A Recursive Network Architecture

Joe Touch
USC/ISI
What makes an architecture new?

- Shaking the Hourglass (CCW 08)
 - All exchanges are 1 packet
 - Collosograms > RTT*delay
 - No LANs? (all L2 was pt-pt)

- What defines success?
 - fixing what's 'broken'
 - doing something new/different
 - the Internet / circuits as a degenerate case
Motivation

- Desire to support new capabilities
 - Interlayer cooperation, dynamic layer selection, layering created by virtualization
- Desire to support emerging abstractions
 - Overlay layers don’t map to 1-7
 - Support for recursive nodes (BARP, LISP, TRILL)
- Desire to coordinate services in diff. places
 - Security, soft-state, pacing, retransmission
Observations

- Networking is *groups of interacting parties*
 - Groups are heterogeneous
 - All members want to interact
 - Groups can be dynamic (*i.e.*, virtual)

- Need an architecture that supports:
 - Heterogeneity
 - Interaction
 - Virtualization
Heterogeneity leads to layering

- M different interacting parties need
 - M^2 translators
 - M translators + common format

... i.e., a layer
Interaction leads to forwarding

- N parties need
 - N^2 circuits
 or
 - $O(N)$ links + forwarding
Virtualization leads to recursion

- N parties want to group in arbitrary, dynamic ways.

 … such groups are inherently virtual

 … and virtualization is inherently recursive
Recursion also supports layering and forwarding

- **Layering (left)**
 - Heterogeneity via $O(N)$ translators
 - *Supported by successive recursive discovery*

- **Forwarding (right)**
 - N^2 connectivity via $O(N)$ links
 - *Supported by successive iterative discovery*
What makes this an architecture?

- General template (metaprotocol + MDCM)
 - Instantiates as different layers or forwarding
- Abstraction for virtualization
 - Tunnel as link
 - Partitioned router as virtual router
 - Partitioned host + internal router as virtual host
- Abstraction for recursion
 - Recursive router implemented as a network of vouters with vhosts at the router interfaces
What does RNA enable?

- Integrate current architecture
 - ‘stack’ (IP, TCP) vs. ‘glue’ (ARP, DNS)
- Support needed improvements
 - Recursion (AS-level LISP, L3 BARP, L2 TRILL)
- Revisitation
- Supports “old horses” natively
 - Dynamic ‘dual-stack’ (or more)
Recursive Internet Architecture

- Recursion as a router
 - L3 = BARP (X-Bone), LISP (IRTF)
 - L2 = Rbridges/TRILL

Control / deployment
Network
RNA Metaprotocol

- Template of basic protocol service:
 - Establish / refresh state
 - Encrypt / decrypt message
 - Apply filtering
 - Pace output via flow control
 - Pace input to allow reordering
 - Multiplex/demultiplex
 - includes switching/forwarding
Structured template w/plug-in functions

- Layer address translate/resolution
 - ARP, IP forwarding lookup
 - BARP/LISP/TRILL lookup
- Layer alternates selection
 - IPv4/IPv6, TCP/SCTP/DCCP/UDP
- Iterative forwarding
 - IP hop-by-hop, DNS recursive queries

```
LAYER(DATA, SRC, DST)
    Process DATA, SRC, DST into MSG
    WHILE (Here <> DST)
        IF (exists(lower layer))
            Select a lower layer
            Resolve SRC/DST to next layer S’,D’
            LAYER(MSG, S’, D’)
        ELSE
            FAIL /* can’t find destination */
        ENDIF
    ENDWHILE
    /* message arrives here */
    RETURN {up the current stack}
```
Related Work

- Recursion in networking
 - X-Bone/Virtual Nets, Spawning Nets, TRILL, Network IPC, LI SP
 - RNA natively includes resolution and discovery

- Protocol environments
 - Modular systems: Click, x-Kernel, Netgraph, Flexible Stacks
 - Template models: RBA, MDCM
 - RNA adds a constrained template with structured services

- Context-sensitive components
 - PEPs, Shims, intermediate overlay layers, etc.
 - RNA incorporates this into the stack directly

- Configurable über-protocols
 - XTP, TP++, SCTP
 - RNA makes every layer configurable, but keeps multiple layers.
Conclusions

- Virtualization requires recursion
- Recursion supports layering
- Recursion supports forwarding

One recurrence to bind them all...

- *Recursion is a native network property*
 - Integrates and virtualization, forwarding and layering in a single mechanism
Internet Architecture

Accused of ossification, but:

- Ossification = stability
- Flexibility is abundant:
 - Shim layers:
 - HIP, SHIM6, IPsec, TLS
 - Muxing layers:
 - SCTP, RDDP, BEEP
 - Connections:
 - MPLS, GRE, IKE, BEEP, SCTP
 - Virtualization:
 - L2VPN, L3VPN/X-Bone/RON/Detour, L7-DHTs
Net Arch - Assumptions

- **Internet-Compliant Architecture**
 - Hosts add/delete headers
 - Routers transit (constant # headers)

- **Supports New Capabilities**
 - Concurrence (multiprocessing)
 - Revisitedation (multiple roles in one net)
 - Recursion (to hide topology and/or mgt.)
Virtual Networks

- Internet-like
 - Internet = routers + hosts + links
 - VIS = VRs + VHs + tunnels
 - Full architecture (vs. VPNs, PP-VPNs, etc.)

- All-Virtual
 - Supports VNs on VNs
 - "Reality" is undecidable

- Recursion-as-router
 - Some of VRs are VI networks

- See Globecom 1998 (running code 2000)
 - 15 layers deep, 800 wide, app. deploy, P2P integration
Recursion requires new layers – where? Why?

- Wedge between (IPsec, left) or replicate (virtualization, right)
RNA Stack (2006)

- One MP, many instances
 - Needed layers, with needed services
 - Layers limit scope, enable context sensitivity
 - Scope defined by reach, layer above, layer below

RNA mp-4
RNA mp-3
RNA mp-2
RNA mp-1

wireless

RNA mp-4
RNA mp-3
RNA mp-2
RNA mp-1’

optical
Click Implementation

Composition Graph

Conf File

Compose What

Click

mux
demux
buffer

Scheduler
Composi-
tion Logic

Data API
Control AP
Utilities
Parser

m1
m2

Protocol

Compose Recursively

Translated: