IEICE TRANS. COMMUN., VOL.E89-B, NO.9 SEPTEMBER 2006

2375

| PAPER Special Section on Networking Technologies for Overlay Networks

A Dynamic Topology and Routing Management Strategy for

Virtual IP Networks

Norihito FUJITA™, Member, Joseph D. TOUCH'", Venkata PINGALI'", and Yu-Shun WANG ", Nonmembers

SUMMARY This paper describes an architecture for deploying virtual
IP networks with P2P-like dynamic topology and routing management. Ex-
isting virtual IP network deployment mechanisms do not allow for dynamic
topology adaptation and fault-tolerance because provisioning of IP tunnels
is performed only once—when a virtual network is deployed. We propose
a P2P-XBone, in which a P2P protocol such as DHT drives the topology
and the routing table of a virtual IP network consistent with its neighbor
node state. We describe how to extend both the existing X-Bone system
and P2P mechanisms to achieve interworking between them. The P2P-
XBone not only provides P2P’s characteristics such as self-organization,
fault-tolerance and content-based routing to virtual IP networks but also
provides higher forwarding performance and simpler implementation to
P2P systems due to the support for the use of existing network services.
We also show several results on the evaluation of overhead of P2P-driven
provisioning and on forwarding performance.

key words: virtual networks, peer-to-peer, DHT, dynamic topology control,
routing

1. Introduction

A Virtual Internet (VI) [1] is a kind of overlay network in
which an virtual IP network infrastructure is created over
an existing IP network. The VI provides all of available
IP network capabilities, which can be used by any applica-
tion that rides on the VI. As a tool to deploy and manage
VIs, we are working on the X-Bone [2], which can deploy
VIs with hosts and routers logically emulated in physical
nodes. It can also create any virtual IP network topology
by connecting them by IP tunnels such as IP-in-IP. Existing
VI deployment systems including the X-Bone provide static
virtual topology and perform provisioning of IP tunnels only
once, at the time of deployment of a VI. Dynamic control of
a VI is useful to support dynamic node join/departure and
state changes in a base network. Although existing VIs sup-
port dynamic routing changes using routing protocols such
as OSPF, they do not have any mechanism for dynamic node
addition/deletion as physical IP networks do. For example,
when a node in a VI loses all links to neighbor nodes due
to node failure, it cannot communicate with all other nodes
without dynamic provisioning of a new tunnel to appropri-
ately selected other nodes. Achieving both dynamic provi-
sioning as well as dynamic routing are important to enable

Manuscript received December 29, 2005.
Manuscript revised April 5, 2006.
"The author is with the System Platforms Research Laborato-
ries, NEC Corporation, Kawasaki-shi, 211-8666 Japan.
"'The authors are with the University of Southern Califor-
nia/Information Sciences Institute, USA.
a) E-mail: n-fujita@bk.jp.nec.com
DOI: 10.1093/ietcom/e89-b.9.2375

use of a VI for ad-hoc group communication.

The features provided by peer-to-peer (P2P) systems
are attractive to supplement what existing VIs are missing
because P2P natively supports self-organization and fault-
tolerance for dynamic addition or deletion of nodes. P2P
networks, unlike regular networks, achieve these promis-
ing properties by modifying the topology to reflect the rout-
ing changes. Existing P2P protocols [3]-[5] and platforms
[6],[7] run at the application layer and use UDP or TCP to
interconnect P2P nodes. Therefore, they change only the
application-level logical topology over an existing IP net-
work. In a VI, however, because the IP-level topology has to
be modified by establishing/releasing IP tunnels (i.e., provi-
sioning), such dynamic topology management cannot be ap-
plied in the same way as in the existing P2P systems. Exist-
ing P2P systems, by contrast, have performance drawbacks
such as low throughput and high latency due to application-
level routing [8]. We are motivated to provide a system that
has both advantages of VI and P2P and supplements each
other’s disadvantages.

In this paper, we propose a P2P-XBone that enables
a VI to obtain the P2P’s attractive properties by achieving
P2P-driven dynamic provisioning. In the P2P-XBone, the
X-Bone system is extended to have an interface for a user-
level daemon running a P2P protocol to control an under-
lying VI. Also, the P2P protocol is extended to explicitly
request IP tunnel creation/release and routing table configu-
ration via a configuration interface. Driven by the extended
P2P protocol, IP tunnels are dynamically created/released
based on neighbor node changes in the P2P protocol, and
a routing table is configured based on a routing rule to the
neighbor nodes, which results in a direct and complete map-
ping of P2P topology and routing from the application layer
to the VI layer. This extension cannot be achieved in a
straightforward way because the P2P protocol runs over the
VI, which is itself controlled by the protocol. The P2P pro-
tocol cannot exchange parameters outside of the VI even
though it needs to know parameters of the underlying base
network to control the VI. We solve this problem without
violating the VI’s virtualization boundary by introducing a
P2P control message that carries an opaque parameter of the
base network. The P2P protocol provides the unique prop-
erty of routing-driven provisioning to a VI due to its abil-
ity to control IP tunnels as well as the routing table, even
though, traditionally, routing and provisioning have been
considered as being independent. We call such a P2P-driven
VI simply a P2P-VL.

Copyright © 2006 The Institute of Electronics, Information and Communication Engineers

2376

The P2P-XBone not only provides P2P’s high re-
silience to a VI but also enables a VI to achieve P2P’s unique
content-based routing. It is difficult for a normal VI to sup-
port data-based forwarding as P2P systems do. P2P sys-
tems rely on non-IP-address-based IDs such as URLs and
hash values as destinations. The P2P-XBone addresses this
by applying the DataRouter string-based forwarding module
[9].

Thus the P2P-VI can be an alternative P2P infrastruc-
ture achieved at the virtual IP layer. Deploying P2P sys-
tems at the virtual IP layer provides several advantages
compared with conventional application-level deployment.
First, higher forwarding performance can be obtained be-
cause forwarding is performed in the kernel, avoiding data
copying across the user-kernel boundary. Next, the imple-
mentation of P2P applications can be simplified because
such fundamental mechanisms as end-to-end reliability and
security can be achieved using such existing network ser-
vices as TCP and IPsec without re-implementing them in
the application layer.

