
 1

I. INTRODUCTION
OMMUNICATION involves many choices. Take person-to-
person communication as an example: one can talk to the

other person directly, make a phone call on the land line or
mobile phones, write a note and send it via email, fax, or
postal mail. There are plenty of options. This flexibility is
often lost as communication moves from the user layer down
protocol stacks. The Flexible Stack Architecture (FSA) [7]
aims to retrofit choices back into current protocol stack
framework, and investigates how the resulting flexible
infrastructure can benefit the overall development of
communication architecture. This extended abstract describes
the problems with existing protocol stacks, discusses the
design principles of the approach, and provides an overview of
the FSA framework.

A. Problem Statement
Choices in communication often come from diversity or

redundancy in media and protocols. Choices can be utilized to
achieve better fault tolerance, implement different types of
security or quality-of-service policies, and help the adaptation
and evolution of network architecture. The other side of
choice is the capability to add, update, or remove entries for
selection. The resulting architecture and implementation can
then support dynamic, runtime plug-ins and detachments of
protocols in a stack, selecting among different resolution
mechanisms and the corresponding results. More sophisticated
selection policies can support concurrency at both stack levels
and protocol levels. This is essential in experimenting and
adopting any new communication architecture. In short,
various protocols and media present options on how to send a
message. Resolutions of identities from one layer to another
provide choices on where to send a message. Lastly, contents
are another type of choice on what to send in a message,
though the selection of content is not considered in this work.

The fundamental problem is that current stack architectures
lack the notion of choices. Protocol order is fixed both
architecturally and in implementations. There are no choices

Y. Wang and J. D. Touch are with the University of Southern California

Information Sciences Institute, Marina del Rey, CA 90292 USA, (Y. Wang,
310-448-8742, fax: 310-448-9300; e-mail: {yushunwa, touch}@isi.edu).

J. A. Silvester is with the Electrical Engineering Department, University of
Southern California, Los Angeles, CA 90089 USA, (e-mail:
silvester@usc.edu).

once a communication enters the stack. Some protocols or
mechanisms implement their own selection internally,
sometimes at multiple places within the same protocol layer.
Those often result in multiple selection points that can
interfere with each other. A good example is at the network
layer where firewall, routing, and IPsec security policies all
operate on the same IP protocol. This rigid architecture is also
hard to extend, especially when adding new protocols into a
stack or updating existing ones.

There are other flexible-stack-like proposals that break the
hard links between protocols in a stack [1][3][4][5]. These
systems basically provide mechanisms and the freedom to link
one protocol to another, but none provides insight on what
really constitutes a “layer” in communication and how
protocols in one layer relates to another. FSA adds a structured
framework to determine which and how protocols can be
linked together, based on a template, MDCM, of what a
communication layer does.

Other challenges for choices are performance and
complexity. Traversing static links between protocols is
always faster and more efficient than dynamic selection.
Selection policies increase complexity. This is a tradeoff
between capability and performance. Although tuning and
caching mitigate the performance issue, minimizing the
impact to better justify the new capabilities on choices will
continue to be a basic objective of all flexible stack
approaches, including FSA.

II. THE FLEXIBLE STACK ARCHITECTURE
The goal of FSA is to enable choices in the communication

architecture. The methodology is to “retrofit” the existing
stack framework based on a new template described below
rather than an unstructured approach.
1) Template – MDCM

The framework of FSA is based on the Multi-Domain
Communication Model, MDCM [6], which integrates
selection and resolution into communication as follows:

(1) Perform protocol-specific processing
(2) Select the next protocol if not at the destination
(3) Resolve the corresponding source and destination

in the new protocol
(4) Enter the new protocol

The purpose of the template is to categorize different
“protocols.” Protocols for message transmission should be
separated from protocols for resolution and selection.

