
A Global X-Bone for Network Experiments

Joseph D. Touch, Yu-Shun Wang, Venkata Pingali, Lars Eggert*, Runfang Zhou,
Gregory G. Finn

USC/ISI and NEC Labs*
{touch,yushunwa,pingali,rzhou,finn}@isi.edu and lars.eggert@netlab.nec.de

The X-Bone is a system for deploying and
managing Internet overlays [1][2]. It coordinates
the configuration and management of virtual
networks, enabling shared use of network
resources (Figure 1).

Figure 1 Multiple virtual Internets

The Global X-Bone (GX-Bone) extends the
X-Bone implementation from a stand-alone
software system for local experiments to a global
infrastructure for wide-scale network research.
The GX-Bone augments the X-Bone software,
enhancing its coordination mechanisms to
support deployment of local overlays to world-
wide, shared infrastructure. GX-Bone also
complements the network virtualization-related
features of X-Bone overlays with fine-grained
access control to network configuration through
NetFS [1] and application-directed forwarding
through support for DataRouter [3]. GX-Bone
can also be installed on user-modified kernels,
uniquely supporting both conventional kernel-
level protocol development and coordinated
global infrastructure sharing.

A global Internet overlay testbed based on
GX-Bone is currently being deployed to support
the distributed, shared use of resources for
network research.

1. The X-Bone

In this section, we discuss the X-Bone system
that is at the core of GX-Bone. The X-Bone is a
system for the dynamic deployment and
management of Internet overlay networks [1][2].
Overlay networks are used to deploy

infrastructure on top of existing networks, to
isolate tests of new protocols, partition capacity,
or present an environment with a simplified
topology. Current overlay systems include
commercial virtual private networks (VPNs), and
IP tunneled networks (M-Bone, 6-
Bone)[9][10][11]. The X-Bone system provides
a high-level interface where users or applications
request DWIM (do what I mean) deployment,
e.g.: create an overlay of 6 routers in a ring,
each with 2 hosts. The X-Bone automatically
discovers available components, configures, and
monitors them.

X-Bone creates IP tunnel-based Internet
overlays consistent with a general architecture
for network virtualization of the Internet [4].
This architecture supports concurrence,
recursion and revisitation. Concurrence allows
deployment of multiple, parallel concurrent
overlays. Recursion enables deployment of
overlays inside other overlays. Revisitation
enables reuse of the same node in a single
overlay more than once.

Within each overlay, the X-Bone provides a
completely standard networking interface that
includes, for example, network interfaces,
routing tables, and firewalls. Applications
continue to interact with the virtualized versions
of these mechanisms that are part of the overlay
abstraction just as they interact with the regular,
physical interfaces. The X-Bone system allows
different applications on the same end host or
router to be associated with different overlay
networks through its application deployment
mechanism. The combination of virtualization
and application deployment capability enables
controlled experimentation with advanced
networking applications within a global, virtual
network.

Some overlay systems require OS and/or
application modifications, restrict the number of
overlays a router or host can participate in, or
require manual component configuration. The X-
Bone requires no specific OS or application
modifications. X-Bone uses existing
implementations of IP services such as multi-

Base Net

Ring VN

Star VN

layer tunnels, virtual interfaces, IPsec, dynamic
routing, name service, and other infrastructure.

link

web
GUI

RD

host

RD

OM

API

router
Figure 2 X-Bone Software Design

The X-Bone distributed system is composed
of Resource Daemons (RDs) and Overlay
Managers (OMs), with a graphical user interface
(GUI) and an XML-based API. These
components are shown in Figure 2. The
functions of the RD and OM have been
incorporated into a single daemon, but
operationally they can be discussed as distinct
units. All communication is secured using SSL
and S/MIME. Further ACLs are used to limit the
overlay creation and use.

OMs deploy overlays; a user creates an
overlay by sending a request to an OM, either via
a web-based GUI (Figure 2) or by sending an
XML message directly to the OM API. Each
overlay is coordinated by a single OM. Large
overlays can be created by divide-and-conquer,
where a single OM will fork sub-overlay
requests to other OMs. Fault tolerance can be
achieved by replicating state in multiple backup
OMs. Both of these latter capabilities (recursion,
fault tolerance) are supported in the X-Bone
architecture, though not yet implemented in
current releases.

2. Global X-Bone Testbed

As noted before, the X-Bone to date has been
deployed as stand-alone software, to avoid the
need for any centralized coordination. Although
this allows testbeds to be autonomous and not
rely on ongoing USC/ISI support, it also fails to
leverage shared resources when such sharing is
desired.

The new GX-Bone release of X-Bone
software includes an option, defaulted to “off”,
for nodes in a testbed to join the global X-Bone
testbed. Joining this infrastructure involves
several steps, each discussed in detail below:

• advertising a node in the GX-Bone

registry
• incorporating a filtered copy of the GX-

Bone ACL
• incorporating a filtered copy of the GX-

Bone certificate authority list

The basic purpose of these three components
is, respectively, to assist with global resource
discovery, to enable global use of shared
resources by a known set of users, and to support
distributed authentication all at low cost.

The registry typically includes node’s
properties or preferences that provide enough
information to limit the number of global
invitations the node would receive. During
overlay deployment, the registry’s entries are
searched for appropriate hosts. It is not necessary
that the registry be accurate because each RD
confirms access and resource control, as in the
default system. The registry primarily helps to
improve efficiency of overlay deployment
through refinement of the set of nodes to be
contacted.