The remainder of this paper describes the extensions
both to existing P2P protocols and to the existing X-Bone
that are required for the P2P-XBone. It also shows the over-
head of the routing-driven provisioning and improvement
in forwarding performance through simulation and experi-
ments of the implemented system.

2. P2P-XBone

The P2P-XBone is a system to deploy a VI that works in
a P2P manner (i.e., P2P-VI). The high-level architecture is
shown in Fig. 1. The P2P-XBone is composed of P2P Dae-
mon (P2PD), Resource Daemon (RD) and Overlay Manager
(OM), where RD and OM are extended from those of the
existing X-Bone. The RD runs on each node participat-
ing in a VI (virtual node) and is responsible for configur-
ing IP tunnels and routing tables on the virtual node. In
the P2P-XBone, the RD is extended to let these configu-
ration changes be triggered by the P2PD. The details are
described in Sect.2.1. The P2PD is a daemon running a
P2P protocol, which has the functionality of sending control
messages to the RD to configure a VI corresponding to its
neighbor nodes and routing table entries. As many P2PDs
as the number of internally emulated virtual nodes are run

API
Web GUI#L! Overlay manager (Address server)
o

'''' ™

- - { N \nr
Virtual Node s ﬁ;e/ssages over IP tunnel Virtual Node s
P2P Daemonw+ (4% P2P Daemon

Ad
Add/delete route

Resource Daemon|q.|
Configure (
tunnel/route,

Kernel

V.

A |Resource Daemon|

Kernel

Fig.1 High-level architecture of the P2P-XBone.

IEICE TRANS. COMMUN., VOL.E89-B, NO.9 SEPTEMBER 2006

on a physical node. The P2PD is not necessarily developed
from scratch but can easily be extended from existing P2P
software without losing those original properties. How to
extend DHT protocols will be described in Sect. 2.2.

While both RD and P2PD run on nodes participating
in a P2P-VI, the OM works outside the nodes to provide
functions that are necessary to coordinate a P2P-VI. When
deploying a new P2P-VI, an administrator defines the ini-
tial topology, node requirements, and services via the API
provided by the OM or a Web-GUI to that API. The OM
maintains the defined P2P-VI with a set of associated con-
figuration parameters such as an IP tunneling protocol and
port number on which RD listens for P2PD. When a new
virtual node asks to join the P2P-VI, the configuration pa-
rameters are sent to the RD for the virtual node. Whereas
one OM in the existing X-Bone manages all parameters on
a VI including virtual interfaces and routing entries on the
virtual nodes of a single overlay, in the P2P-XBone the OM
does not have to maintain any node-specific configuration
parameters because the configuration of IP tunnels and the
routing tables are managed by the P2P component. Also,
the OM in this case contacts each RD only when an asso-
ciated virtual node joins a P2P-VI. Therefore, P2P network
size scalability is not affected by the centrality (per overlay)
of the OM. The OM also acts as an address server, which
manages IP address blocks available for VIs to configure
IP tunnels. It is necessary to coordinate the unique assign-
ment of virtual IP addresses in a VI. The address server dy-
namically assigns IP addresses to a new tunnel and reclaims
them for a released tunnel. This service can be located sep-
arately from the OM although it coexists in the figure (and
in the current implementation). The address server can be
a bottleneck of P2P-XBone especially in cases where vir-
tual nodes frequently join and leave because virtual IP ad-
dresses are requested/released corresponding to IP tunnel
creations/releases invoked by neighbor node changes in a
P2P protocol. However, the load can easily be distributed
using multiple address servers. We show how many IP ad-
dress requests/releases occur in various cases in Sect. 3.

2.1 Extensions to the X-Bone

The P2P-XBone adds three key features: (i) individual
join/departure of virtual nodes, (ii) IP tunnel creation/release
and (iii) routing table configuration, based on requests from
P2PD.

2.1.1 Dynamic Join to/Departure from a VI

Although the existing X-Bone supports only the entire de-
ployment of a VI, a virtual node has to be able to individ-
ually join and leave a P2P-VI in the P2P-XBone. When a
new virtual node joins a P2P-VI, the OM sends an invite
message to the RD with the virtual node. This invite either
is requested by the new virtual node itself or is initiated by
the administrator of the P2P-VI. If the RD accepts the invi-
tation, a configure message is sent to the RD with a set of

FUIJITA et al.: A DYNAMIC TOPOLOGY AND ROUTING MANAGEMENT STRATEGY FOR VIRTUAL IP NETWORKS

initial parameters, which include the base IP address corre-
sponding to a bootstrap node to which the new node should
firstly connect. This bootstrap node is randomly picked from
among participating virtual nodes by the OM, as done in
existing P2P protocols [10]. In the P2P-XBone, unlike in
application-level P2Ps, the new virtual node cannot assume
reachability to the bootstrap node at the initial state. The
RD therefore establishes an IP tunnel to the bootstrap node
using the procedure described in Sect.2.1.2. After that, the
RD launches a P2PD for the virtual node, where the vir-
tual IP address assigned to the bootstrap node in the earlier
IP tunnel creation is set to the P2PD as the bootstrap node
address. The launch of P2PD is performed using the appli-
cation deployment functionality [11] in the X-Bone. After
the stabilization routine of a P2P protocol begins, the RD
configures IP tunnels to neighbor nodes and routing table
entries based on control from the P2PD to establish reach-
ability to all other participating nodes. The IP tunnel to the
bootstrap node can be released later, when the P2P topology
is established, unless it is required for that topology. Node
departure procedures are much simpler than node join pro-
cedures. In the case of a voluntary node departure, a P2P
node needs only to release all IP tunnels and delete routing
table entries before departure. Even in the case of silent de-
parture due to node failure, P2PDs on neighbor nodes can
detect node death through the keep-alive mechanism of a
P2P protocol and unnecessary IP tunnels can be automati-
cally released.

2.1.2 1P Tunnel Configuration

In the P2P-XBone, IP tunnels are dynamically created and
released in a P2P fashion based on requests from a P2PD in
a given virtual node to the RD on the host. When the P2PD
triggers creating a new IP tunnel, it includes the base IP ad-
dress of the other end of the tunnel in the request. The base
IP address can be replaced with other contact information
for the other end as described in Sect.2.2.1. If an IP tunnel
is already established to the virtual node for the P2PD, the
RD just responds with the virtual IP address pair of the IP
tunnel to the P2PD to avoid duplicated tunnel creation. If
not, a new IP tunnel is created. Before actually configuring
an IP tunnel, the RD obtains a pair of virtual IP addresses
(i.e., inner IP addresses) for the IP tunnel from the address
server. These addresses are used to configure virtual inter-
faces in the virtual node. Then it sends a tunnel creation re-
quest to the RD at the peer node, where the base IP address
given by the P2PD is used. Note that this request is sent over
the base network. The RD that received the request config-
ures a virtual interface for the IP tunnel and sends back an
ACK message. When the requesting RD receives the ACK
message, it configures a virtual interface on the local node
as well and then responds with the virtual IP address pair to
the P2PD to indicate that the IP tunnel is successfully estab-
lished.

On the other hand, when the local RD is asked to tear
down an existing IP tunnel, it sends a tunnel release request

2377

to the RD on the peer node and releases the IP tunnel by
unconfiguring the corresponding virtual interfaces at both
sides. The virtual IP address pair for the released IP tunnel
is returned to the address server. It takes much less time for
the P2PD to release an IP tunnel than to create an IP tunnel
because the P2PD can proceed to subsequent steps without
waiting for a reply message from the RD.

2.1.3 Routing Configuration

The P2PD also works like a routing daemon for a P2P-VI.
The P2PD asks the local RD to modify routing table entries
for a virtual node when any change in routing entries oc-
curs in the user-level P2P daemon. As mentioned before,
forwarding in P2P-XBone happens at the kernel level. By
factoring out forwarding functionality from the P2PD, we
not only simplify the daemon but also improve forwarding
performance. P2P protocols support late binding of the des-
tination through support for content-based forwarding. The
P2P-XBone introduces the late-binding property to a VI as
well. Because conventional OSes do not support such data-
based routing functionality, we support it using kernel ex-
tension at nodes participating in a VI. DataRouter [9] is an
experimental extension to IP that supports pattern-match-
based routing and forwarding at a kernel level. It extends
the Loose Source Route option in IPv4 to encode a string
destination identifier such as a URL or a hash value. Us-
ing IP options elsewhere in the Internet could be impractical
because some ISPs have a filtering policy to discard any IP
option packets. However, DataRouter packets over a P2P-
VI look like normal IP packets in a base network since all
P2P nodes are connected via IP tunnels. Therefore, such
filtering issues can be avoided.

In our implementation, we use the FreeBSD 5.3 kernel
extended with DataRouter functionality to support content-
based forwarding at the kernel level and Chord as an exam-
ple of P2PD. In this case, the RD adds or deletes a routing
entry using the droute command to set a routing entry to
the DataRouter kernel as follows,

droute (add|del) range minid maxid nexthop
where minid and maxid corresponds to hash values of
both ends in a range of the Chord identifier circle. The
DataRouter can support the data routing service to other
DHT protocols such as Pastry [4] and CAN [5] in a simi-
lar fashion.

2.2 Extensions to P2P Protocols

P2PD is a modified implementation of the existing P2P pro-
tocol daemons. Although such a control module can be
implemented at the network layer, the network-level imple-
mentation has several disadvantages in portability and mod-
ularity. As existing routing protocols generally run at the
application layer, P2PD takes a similar application-level ap-
proach. We use Chord as the target P2P protocol daemon
for adapting to the P2P-XBone environment and we discuss
the details of the modifications in this section.

2378

2.2.1 General Extensions

The P2PD sends control messages in response to four DHT
protocol events: addition/deletion of a neighbor node and
addition/deletion of a routing entry. The control mes-
sages request creation/release of an IP tunnel and addi-
tion/deletion of a routing table entry for the virtual node,
respectively. The most challenging and interesting part in
designing the P2PD is how to establish IP tunnels corre-
sponding to neighbor nodes in the DHT protocol. This is
challenging because, in the P2P-XBone, the nodes that con-
figure the IP tunnel need to know each other’s base IP ad-
dresses, although the only information available in a regular
DHT protocol is the remote end’s P2P ID and virtual IP ad-
dress. Besides, the P2PD cannot directly communicate with
the neighbor node over the VI until an IP tunnel is estab-
lished to that neighbor, and there is no centralized mecha-
nism to map the P2P ID to the base IP address. It would
violate the boundary between a VI and a base network (i.e.,
virtualization boundary) to simply add base IP addresses to
parameters treated in DHT. To achieve strict virtualization,
nothing within a VI should know any parameters in the un-
derlying network including base IP addresses. We solve this
issue by introducing a message carried over P2P-VI using
the P2P forwarding in user space or at the kernel-level, in
which the contact information of a sender node is included
in an opaque manner, to ask the neighbor to create an IP
tunnel. Currently, the base IP address of the sender is used
as the contact information, while other bits of information
such as domain name and URL could be used.

Figure 2 shows the sequence of establishing an IP tun-
nel in the P2P-XBone. The neighbor connection request
is a message to request to establish an IP tunnel to a po-
tential neighbor node. The potential neighbor node is ei-
ther informed of by existing neighbor nodes via a DHT’s
self-organization mechanism or is the destination of the P2P
message that is not known ahead of time. This message is
delivered over the existing P2P-VI and its receiver is iden-
tified based on the DHT routing identifier—a hash value in
case of Chord. Before actually sending the neighbor con-
nection request message, the contact information of the node
itself is obtained via the API between the P2PD and its cor-
responding RD (request contact info) to be included in the
message (Step (1)—(2) in Fig.2). The information type has
to be agreed upon by the RD. The obtained information
(e.g., base IP address) is treated as an opaque parameter by

New tunnel

(3) Neighbor connection request
2 = /4
Virtual node .| -

(5) Address request,
Virtual node

P2PD W4-E=======< ;(-)-I_?--I- --------- B~H P2PD
1)Request (2) Reply (10) Reply

] (4)Add tunnel 9()9 W)
contact info}l Tunnel creation request | | P Reply

(8) Reply
Node X (Source) Base IP network Node Y (Neighbor)

Fig.2 Sequence of establishing an IP tunnel to a neighbor node.

