnels and the more recent 6-Bone 
(for IPv6), both used to test new protocols. The M-Bone 
was developed to incrementally deploy a testbed for 
multicast IP. Not all systems under test were directly 
connected; tunnels were used to avoid this need for 
contiguity. The first M-Bone tunnels used IP's loose 
source route (LSR) option [22], but this was replaced by 
IP in IP tunneling [25], because the former is more 

computationally intensive and requires contiguous 
deployment of loose source routing in intermediate 
routers along a tunnel path, as noted in Section 4. IP in IP 
tunneling presents a conventional IP packet to 
intermediate router hops, so takes the fast path, and does 
not stress these routers' implementation of infrequently 
used options. IP in IP tunneling requires new software at 
both tunnel endpoints, whereas LSR needs encapsulation 
software only at the source end of the tunnel, but also 
relies on proper option processing at all intermediate 
steps, as well as at the destination end of the tunnel. 

Both M-Bone and 6-Bone are manually-deployed 
overlays, requiring network managers to design, deploy, 
and monitor network configuration. There are a number 
of systems for automatic deployment of overlays as well. 
Argonne's MORPHnet [1] is an overlay system that 
supports virtual networks at all layers, from virtual 
physical, to link, to network, on up to application. 
MORPHnet was designed for use in supercomputer 
networks, where performance requirements necessitate 
low- and multi-layer solutions. CRATO's Supranet [8] 
extends this multi-layer notion with multi-layer 
optimizations. Columbia's Virtual Active Networks 
(VANs) are part of the Netscript project [32] and deploy 
link-layer virtual networks. These systems focus on multi-
layer or low-layer virtual network support; the X-Bone 
[31] has more in common with Cornell's VON [23], 
focusing on IP. The X-Bone’s IP focus supports stackable 
networks and the use of standard network protocols and 
applications within an overlay. It differs from application 
solutions, e.g., Yallcast [12], and pseudo-network 
overlays, e.g., the A-Bone [2]. In both cases virtual 
networks exist inside application environments 
interconnected by UDP or TCP tunnels.  

Several overlay systems focus on QoS support for 
overlay deployment, e.g., Supranet and DARWIN [7], the 
latter of which includes a subcomponent called VNS [8], 
addressing dynamic overlay deployment. The X-Bone 
does not require QoS support, though there are hooks to 
use standard QoS mechanisms, such as RSVP [33] and 
tunnel mode RSVP [29], where available.  

The X-Bone focuses on end-to-end deployment of an 
entire overlay, including end host configuration, router 
configuration, and network services such as DNS. This is 
similar to the goal of VONs, but differs from the partial 
deployment of Darwin/VNS [7], Detour [24], and VANs 
[32]. In Darwin, the overlay is deployed among a set of 
routers via tunnels, and end hosts are attached via filter-
based translators, stationed upstream of the end-hosts. 
This supports unmodified end-host applications, even 
though VNS requires OS modifications in the remainder 
of its deployment. Detour [24] deploys individual tunnels 
to override inefficient or inoperative routing, rather than 
deploying an entire overlay network. VANs [32] deploy 
only links, inside an active networks layer. Even VONs 



 

[23], though end-to-end, do not address the issue of 
automation of the deployment process. Both the X-Bone 
and VONs allow access of different overlays via dynamic, 
partitioned namespaces, but in VONs the namespace is 
per-login, whereas in the X-Bone it is per-process.  

The X-Bone differs from commercial VPNs [27] by 
supporting components being shared by multiple 
overlays, and multiple times in a single overlay. VPN 
components are typically a member of only one VPN at a 
time, and VPN deployment is an increment to an existing, 
deployed network. VANs and VONs support components 
shared in multiple overlays, but do not address single 
components appearing multiple times in a single overlay. 
This latter use enables testbeds to emulate larger 
networks, such as 5 routers emulating a 50-router ring, 
enabling large-scale experiments using limited resources. 

The X-Bone avoids OS and application modifications, 
and supports the use of existing dynamic network 
services, such as routing, multicast, and nameservers, 
inside the overlay. Supranet, MORPHnet, VONs and 
VNS require OS modifications for custom tunneling and 
QoS. VANs push these modifications to an application 
layer emulation of the OS, in an Active Networks 
environment. In each case some network services can be 
reimplemented to operate within the overlay, though only 
VONs and VANs purport to support dynamic routing.  

The X-Bone uses multicast for resource discovery, 
avoiding explicit configuration. Yallcast [12] and some 
other overlay systems (e.g., USC/ISI and SRI's A-Bone 
[2]) rely on central registries or rendezvous points, which 
must be configured explicitly. Zeroconf [14], a recent 
IETF effort at specifying zero-configuration network 
deployment, focuses on the base network, and relies on 
broadcast. This limits Zeroconf to a single LAN, as with 
BOOTP and DHCP protocols. The X-Bone uses 
multicast, which is not limited to a single network.  