GX-Bone ACL is a global X-Bone ACL that
is used to indicate what kind of resources are to
be shared to the general public or subsets thereof.
Sites/nodes may selectively adopt from the GX-
ACL. The current X-Bone ACL structure can
already express a sort of catch-all default, in the
degenerate case, e.g., where name=“.*”; this is
sufficient to allow users who are not otherwise
listed to have resource permissions attached to
that entry. In a global testbed, however, a single,
global default is not always appropriate.
Individual nodes import any subset of entries in
the GX-Bone ACL, e.g., via filters (import any
where interfaces<5 and where name ends in
“.edu”).

The X-Bone relies on the X.509 certificate
system, which presumes that identity is
established based on certificate authorities (CAs)
known a-priori. However, X-Bone does not
specify the CA to be used. Different
deployments may use different CAs. To allow
automatic authentication in the presence of
multiple CAs, GX-Bone maintains a central
database of known CAs that is automatically
distributed to all sites. This allows authenticated
communication between any two nodes from
sites that are part of the GX-Bone without
manual intervention.

The GX-Bone support for global registry,
ACL and CA database, and automatic
distribution provide the administrator of a X-

Bone testbed global visibility for the testbed
nodes without compromising on control. Further,
other capabilities, developed in conjunction with
the X-Bone to support overlay research, are
expected to be part of the GX-Bone. These
include NetFS, a system for partitioning root
permission at fine granularity for network
configuration, and DataRouter, a string-
rewriting, late-binding, generalized loose source
route-based system which supports application
forwarding at the network layer. More
information on these can be found elsewhere
[1][3].

Both DataRouter and NetFS require
modification of kernel. However, neither of these
kernel modifications is required for a node to
join the GX-Bone. Presence of such kernel
extensions is indicated through the registry as
node properties. Accordingly, the overlays and
applications that run within can be customized to
use the extensions. Similarly other new
capabilities [7][8] can advertised and used for
network research, especially over wide area
networks.

3. Global X-Bone Testbed Benefits

The GX-Bone provides a new infrastructure
for network research. It provides a simple, user-
level, do-what-I-mean interface to dynamic
overlay deployment with automated global
resource management.

The system allows for safe, controlled and
wide-area network experiments that can leverage
existing knowledge and code base of kernel-level
modifications. Since GX-Bone treats local and
global nodes almost identically, experiment
design is the same when done locally or globally.
We expect that in most cases, the only difference
will be a change in node selection criteria on the
GUI.

GX-Bone supports very high performance
research, and allows the reuse of existing
application, transport, and network layer
protocols, as well as existing applications. The
computational and disk overhead of X-Bone is
minimal and predicable[1]. Since the networking
interface remains unchanged, most existing
software can be used unmodified. Further
DataRouter [3] can help simplify and improve
the performance of application-level networks.

4. Status and Demo

The X-Bone code has been available since
2000 as both a FreeBSD port and a Linux RPM.
It has been used in numerous individual
deployments to support overlay and application
experiments, and the development of advanced
virtual networking architectures. Current version
of X-Bone includes support for IPv6, dynamic
routing (RIP/RIPng), Dummynet, Cisco routers,
and DNSSEC. The API is XML-based and the
distribution comes with a web interface.

Prototypes for NetFS and DataRouter have
been completed though not released officially.
Current implementation of Global X-Bone
database uses LDAP. The implementation has
been completed and will be released shortly.

The demonstration at INFOCOM 2005 will
include the X-Bone functionality and GX-Bone
components.

References

[1] Touch, J., “Dynamic Internet Overlay Deployment and
Management Using the X-Bone,” Computer Networks, July
2001, pp. 117-135.

[2] Touch, J., Hotz, S., “The X-Bone,” in Proc. Third
Global Internet Mini-Conference, Proc. Globecom ’98,
Sydney, Australia Nov. 1998.

[3] Touch, J., Pingali, V., “DataRouter: A Network-Layer
Service for Application-Layer Forwarding,” IWAN,
Springer-Verlag, Dec. 2003.

[4] Touch, J., Wang, Y., Eggert, L., Finn, G., “Virtual
Internet Architecture,” Workshop on FDNA at SIGCOMM,
August 2003. (ISI-TR-2003-570).

[5] Train, J., Touch, J., Eggert, L., Wang, Y., “NetFS:
Networking through the File System,” ISI Technical Report
ISI-TR-2003-579.

[6] Wang, Y., Touch, J., “Application Deployment in
Virtual Networks Using the X-Bone,” Proc. DANCE, May
2002, pp. 484-493.

[7] Dina Katabi, Mark Handley, and Charles Rohrs,
"Internet Congestion Control for Future High Bandwidth-
Delay Product Environments." SIGCOMM, August 2002.

[8] Kaur, H. T. et al, “BANANAS: An Evolutionary
Framework for Explicit and Multipath Routing in the
Internet,'' Proceedings of ACM SIGCOMM Workshop on
FDNA, Volume 33, Issue 4, Pages 277-288, Karlsruhe,
Germany, August 2003.

[9] 6-Bone URL – www.6bone.net

[10] A-Bone URL – www.isi.edu/abone

[11] Eriksson, H., “MBone: The Multicast Backbone,”
Communications of the ACM, Aug. 1994, pp.54-60.