IEICE TRANS. COMMUN., VOL.E89-B, NO.9 SEPTEMBER 2006

the P2PD so as not to violate the virtualization boundary.
The destination P2PD identified by the P2P routing identi-
fier terminates the message (Step (3)) and requests that the
RD establish an IP tunnel to the source node (add tunnel;
Step (4)). The RD establishes an IP tunnel as described in
Sect.2.1.2 (Step (5)—(8)) and responds with the virtual IP
address pair of the established IP tunnel (Step (9)). To deal
with an unexpected node failure, the tunnel configuration is
reset if an error or timeout is detected during these steps.
Finally, the destination P2PD sends an acknowledgment to
the source confirming the tunnel creation over the newly es-
tablished tunnel (Step (10)). After the new tunnel is estab-
lished, the RD is asked to modify routing table entries on
its node kernel if any routing change occurs in the P2PD, as
described in Sect. 2.1.3". The above procedure does not nec-
essarily require the addition of a new message to the set of
existing DHT messages. In some DHT protocols that have a
message to discover appropriate neighbor nodes, that mes-
sage can be extended instead. We show an example of ex-
tending the find successor message in the Chord protocol in
Sect.2.2.2.

Because it takes more time for the extended DHT pro-
tocols to configure a neighbor node than for existing ones
due to the extra cost incurred by the tunnel creation proce-
dure, the convergence performance of a P2P system could
be degraded, especially when P2P nodes frequently join
and leave. We will show simulation results on convergence
times in Sect. 3.1.

2.2.2 Chord-Specific Extensions

We modified i3’s Chord implementation [6] for our proto-
type. The pseudocode of the extended functions are shown
in Fig. 3.

The find_successor() function is periodically run to fix

/n: ID of which to find the successor

/0’ : ID of the node which is responsible for n

//xp: base IP address of the source node

Jxo1, Xo: local and remote virtual IP addresses of established IP
tunnel

find _successor(rn)
Xp = request_contact_info();
send_find_successor(x;, n);

receive_find_successor(x;, n)
if (chord_is_local(n)) // check if responsible for n
(x,1, X,2) = add_tunnel(x;,);
send_find_successor_reply(n’, x,1, X,);
else
send_find_successor(x;, n);

Fig.3 Pseudocode of extended Chord functions.

"Because the particular routing algorithm depends on what
kind of P2P protocol is used, the establishment of the tunnel be-
tween node X and Y does not always mean support direct transfer
for data from node X to Y. For example, when proximity route se-
lection described in Sect. 2.3 is used, a multi-hop path could have
a priority over a single-hop path.

FUIJITA et al.: A DYNAMIC TOPOLOGY AND ROUTING MANAGEMENT STRATEGY FOR VIRTUAL IP NETWORKS

the finger table (i.e., neighbor node list in Chord). It first
calls the request_contact_info() function to obtain the base IP
address of the physical node on which the P2PD is running
and sends the find successor message to the closest prede-
cessor node to n in the existing neighbors with the obtained
base IP address. The receive_find_successor is a function
called when a node receives the find successor message. If
the node is the immediate successor to 7, it terminates the
message and calls the add_tunnel() to request IP tunnel cre-
ation. These extensions could be implemented with a small
amount of extra code: about 1000 lines of C including the
APIs within the RD.

2.3 QoS Considerations

The existing X-Bone supports QoS control for VIs, which
includes limiting bandwidth, adding latency, etc. for each IP
tunnel. In the P2P-XBone, the same QoS control mecha-
nisms can be used. Such QoS-related parameters are con-
figured to the OM by an administrator when a P2P-VI is
defined, and are sent to each RD with other kinds of initial
parameters when a virtual node joins the P2P-VI. This QoS
configuration is applied to every subsequent IP tunnel be-
cause IP tunnel creation is performed in a P2P fashion and
separate, different-QoS configuration for each IP tunnel is
not intended’.

In DHT protocols, various approaches to support QoS
in overlays have been proposed [8],[12]. While there are
some approaches including data placement algorithms and
transport-layer modifications [8], in terms of enhancing
topology and routing, proximity neighbor selection (PNS)
and proximity route selection (PRS) [12] can be applied
commonly to most DHT protocols only with the small
changes in DHT algorithms and the addition of a QoS mea-
surement mechanism. In PNS and PRS, neighbor/route
selections depend on monitored QoS parameters such as
latency and bandwidth to multiple candidate nodes. In
application-level overlays, that is easily achieved because
all existing nodes are assumed to be IP reachable with each
other. When applying PNS and PRS to the P2P-XBone, the
QoS measurement to other nodes would be restricted in PNS
while PRS can be applied as it is. This is because, in the
P2P-XBone, an IP tunnel has to exist for the measurement
over a VI. However, it is not efficient to create IP tunnels
to all candidate nodes solely for measurement. In the P2P-
XBone, RD can more directly support such measurement
by providing APIs for network commands like ping and
pathchar'®. The P2PD would request the QoS measurement
through the API. The RD would then execute a correspond-
ing network system call or command based on the type of
the API and returns the results to the P2PD. Note that in this
case the measurement is performed on the underlying net-
work. In the API, the base IP address or other contact infor-
mation of the other end in the measurement has to be given
similarly to the case of IP tunnel creation. The information
of the other end should be delivered in an opaque manner
as described in Sect. 2.2.1. We expect that the P2PD would

2379

then use this QoS information to alter the routing table sent
to the RD for insertion in the kernel, i.e., that QoS would af-
fect the routing table as a whole. Per-packet QoS decisions
may be supported by using more elaborate string matching
and substitution capabilities of the DataRouter, but has not
been considered in this work.

2.4 Security Considerations

The P2P-XBone supports the same level of security as the
existing X-Bone system. That is to say, authentication and
encryption are performed using SSL for communication be-
tween OM and RDs and using IPsec (transport mode) over
IP-in-IP tunnels for virtual links between virtual nodes, re-
spectively. Each RD and OM has its own access control
list (ACL), which is used for resource access permissions
and restrictions based on usernames. Such resources include
number of overlays, number of tunnels, queue limits, band-
width limits, etc. When a virtual node joins a P2P-VI, it
is authenticated based on ACLs in the corresponding OM
and RD and is authorized to join if the resource availability
meets conditions required for the P2P-VI.

