

A Recursive Network Architecture

Joe Touch USC/ISI

2/7/2011 3:27 PM

Copyright 2009, USC/ISI. All rights reserved.

What makes an architecture new?

- Shaking the Hourglass (CCW 08)
 - All exchanges are 1 packet
 - Collosograms > RTT*delay
 - No LANs? (all L2 was pt-pt)
- What defines success?
 - fixing what's 'broken'
 - doing something new/different
 - the Internet / circuits as a degenerate case

Motivation

- Desire to support new capabilities
 - Interlayer cooperation, dynamic layer selection, layering created by virtualization
- Desire to support emerging abstractions
 - Overlay layers don't map to 1-7
 - Support for recursive nodes (BARP, LISP, TRILL)
- Desire to coordinate services in diff. places
 - Security, soft-state, pacing, retransmission

Observations

- Networking is groups of interacting parties
 - Groups are heterogeneous
 - All members want to interact
 - Groups can be dynamic (*i.e.*, virtual)
- Need an architecture that supports:
 - Heterogeneity
 - Interaction
 - Virtualization

Heterogeneity leads to layering

- M different interacting parties need
 - M² translators

Oľ

M translators + common format
i.e., a layer

Interaction leads to forwarding

N parties need N² circuits Or O(N) links + forwarding

Virtualization leads to recursion

- N parties want to group in arbitrary, dynamic ways.
 - ... such groups are inherently virtual

... and virtualization is inherently recursive

Recursion also supports layering and forwarding

- Layering (left)
 - Heterogeneity via O(N) translators
 - Supported by successive recursive discovery
- Forwarding (right)
 - N² connectivity via O(N) links
 - Supported by successive iterative discovery

What makes this an architecture?

- General template (metaprotocol + MDCM)
 - Instantiates as different layers or forwarding
- Abstraction for virtualization
 - Tunnel as link
 - Partitioned router as virtual router
 - Partitioned host + internal router as virtual host
- Abstraction for recursion
 - Recursive router implemented as a network of vrouters with vhosts at the router interfaces

What does RNA enable?

- Integrate current architecture
 - 'stack' (IP, TCP) vs. 'glue' (ARP, DNS)
- Support needed improvements
 - Recursion (AS-level LISP, L3 BARP, L2 TRILL)
 - Revisitation
- Supports "old horses" natively
 - Dynamic 'dual-stack' (or more)

Recursive Internet Architecture

L2 = Rbridges/TRILL

RNA Metaprotocol

Template of basic protocol service:

- Establish / refresh state
- Encrypt / decrypt message
- Apply filtering
- Pace output via flow control
- Pace input to allow reordering
- Multiplex/demultiplex
 - includes switching/forwarding

Structured template w/plug-in functions

- Layer address translate/resolution
 - ARP, IP forwarding lookup
 - BARP/LISP/TRILL lookup
- Layer alternates selection
 - IPv4/IPv6, TCP/SCTP/DCCP/UDP
- Iterative forwarding
 - IP hop-by-hop, DNS recursive queries

Related Work

- Recursion in networking
 - X-Bone/Virtual Nets, Spawning Nets, TRILL, Network IPC, LISP
 - RNA natively includes resolution and discovery
- Protocol environments
 - Modular systems: Click, x-Kernel, Netgraph, Flexible Stacks
 - Template models: RBA, MDCM
 - *RNA adds a constrained template with structured services*
- Context-sensitive components
 - PEPs, Shims, intermediate overlay layers, etc.
 - RNA incorporates this into the stack directly
- Configurable über-protocols
 - XTP, TP++, SCTP
 - RNA makes every layer configurable, but keeps multiple layers.

Conclusions

- Virtualization requires recursion
- Recursion supports layering
- Recursion supports forwarding

One recurrence to bind them all...

Recursion is a native network property

 Integrates and virtualization, forwarding and layering in a single mechanism

Internet Architecture

Accused of ossification, but:

- Ossification = stability
- Flexibility is abundant:
 - Shim layers:
 - HIP, SHIM6, IPsec, TLS
 - Muxing layers:
 - SCTP, RDDP, BEEP
 - Connections:
 - MPLS, GRE, IKE, BEEP, SCTP
 - Virtualization:
 - L2VPN, L3VPN/X-Bone/RON/Detour, L7-DHTs

Net Arch - Assumptions

Internet-Compliant Architecture

- Hosts add/delete headers
- Routers transit (constant # headers)
- Supports New Capabilities
 - Concurrence (multiprocessing)
 - Revisitation (multiple roles in one net)
 - Recursion (to hide topology and/or mgt.)

Virtual Networks

Internet-like

- Internet = routers + hosts + links
- VIs = VRs + VHs + tunnels
- Full architecture (vs. VPNs, PP-VPNs, etc.)

- All-Virtual

- Supports VNs on VNs
- "Reality" is undecidable
- Recursion-as-router
 - Some of VRs are VI networks
- See Globecom 1998 (running code 2000)
 - 15 layers deep, 800 wide, app. deploy, P2P integration

Recursion requires new layers – where? Why?

 Wedge between (IPsec, left) or replicate (virtualization, right)

RNA Stack (2006)

- One MP, many instances
 - Needed layers, with needed services
 - Layers limit scope, enable context sensitivity
 - Scope defined by reach, layer above, layer below

2/7/2011 3:27 PM

Click Implementation