The X-Bone presents an IP overlay built on an IP base 
network, and is intended to be recursive, or stackable. 
Stackability is a feature of the X-Bone and VONs, though 
VONs use of global identifiers, e.g., the IETF's VPN ID 
[11] limits the scope of the recursion. The X-Bone differs 
from the IETF's VPN and VONs by allowing non-
overlapping reuse of global addresses, rather than 
requiring VPN ID [11] and protocol modifications [13] to 
support their use. This contrasts to inherently single-level 
solutions, such as the M-Bone and A-Bone, where 
recursion is not feasible due to the tunneling mechanisms 
used. Genesis supports a retrograde variant of recursion – 
deploying parent overlays, where each parent can spawn 
multiple child overlays. Genesis goes up two levels, and 
back one, allowing testbed overlays to deploy subset 
overlays to coordinate and separate multiple concurrent 
experiments in each testbed. The X-Bone supports 
arbitrary recursion, due to its use of two-level tunnels, 
thus allowing testbeds on testbeds ad infinitum.  

The X-Bone uses two-level tunneling and global 
address space to abstract its hosts and routers. Address 
partitioning allows a single routing table to contain non-
interfering entries for multiple overlays as well as a base 
network. Preprocessed routing configuration scripts 
provide partitioned dynamic routing and multicast without 
OS or router modification. Competing proposals support 
partitioned routing tables without modification, including 
policy routing, multi-table gated and mrtd host-based 
router routing protocol systems. The X-Bone explicitly 
configures both ends of a tunnel; this can be replaced with 
single-ended tunnel deployment mechanisms, such as 
Ascend's Tunnel Management Protocol (TMP) [15]. 
Future versions of the X-Bone are expected to replace 
scripting with advanced variants of automated 
configuration, such as MPLS, DHCP, and SNMP. MPLS 
[5] will allow fine-grained control over the path a tunnel 
uses. DHCP will allow standard configuration of an end-
host, but must be modified to allow the DHCP server to 
initiate the reconfiguration of the host, rather than 
supporting only client-initiated transactions. SNMP is a 
reasonable replacement to our explicit scripting 
mechanism, but was not necessary for a proof-of-concept. 

The X-Bone supports security at multiple levels, 
allowing encrypted or authenticated invitations with 
private response, using TCP/SSL for configuration, and 
supporting existing IPSEC to secure the deployed overlay 
links. IPSEC is supported, but not strictly required. There 
may be cases where, for performance reasons, a secure 
tunnel is neither required nor desired, such as for lab 
testbeds. Other overlay systems do not address security, 
or use custom integrated packet security, e.g., VONs [23]. 

The X-Bone system shares much in common with the 
IETF's emerging VPN framework, and with the goals of 
VONs. All three abstract network infrastructure for the 
purposes of simplicity, scalability, provisioning, and 
containment. Like VONs [23] (and Detour [24]), the X-
Bone supports fault tolerance. The X-Bone uniquely uses 
the ability to deploy existing dynamic routing protocols to 
support fault tolerance within an overlay, and its 
capability to support stackable overlays to support more 
advanced fault tolerance (see future work, below).  

Finally, the X-Bone is currently implemented and 
available, and is being deployed in a number of regional 
and national testbeds, as well as used in several 
networking courses. Many other proposals, such as 
MORPHnet [1], VON [23], and Genesis [6] are only at 
the planning stages thus far. 

6. Current Status and Future work 

We released our first distribution of the X-Bone, 
including source code, in Feb. 2000; it’s most recent 
release is v1.3 (Aug. 2000). The latest distribution 



 

supports FreeBSD 3.4/KAME, FreeBSD4.12, Linux 
RedHat 6.0/NIST (kernel 2.2.5) (later versions also 
supported); indicated patches (KAME, NIST) are optional 
and required only to support IPSEC (excepting 
FreeBSD4.1). FreeBSD pre-4.x requires use of available 
DIVERT sockets together with a user-level IP in IP tunnel 
daemon (ip-tun [30]), developed as part of the project. 
Our current release uses non-encrypted multicast 
invitations, and configures components securely via 
TCP/SSL. It supports dynamic DNS with per-overlay 
namespaces, and currently requires configuration via the 
GUI from among a fixed set of topologies, including ring, 
star, and line. The current release also supports static 
intra-overlay routing, either via conventional static routes 
or via explicit entries in the gated configuration of the 
dynamic routing of the base network. The X-Bone has 
multiple levels of logging, and includes heartbeat refresh 
and timeout, as well as state recovery on restart or reboot. 
Support for dynamic intra-overlay routing via gated using 
the RIPv2 protocol, and support for intra-overlay 
multicast have been developed, and are currently 
undergoing tests for robustness.  