IPsec is configured in the X-Bone using out-of-band
secure exchange of shared private keys; this project shifted
that effort to the RDs, to prevent the OM from becoming a
bottleneck. In the existing X-Bone, IPsec keys are allocated
for each IPsec association (one association for each direc-
tion) comprising a VI in a centralized manner by the OM
when the VI is deployed. In the P2P-XBone, however, IPsec
associations are dynamically established in a P2P fashion.
Therefore, the keys are calculated by a node initiating an
IPsec channel and are shared at both ends via an SSL chan-
nel between RDs.

3. Performance Evaluation

The P2P-XBone can provide some advantages compared
with conventional application-level P2P deployment, but
these advantages cannot be obtained without any tradeoff.
Specifically, the P2P-XBone can provide better forwarding
performance than application-level P2Ps due to kernel-level
processing. To configure IP tunnels and routing tables, how-
ever, a P2P protocol has to be extended to support the con-
trol messages to the RD as described in Sect.2.2. This
control overhead increases the configuration delay of P2P
configuration messages. Therefore, there is a tradeoff be-
tween the improvement in forwarding performance and the
degradation in routing propagation and provisioning perfor-
mance. Using IP tunnels instead of application-level chan-
nels such as UDP also involves virtual IP address manage-
ment. The address server can be a system bottleneck due to

"Note that these extensions support limit-based QoS, e.g., as
used for emulation. Performance-enhancing QoS is not supported
in the X-Bone because it is not typically available in the base net-
work, and thus cannot be virtualized.

""The implementation of this functionality is future work.

2380

its centralized property as described in Sect.2. In the fol-
lowing sections, we evaluate our proposed system on these
metrics and discuss its tradeoffs.

3.1 Convergence Performance of a DHT Protocol

To evaluate the impact of the overhead in P2P message prop-
agation, the convergence performance in Chord protocol
was compared between the original version and the one ex-
tended for P2PD using simulation. First, we let 100 nodes
join a P2P system at the beginning of the simulation and
then measured the rate of available paths in the P2P network
against time by continuously generating data transfers be-
tween any two nodes to evaluate its route convergence time.
We also tested a few values of the stabilization period in
Chord protocol, which is a period of the find_successor()
function called and corresponds to a keep-alive period in
conventional routing protocols. In the P2P-XBone, it takes
more time for the P2PD to receive the ACK message (find
successor reply) for the find successor message because two
extra functions (request_contact_info() and add_tunnel()) are
involved as shown in Fig. 3. These overheads were emulated
by idling for average time taken for these functions as ob-
served in real experiments. The simulation results in Fig. 4
show that the P2P-XBone increases convergence time com-
pared to the existing Chord for short stabilization periods
such as 1sec. However, as the stabilization period length-
ens, the convergence performance difference reduces. This
is because the longer stabilization periods mask the time re-

Successful route rate

Existing Chord =====--
.P2P-XBon?

'
0 50 100 150 200 250 300
Time (sec)

(i) Stabilization period = 1 sec

IEICE TRANS. COMMUN., VOL.E89-B, NO.9 SEPTEMBER 2006

quired for the extra procedure calls in the P2P-XBone. In
our simulation, 5sec was long enough to get almost the
same stabilization convergence performance even in cases
where the P2P-XBone had more participating nodes.

Next, we compared the topology convergence time
when a variable number of nodes simultaneously join or
leave a system that begins with 100 nodes. The topology
convergence means the Chord topology has adapted to cor-
responding changes in participating nodes. As shown Fig. 5,
the topology convergence time increases (roughly) linearly
with the number of join/departure nodes. In both the cases of
node join and node departure, the P2P-XBone shows longer
time due to the overhead of its tunnel creation/release op-
erations. The increased ratio in topology convergence time
becomes smaller as the stabilization period is longer just as
it did for stabilization convergence. Comparing node joins
with node departures, the gap between the existing Chord
and the P2P-XBone in node joins is larger than that in node
departures. This is because node joins involve tunnel cre-
ations where node departures involve tunnel release oper-
ations, and the latter imposes much shorter extra delay, as
described in Sect.2.1.2.

We showed the impact of the extra delay in P2P mes-
sage propagation through the simulations on convergence
performance. Although longer stabilization periods reduce
the relative degradation in convergence times, they increase
the convergence time itself. Therefore, users should choose
an appropriate stabilization period based on application re-
quirements. These results suggest that the P2P-XBone is

08 |

06 |

04 |

Successful route rate

!
02F
I

Existing Chord ======
P2P-XBone -

L

i I
0 100 200 300 400 500 600 700

Time (sec)

(ii) Stabilization period = 5 sec

Fig.4 Convergence property in Chord.

60

Existing Chord (Node join) —€—
X B2PXBone ((ng m} -+ -+

50

4 F

Existing Chord (Node departure) — 2-
P2P-XBone (Node departure) 4

I A !
-~ -

TR R O --

D-fq

0 2 4 6 8 10

Number of join/departure nodes

Convergence time (sec)
+

(i) Stabilization period = 1 sec

300 -r

T

Existing Chord (Node join) —€— RN
P2P-XBone (Node join) - + .- K
250 A
s BT R
8
£ 200}
P
£
£
8 1s0f p Existing Chord ENode departure) = ¥~
s ' P2P-XBone (Node departure)
g 100 p -g m,-ﬂ’-’—Q—‘-‘Q':ﬂ
— =g
8 g R
50 |]
0

" " M :
0 2 4 6 8 10
Number of join/departure nodes

(ii) Stabilization period = 5 sec

Fig.5 Convergence time after node join and departure.

FUIJITA et al.: A DYNAMIC TOPOLOGY AND ROUTING MANAGEMENT STRATEGY FOR VIRTUAL IP NETWORKS

stab int=1s —t—
stab int=10s =--3¢--
35 stab int=100s ---¥-- b

Address server load (msgs/sec)
n
o

5 x" |
PITI VE S Stats. sustit J J k
0 X PO ROOE v SO OLS . st T,] ? 3

0 200 400 600 800 1000
Number of nodes

(i) The case of changing the number of nodes

2381

250

T

stab int=1s ——
stab int=10s ==3¢---
stab int=100s ---¥6--
200 |

150 |

100 |

Address server load (msgs/sec)

0.01 0.1 1 10
Join/fleave frequency (nodes/sec)

(ii) The case of changing the join/departure frequency

Fig.6 Address server load.

better suited to P2P systems comprised of relatively stable
nodes.