Poster: Adding Selection into Protocol
Stacks – Communication with Choices

Yu-Shun Wang, Student Member, IEEE, Joseph D. Touch, Senior Member, IEEE, and
John A. Silvester, Senior Member, IEEE

C

 2

2) Resolution – Glue between Layers
Although any two random protocols can be stacked

together, the communication can only work if one can resolve
source and destination identities from one protocol domain to
the other. The resolution function represents the mapping
between the entities in the two protocol domains. Without a
resolution function, it is impossible to translate the identities
from the source domain to the corresponding identities in the
target protocol domain; therefore, communication cannot
continue in the target protocol domain. This is why the
resolution function is the glue that connects (or stacks) one
protocol to another. Note that the resolution of identities also
determines the semantics of the identities involved in the
mapping, but the following discussion focuses on the
operational logistics.
3) Flexible Stack Architecture

The reference stack is loosely based on the network stack
implementation of FreeBSD [2], an original BSD derivative,
while the description will focus on high-level differences and
additions only. The changes can be summarized into three
parts. First it adds both selection (downstream) and update
(upstream) databases for every protocol in the stack. The
second is to replace the hard link between protocols with calls
to a selection function and the subsequent resolution function
to perform selection. Finally, it also needs mechanisms to
initialize and maintain the selection and update databases.
These will also support dynamically loading and unloading
protocols of a stack during runtime. Figure 1 shows a
simplified block diagram of relevant data structures and their
relationships. The main protocol table represents an entire
“stack” in the conventional sense. It is a list of all active
protocols, similar to the protosw (protocol switch) array in
BSD. Each protocol table entry points to a protocol structure
that stores the information to perform protocol functions and
to facilitate the transition to the next protocol in the table
(stack). The main protocol table also provides a repository for
instantiating new protocols or updating existing ones.

Figure 1. Flexible Stack Architecture

The selection table consists of all available downstream
protocols that can be selected by the given protocol. Each
selection table entry contains a protocol index, the
corresponding resolution function, and flags or metrics (not
shown) for selection. The selection table is analogous to a
routing table. The update table of a protocol lists the upstream
protocol domains that can select the given protocol. The

update table contains the same information as the selection
table. The protocol functions implement various aspects of
protocol processing. FSA adds several functions for selection,
resolution, and updating the two tables above.
4) Operations

Operations can be summarized into three parts: protocol
instantiation, communication, and update. Instantiation is the
same during system startup and loading a new protocol during
runtime. The main task is to scan the entire protocol table to
establish relationship between protocols by the availability of
resolution functions. This must be done on the selection and
update tables of both active protocols and the newly loaded
one. Once a protocol is instantiated, the communication can
utilize that protocol from any of its upstream protocols. If the
message has not yet reached the destination after outbound
processing, the select function will be invoked to choose the
next protocol from the selection table. Once a next protocol is
selected, the corresponding resolution function, included in the
selection table, is used to resolve the new source and
destination addresses in the next protocol. With this
information, the communication is ready to enter into the next
protocol domain. If the status of an active protocol changes,
the framework must update its corresponding upstream and
downstream tables of all protocols linked to the one in
question.

III. STATUS AND FUTURE WORK
The skeleton framework of FSA is implemented on the

FreeBSD CURRENT platform. The prototype assumes the
INET (IPv4) protocol domain as existing active protocols, and
implemented IPv6, UDPv6, and ICMPv6 as kernel loadable
modules (KLM). Selection and resolution functions are
implemented in very rudimentary form. We are currently
modularizing existing IPv4 protocol family, completing
TCPv6 module, and adding some new and experimental
protocols such as HIP, Shim6, and IPsec. More sophisticated
selection functions and the selection of resolution functions
are planned; the performance impact of this architecture is also
being benchmarked.

REFERENCES
[1] Braden, R., Faber, T., and Handley, M., "From Protocol Stack to

Protocol Heap -- Role-Based Architecture", HotNets-I, October 2002;
also in Computer Communication Review, Vol. 33, No. 1, January 2003.

[2] FreeBSD. http://www.freebsd.org
[3] Hutchinson, N. C., and Peterson, L. L., “The x-Kernel: An architecture

for implementing network protocols,” IEEE Transactions on Software
Engineering, 17(1):64#76, Jan. 1991.

[4] Koler, E., Morris, R., Chen, B., Jannotti, J., and Kaashoek, M. F., “The
Click modular router,” ACM Transactions on Computer Systems 18(3),
August 2000, pages 263-297.

[5] Tschudin, C., “Flexible Protocol Stacks,” ACM Sigcomm 1991, pp. 197-
205.

[6] Wang, Y, Touch, J, and Silvester, J., "A Unified Model for End Point
Resolution and Domain Conversion for Multi-Hop, Multi-Layer
Communication," ISI Technical Report ISI-TR-590, June 2004.

[7] Wang, Y., Touch, J., and Silvester, J., “Adding Selection into Protocol
Stacks – Communication with Choices,” submitted to Infocom 2007.