Future releases over the next year are expected to 
include richer topologies and the explicit API. A system 
for deploying applications, e.g., Squid proxy cache or 
anetd (Active Nets) daemons, is also under current 
testing. We are also developing an explicit recursive X-
Bone, deploying OMs and RDs inside an overlay. Support 
for other dynamic routing systems, namely mrtd, as well 
as an interface to resource reservation (RSVP) is 
underway. The X-Bone's out-of-band configuration will 
eventually be replaced with emerging standards for in-
band control, such as tunnel configuration (TMP, 
including MPLS tunnel pinning), IPSEC key exchange, 
dynamic DNS, and SNMP. Security of the invitations is 
also under investigation, including authentication, 
privacy, and traffic confidentiality of invitation activity.  

The X-Bone is currently used for networking research 
and networking education. Various research groups are 
using the X-Bone to facilitate concurrent overlapping 
virtual testbeds on a shared, interdomain infrastructure 
(CAIRN, including a total of 30 nodes). The X-Bone is 
being augmented to assist in the deployment of the A-
Bone, and is being deployed in several advanced 
showcase testbeds. It is also being used for USC’s 
graduate networking laboratory class (a 24 node lab), for 
overlapping concurrent student experiments. 

The X-Bone has been especially affected by the dearth 
of support for multihoming. Hosts in an overlay system 
are necessarily multihomed [3], belonging to both the 
base network and perhaps several overlays. Multihoming 
requires context-sensitive demultiplexing, such that 

                                                           
2 FreeBSD 4.0 has a bug in the IPSEC setkey command that affects 

the X-Bone. It is fixed in FreeBSD 4.1 and higher. 

daemons not attach to every incoming packet addressed to 
a particular protocol's port. While this is supported in 
current operating systems, most protocol daemons are not 
written to bind to a subset of addresses. In addition, 
applications need control of the source IP address of a 
packet, i.e., to indicate which of a host's multiple 
addresses is to be used as the source (not currently 
implemented). Multihomed hosts often require support for 
an internal, virtual router, such as support for dynamic 
routing protocols, support for proxy ARP, etc.  

Routers are similarly multirouted (our term for a 
multihomed router), needing similar partitioning. In a 
router, this translates to context-sensitive forwarding, and 
context-sensitive routing algorithms. Packet processing 
and routing packet exchanges need to be predicated on the 
address of the incoming packet and its interface. In both 
routers and hosts this context is both address, and overlay 
identifier specific. For overlays, this means that the IP 
decapsulation must retain portions the outer headers, to be 
used as context for further processing. Other host 
services, such as DNS resolution, require this context to 
differentiate namespaces among overlays. Our future 
work includes these extensions. 

We are investigating extensions for fault tolerance and 
optimization. It would be useful to avoid deploying 
multiple overlays over the same physical link, or to 
provide redundant links within a single overlay. It would 
also be useful to map requested ring overlays onto rings in 
the base network, somewhat matching topologies. 
Strictly, such overlay optimizations are graph embedding 
problems, which are difficult to optimize efficiently. The 
Internet's strict layering further complicates redundancy 
detection; even purchasing separate physical links from 
different networks providers can result in unintentional 
fate-sharing. We are investigating protocols for voluntary 
labeling to enable automated fate-sharing detection. 

We are investigating many of the features described in 
the architecture as possibilities, such as proxy-based 
resource discovery, and divide-and-conquer deployment. 
These features determine the scale of an overlay that the 
X-Bone can deploy; the current system has been tested for 
tens of nodes, and while larger scale tests are underway, it 
is not realistic to expect a single OM to coordinate 
thousands or tens of thousands of nodes. A related issue is 
fusion and fission, the ability to split an existing overlay, 
or merge two overlays into a single meta-overlay, which 
are useful for policy-based coordination, where 
organizations create their own overlays and subdivide 
them for internal use (ala Genesis), or merge them for 
inter-organization testbeds (e.g., CAIRN). 

Fault tolerance is a specific focus of future 
development. The X-Bone's support of stackable overlays 
supports dynamic relocation of a running overlay, without 
renumbering that overlay, which can remap a faulty 
underlying overlay to a working overlay. Consider our 



 

first example, of a base network on which various 
overlays are deployed (Figure 1). The X-Bone can deploy 
stacked overlays, such as three ring networks on the base 
network, and a star on one of those rings (Figure 13). 
When a fault is detected in one ring, the star can be 
remapped to a different ring. The challenge is deploying 
multiple rings that are known not to share physical 
resources. The X-Bone's layering provides a level of 
indirection to IP addressing in the star overlay, which 
allows it to be renumbered with respect to the base 
network, without renumbering within the star (the virtual 
network equivalent of virtual memory paging). 

 
Figure 13. Multi-layered overlays allows dynamic 

re-mapping, supporting fault tolerance 
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