3.2 Address Server Load

As described in Sect.2.1.2, in the P2P-XBone, RD needs
to obtain and release a pair of virtual IP addresses when
establishing and tearing down an IP tunnel, respectively.
We measured how many address requests/releases occur for
a variable number of nodes and for various join/departure
frequencies of P2P nodes. The goal is to determine how
many address servers are necessary for load-balancing.
In Fig.6(i), the number of nodes was varied with fixed
join/departure frequency (one node join or departure per
second). In this simulation, three values of stabilization pe-
riod were tested. The results show that more address re-
quests/releases occur as more nodes participate in a P2P-VI.
This reflects the fact that the number of fingers (routing table
entries, as well as tunnels) in a node is proportional to log n,
where n is the total number of participating nodes. In terms
of stabilization period, larger values reduce the number of
address requests/releases. These results can be explained as
follows. As the stabilization period is longer, the number
of node joins/departures that occur in one stabilization cy-
cle increases. Basically, as more node joins/departures are
aggregated into a stabilization routine, the number of tunnel
creations/releases for each join/departure triggered by this
routine is reduced due to the aggregation effect, compared to
when the topology is adapted everytime a node joins/leaves.
Therefore, the average number of address requests/releases
per unit time decreases as the stabilization period is longer.
As observed in Sect. 3.1, a long stabilization period makes
convergence performance worse. These results suggest that
there is a tradeoff between convergence time of a P2P-VI
and the required number of address servers.

Next, the results in which the join/departure frequency
is varied with the fixed average number of nodes (1000
nodes) are shown in Fig. 6(ii). These results show that set-
ting stabilization period to a short value such as 1 sec can
generate a huge number of address requests/releases under
churn (in which 1-10 percent of nodes are turned over per
second). Under too much churn, the number of messages
peaks without further increasing. This is because node joins
and departures are too frequent for stabilization routine to

detect them all. Although the address server load should in-
crease in proportion to the join/departure frequency in ideal
conditions, these results show that under such churn con-
ditions the processing of tunnel creations/releases cannot
catch up with the speed of node changes due to system per-
formance limitations.

In our preliminary implementation, the address server
could deliver 67 msgs/sec over UDP, 56 msgs/sec over TCP
and 4.2 msgs/sec over SSL (where TCP and SSL deliver one
message per connection). The number of address servers
required for a P2P-VI should be determined considering the
tradeoff with convergence performance, although only one
server is sufficient where node joins and departures are not
very frequent.

3.3 Forwarding Performance

We implemented DataRouter on FreeBSD 5.3 and measured
its forwarding rate and latency on a dual-processor 2.4 GHz
Xeon PC with 1 Gbyte main memory. An IXIA hardware-
based Ethernet packet generator was directly connected to
64-bit/66 MHz PCI gigabit Ethernet card on the PC, and the
number of packets that are forwarded was counted on the
generator for various packet sizes. Throughout these exper-
iments, only the IPv4 protocol was used. The results are
shown in Fig.7. DataRouter forwarding based on range-
matching of hash values was compared with application-
layer forwarding (over UDP and TCP) and normal IP for-
warding for reference. In this measurement, conditions for
both IP and DataRouter forwarding are different from those
in our previous measurement [9] in that here IP tunnels are
used to connect nodes. Therefore, decapsulation and encap-
sulation of an outer IP header are performed before and af-
ter forwarding for an inner packet, respectively. In fact, us-
ing an IP tunnel achieves only half the forwarding speed as
the non-IP-tunneling because the IP forwarding operation is
performed twice for each packet. DataRouter still provides
much better forwarding rate performance than application-
layer forwarding despite this penalty. Although our proto-
type implementation provides only 70 percent the normal
IP forwarding rate, this gap may be further reduced by opti-
mizing the implementation. Both the IP and DataRouter for-
warding rates remain almost constant as long as the packet
size is not large enough to saturate the link capacity, whereas

2382

T T T
IP (over IP tunnel) ——
taRouter (over IP mnne:) ===
UDP ---%--

TCP —F—

160 |
140 |

120

T RVINVEIVEE S SRV N
100 b R

80 |
L 3
60 |

Forwarding rate (kpps)

..
22 AP 3
2 Balit i S5 S RN
40t 1

20}

[= 2= o = = =y = = = e et]
0 200 400 600 800 1000 1200 1400

Packet size (bytes)
(i) Forwarding rate

IEICE TRANS. COMMUN., VOL.E89-B, NO.9 SEPTEMBER 2006

8

1P (over IP tur;nez >

DataRouter (over IvaL\‘naI

g
S e e

0 200 400 600 800 1000 1200 1400
Packet size (bytes)

-
=]
53

-3
S

8

Routing latency (usec)
3

8

0

(ii) Forwarding latency

Fig.7 Forwarding performance.

IP packets with more than 600 bytes and DataRouter packets
with more than 1000 bytes make throughput peak at 850—
950 Mbps. Unlike kernel-level forwarding, application-
layer UDP forwarding performance gets slightly worse as
packet size is larger. This is because the time required for
recv/send on a socket depends on data size (i.e., packet size).
TCP provides even worse performance because a new TCP
connection is used for each data transfer, so that the per-
formance is limited by the rate of establishing new connec-
tions. As to forwarding latency, DataRouter achieves 1/4 the
latency of application-layer UDP forwarding, regardless of
packet size. DataRouter also shows comparable latency of
normal IP forwarding.

Throughout these results, it was shown that kernel-
level data forwarding using an IP option such as DataRouter
is effective even when IP tunnels are used between nodes.
We plan to optimize the implementation of DataRouter and
to extend it to support IPv6, which allows more uncon-
strained use of IP option field.

4. Discussion on Routing-Driven Provisioning

The P2PD integrates provisioning and routing to provide a
unique topology management strategy to a VI. In traditional
networks, provisioning is done first, then routing is per-
formed on top of the pre-provisioned topology. This means
that existing routing protocols only pick one link from
among existing candidates to reach a next hop. However,
the P2PD does not assume a fixed set of links but dynami-
cally creates/releases links based on the changes of neighbor
nodes, which are selected by the (P2P) routing protocols.
This integration of provisioning and routing brings new
capabilities such as load-balancing, resilience, robustness,
scalability, etc. to a network system, just as an application-
level P2P does. Also note that for the P2PD, provisioning
and routing are performed at different layers, i.e., provi-
sioning is performed underneath the layer where routing is
performed. Therefore, an interworking mechanism between
modules at different layers is needed to achieve the routing-
driven provisioning. Section 2 shows how this is achieved
through the dialogue between the P2PD and the RD in a
VI’s operation. The P2PD could be further generalized to
provide topology management and routing strategy to other

types of networks than virtual IP networks, such as a layer-2
network over optical paths.

When the routing-driven provisioning is generalized to
any networks, how provisioning is performed at the under-
lying layer has to be taken into account. Provisioning can
be classified into two ways based on whether the path that a
virtual link goes through at the underlying layer is fixed: (i)
tunnel-based provisioning and (ii) path-based provisioning.
The former includes PPP, GRE and IP tunnels, in which con-
figuration is performed only at the ends of a link. The lat-
ter includes ATM-VCs and label switched paths in MPLS,
where link configuration has to be performed at intermediate
switches as well as at both ends. The P2P-XBone relies on
tunnel-based provisioning. To support the path-based provi-
sioning, the RD needs to be modified to interwork with such
a signaling mechanism as RSVP-TE [13] to facilitate provi-
sioning of switched paths. In either case, the P2PD should
not be aware of the difference in provisioning style at the
underlying layer but should be able to configure a network
with common APIs [14].

5. Related Work

IP-based overlays are widely used to deploy new and ex-
perimental protocols over existing IP networks. M-Bone,
A-Bone [15], and 6-Bone [16] are some of the well-known
testbeds. The Virtual Internet (VI) is a generalized archi-
tecture for such IP virtual networks that supports recursion
(i.e., stackable virtual networks) and re-visitation (multi-
ple virtual nodes in a single base node). The X-Bone [2]
is a system to enable automated deployment of VIs. GX-
Bone [17] extends the X-Bone by adding a global LDAP
directory infrastructure for resource registration and discov-
ery. UMU-PBNM [18] addresses automated VPN deploy-
ment, though it focuses on standardized XML-based con-
figuration and PKI-based authentication. Although both X-
Bone and UMU-PBNM can create/delete VIs and VPNs
in an on-demand fashion, neither supports individual node
join/departure and self-organization.

In the P2P area, there have been several proposals
which apply the characteristics of DHT to such lower layer
stack as Layer 2 and 3. P6P [19] provides a scheme to con-
nect isolated IPv6 sites by tunneling IPv6 packets between

FUIJITA et al.: A DYNAMIC TOPOLOGY AND ROUTING MANAGEMENT STRATEGY FOR VIRTUAL IP NETWORKS

edge routers in an IPv4 network. It uses a DHT lookup
mechanism to resolve ingress and egress routers and then
establishes tunnels in between. There is no P2P routing in-
volved. ELA [20] is a distributed VPN system with a two-
layer hierarchy which creates a fully-meshed topology when
traffic occurs among all edge nodes. By using a full mesh,
ELA avoids the need for routing or incremental provision-
ing, but this assumes a topology which is inherently unscal-
able. PeerNet [21] is an augmented routing scheme in a
wireless ad-hoc network, in which a location-aware ID is
assigned to each node to enable DHT-like routing. Peer-
Net assumes only physical links but not tunnels for connect-
ing nodes and does not involve dynamic provisioning as the
P2P-XBone does.

6. Conclusion and Future Work

This paper describes the P2P-XBone which deploys P2P
systems as virtual IP networks instead of application layer
overlays. The provisioning of virtual links (IP tunnels) in
P2P-XBone is driven by the neighbor state changes accord-
ing to the P2P routing protocol used. The DataRouter is also
added to support in-kernel, string-based forwarding within
the P2P virtual networks. This combination provides the
core characteristics of common P2P systems including self-
organizing topology, fault tolerance, and content-based rout-
ing. A prototype based on existing X-Bone software was
developed, and compared with the Chord implementation.
The benchmarks show significantly better forwarding per-
formance than Chord, albeit with slightly more signaling
overhead and convergence time. The modular nature of the
P2P-XBone also makes it simpler to implement or plug-in
new P2P protocols, as well as supporting the use of con-
ventional transport protocols for P2P transfers, because it
re-uses existing IP network services rather than duplicating
the functionality at the application layer.

The prototype was implemented on FreeBSD 5.3 and is
freely available as part of the X-Bone software distribution
for use in other P2P systems. Future work includes gener-
alization of APIs to support broader types of P2P protocols
and framework for recursive P2P virtual networks.

Acknowledgement

The authors thank the numerous contributors to the code and
architecture of the X-Bone project, both within projects of
USC/ISI (X-Bone, DynaBone, NetFS, DataRouter) as well
as in collaboration.

This work was partly supported by the US NSF STI-
XTEND (ANI-0230789). Any opinions, findings, and con-
clusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views
of the National Science Foundation.

References

[1] J. Touch, “Dynamic Internet overlay deployment and management

(2]
(3]

(4]

(5]

(6]

(71

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]
[16]
[17]

[18]

[19]

[20]

[21]

2383

using the X-Bone,” Comput. Netw., vol.36, no.2-3, pp.117-135, July
2001.

X-Bone URL—http://www.isi.edu/xbone/.

I. Stoica, R. Morris, D. Karger, M. Kaashoek, and H. Balakrishnan,
“Chord: A scalable peer-to-peer lookup service for Internet applica-
tions,” Proc. ACM SIGCOMM, pp.149-160, San Diego, CA, Aug.
2001.

A. Rowstron and P. Druschel, “Pastry: Scalable, distributed ob-
ject location and routing for large-scale peer-to-peer systems,” Proc.
Middleware, pp.329-350, Heidelberg, Germany, Nov. 2001.

S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker,
“A scalable content-addressable network,” Proc. ACM SIGCOMM,
pp-161-172, San Diego, CA, Aug. 2001.

I. Stoica, D. Adkins, S. Zhuang, S. Shenker, and S. Surana, “Inter-
net indirection infrastructure,” Proc. ACM SIGCOMM, pp.73-86,
Pittsburgh, PA, Aug. 2002.

S. Rhea, B. Godfrey, B. Karp, J. Kubiatowicz, S. Ratnasamy, S.
Shenker, 1. Stoica, and H. Yu, “OpenDHT: A public DHT service
and its uses,” Proc. ACM SIGCOMM, pp.73-84, Philadelphia, PA,
Aug. 2005.

F. Dabek, J. Li, E. Sit, J. Robertson, M. Kaashoek, and R. Morris,
“Designing a DHT for low latency and high throughput,” Proc. Ist
USENIX Symposium on Networked Systems and Implementation
(NSDI’04), pp.85-98, San Francisco, CA, March 2004.

J. Touch and V. Pingali, “DataRouter: A network-layer service for
application-layer forwarding,” Proc. International Workshop on Ac-
tive Networks (IWAN), pp.113-124, Kyoto, Japan, Dec. 2003.

K. Shen, “Structure management for scalable overlay service con-
struction,” Proc. 1st USENIX/ACM Symposium on Networked Sys-
tems Design and Implementation (NSDI’04), pp.281-294, San Fran-
cisco, CA, March 2004.

Y. Wang and J. Touch, “Application deployment in virtual networks
using the X-Bone,” Proc. DARPA Active Network Conference and
Exposition (DANCE), pp.484—-493, May 2002.

K. Gummadi, R. Gummadi, S. Gribble, S. Ratnasamy, S. Shenker,
and 1. Stoica, “The impact of DHT routing geometry on resilience
and proximity,” Proc. ACM SIGCOMM, pp.381-394, Karlruhe,
Germany, Aug. 2003.

D. Awduche, L. Berger, D. Gan, T. Li, V. Srinivasan, and G. Swal-
low, “RSVP-TE: Extensions to RSVP for LSP tunnels,” RFC 3209,
Dec. 2001.

R. Kompella, A. Greenberg, J. Rexford, A. Snoeren, and J. Yates,
“Cross-layer visibility as a service,” Proc. Fourth ACM Workshop
on Hot Topics in Networks (HotNets), College Park, MD, Nov.
2005.

A-Bone URL—http://www.isi.edu/abone/.

6-Bone URL—http://6bone.net;/.

J. Touch, Y. Wang, V. Pingali, R. Zhou, G. Finn, and L. Eggert, “A
global X-Bone for network experiments,” Proc. IEEE Tridentcom
2005, pp.194-203, Trent, Italy, March 2005.

F. Clemente, G. Millan, J. Re, G. Perez, and A. Gomez-Skarmeta,
“Deployment of a policy-based management system for the dy-
namic provision of IPsec-based VPNs in IPv6 networks,” Proc. 2005
Symposium on Applications and the Internet (SAINT) Workshops,
pp.10-13, Trento, Italy, Jan. 2005.

L. Zhou and R. Renese, “P6P: A peer-to-peer approach to Internet
infrastructure,” Proc. International Workshop on Peer-to-Peer Sys-
tems (IPTPS’04), San Diego, CA, Feb. 2004.

S. Aoyagi, M. Takizawa, M. Saito, H. Aida, and H. Tokuda, “ELA:
A fully distributed VPN system over peer-to-peer network,” Proc.
2005 Symposium on Applications and the Internet (SAINT), pp.89—
92, Trento, Italy, Jan. 2005.

J. Eriksson, M. Faloutsos, and S. Krishnamurthy, “Scalable ad hoc
routing: The case for dynamic addressing,” Proc. IEEE INFOCOM,
pp-1108-1119, 2004.

2384

Norihito Fujita received the B.E. and M.E.
degrees in electrical engineering from Kyoto
University, Japan, in 1996 and 1998, respec-
tively. He joined NEC Corporation in 1998 and
is an assistant manager at System Platforms Re-
search Laboratories, NEC Corporation. He was
a visiting researcher in the X-Bone group at
the Univ. Southern California/Information Sci-
ences Institute from 2004 to 2005. His research
(& /] interests include routing and security in com-
puter networks. He received the IEICE Switch-
ing Systems Engineering Technical Group Research Award and the IEICE
Young Investigators Award in 2000 and 2004, respectively.

Joseph D. Touch received a B.S. with Hon-
ors in biophysics and computer science from the
Univ. of Scranton in 1985, an M.S. in CS from
Cornell Univ. in 1987, and a Ph.D. in CS from
the Univ. of Pennsylvania in 1992. He joined the
Univ. Southern California (USC)/Information
Sciences Institute (ISI) in 1992 and is Director
of the Postel Center in the Computer Networks
Asetle \ Division of USC/ISI. He is also a Research As-
PO 2 A & sociate Professor in USC’s Computer Science

and EE/Systems Departments. His interests in-
clude Internet protocols, network architecture, high-speed & low-latency
nets, network device design, and experimental network analysis. He is a
member of Sigma Xi (A’84-F’93), IEEE (S’83-M’92-SM’02), and ACM
(S5’83-M92), and is currently ACM SIGCOMM'’s Conference Coordinator,
IEEE Infocom 2006 Program Chair, a member of numerous conference
steering and program committees, and is active in the IETF. He also serves
on the editorial board of IEEE Network.

Venkata Pingali received the B.Tech. and
M.S. degrees from IIT Bombay, India and Uni-
versity of Utah, respectively. He is currently
a Ph.D. student at the Univ. Southern Califor-
nia/Information Sciences Institute. His research
focuses on automatic network configuration.

Yu-Shun Wang received the B.S. degree
in Electronic Engineering from National Chiao
Tung University, Taiwan and the M.S. degree
in Computer Engineering from the University
of Southern California (USC). He is currently
a Ph.D. candidate at USC/Information Sciences
Institute. His research focuses on network archi-
tecture, security and virtual networks.

IEICE TRANS. COMMUN., VOL.E89-B, NO.9 SEPTEMBER 2006

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /KOR <FEFFace0d488c9c8c7580020d504b9acd504b808c2a40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e0020c7740020c124c815c7440020c801c6a9d558b824ba740020ae00af340020d3ecd5680020ae30b2a5c7440020c0acc6a9d574c57c0020d569b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee575284e8e9ad88d2891cf76845370524d6253537030028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f0030028fd94e9b8bbe7f6e89816c425d4c51655b574f533002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c9069752865bc9ad854c18cea76845370524d521753703002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f300290194e9b8a2d5b9a89816c425d4c51655b57578b3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

