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Abstract' 
Advances in communication rates exceed the ability of a 
single source to fully utilize a gigabit WAN channel with 
existing deterministic protocols. Parallel communication 
describes a method for reducing latency by managing 
indeterminism and increasing channel utilization, given a 
surplus bandwidth-delay product. It involves a 
nondeterministic state mechanism, with a modified 
protocol interface. 

1: Introduction 

Recent advances in communication rates have (and 
will) outpace the ability of a single source to effectively 
utilize channels. This surplus bandwidth, in the form of an 
excess bit latency (i.e., bandwidth-delay product), pro- 
vides an opportunity for increased channel utilization. 
Here we present one paradigm for using such an opportu- 
nity, called Parallel Communication. 

Parallel Communication extends the channel functions, 
to permit more responsive user service in domains with 
high bit latency, through increases in the effective channel 
utilization. Parallel Communication specifies the ways in 
which sets of communication are managed together, and 
describes a modification of our existing protocol para- 
digms that can better utilize links with high bit latencies. 

2: Characteristics of Gigabit networks 

Gigabit networks are characterized by a high band- 
width-delay product (we prefer bit latency, the latency 

measured in bits, rather than time), and by the relationship 
of this product to the messages exchanged. In Figure 1. the 
equivalences between various speed and scale networks 
are shown. The bit latency characterizes the protocol oper- 
ation [9]. Since a gigabit LAN has a bit latency equivalent 
to a 100 kilobit WAN (ignoring topology issues), TCPAP 
(which has worked on WANs up to 1.5 Mbps) should suf- 
fice. 

All existing protocols incur several trips worth of 
latency during connection setup. Existing protocols also 
attempt to pipeline the data transfer during the connection 
as well. Here we are considering only the mid-stream utili- 
zation (ignoring setup) and including conventional pipe- 
lining. By these measures, existing protocols, which work 
in WANs up through 45 Mbps, will suffice in LANs 
through 100 Gbps (and MANS through 10 Gbps) (see the 
45 Mbps WAN rate line in Figure 1). 
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FIGURE 1. Network equivalences. (diagonal 
dashed lines specify bit latency equivalence) 
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Bit latency has exhibited three phases of evolution. In 
the first phase, characterized by NCP in the ARPANET in 
1970-1980 [2], the channel bit latency was small com- 
pared to the average computer buffer size. TCP became 
Prevalent in 1980 as the bit latency increased, and 
approached the average file size [6]. TCP is a sliding-win- 
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dow flow control mechanism for transfer of linear 
sequences of data, and thus works well only when the 
buffer space is as large as the bit latency of the channel, 
and where the file size is at least an order of magnitude 
larger than this [7]. The sliding-window mechanism in 
TCP (and other protocols) relies on the availability of a 
large linear stream of messages in order to occupy the 
channel during the round trip time. 

Gigabit WANs are different because the channel is no 
longer sufficiently occupied by file transfer. A file that 
dominated the window size of a 1.5 Mbps channel, now 
occurs as a small ‘blip’ on a 1 Gbps channel (Figure 2). An 
entire file now occupies a gigabit WAN channel as a con- 
ventional Rpc message occupies a 10 Mbps MAN chan- 
nel. 

In Figure 2, the file is 30x as large as the window size’ 
of a conventional 1.5 Mbps WAN, or approximately 1 
Megabit (125 K bytes). At 45 Mbps, the window needs to 
be 30x larger to occupy the channel during the bit latency, 
and so the same file no longer fills the round trip window. 
At 150 Mbps this effect is even more pronounced. At 1 
Gbps, the file is a very small message, as compared to the 
round trip pipeline. If we compare the file duration to the 
channel latency, and graphically normalize for the larger 
of the two, we observe that the situation is practically 
reversed (Figure 3). 
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FIGURE 2. Relative sliding-window sizes (bit 
latency) vs. fixed 1 Megabit file size, as bit rate 
increases. 
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FIGURE 3. Reversal of the dominance of file 
duration over bit latency. 

We are now in a period in which the file sizes are near 
the bit latency of proposed channels (at 150 Mbps rates, 

1. The window size is optimally the same as the bit latency [7]. 

this is a 3 Mbit or 400 K byte file). As the channel rates 
increase with technological advances, the single-source 
channel utilization will decrease. Conventional protocols 
cannot otherwise sufficiently occupy the channel. These 
protocols were designed for low latency message 
exchange (RPC), or high-latency linear stream communi- 
cation where the stream is much longer than the latency 
(TCP). We now have a case where even entire file 
exchanges appear as a brief message exchange, and where 
a channel will be idle because no data is waiting for trans- 
mission. 

Satellite protocols also operate in high bit latency, high 
bandwidth domains. Satellite networks have unique topol- 
ogy and resource distribution characteristics, so their solu- 
tions are not applicable to general WAN protocols [7]. The 
centralized management afforded by the satellite aanspon- 
der is defeated by its requisite simplicity, in order to sat- 
isfy severe weight, reliability, and power restrictions. As a 
result, satellite protocols use simple fixed-window syn- 
chronous protocols and a high degree of deterministic 
channel multiplexing to increase utilization in spite of 
their high latency environment. 

Figure 4 shows how the size of the RAM buffers com- 
pares to the bit latency of the channel as bit rates increase; 
we assume here that file sizes are growing in proportion2. 
In the period between 1970 and 1985, the amount of buffer 
space available was 40x larger than the bit latency of the 
Intemet. Advances in the channel rates are diminishing 
that gap rapidly, and buffer size will be approximately 3x 
the bit latency. 
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FIGURE 4. The gap between RAM buffer size and 
bit latency. 

Figure 4 also shows the bit latencies of Ethemet3, 
FDDI, and FDDI-2, based on specified maximum network 
sizes of 2.5 Km for Ethernet and 200 Km for FDDI [7]. 

2. This is a loose bound, because we assume the entire RAM contents 
are dedicated to the buffer. 
3. Ethernet is a trademark of the Xerox Corporation. 
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These protocols never incur bit latencies very close to the 
size of the node buffers, as will wcur at T3 (45 Mbps, 

(1.244 Gbps, 2000, planned) rates in WANs [l]. 
In summary, effective channel use requires occupying 

the bit latency, but small transaction message sizes are a 
limiting factor (e.g., TCP where files are smaller than 
sender windows, and RPC in general). 

There are two ways around this: the management of 
sets of files or streams, and indeterminism within a single 
stream. These are discussed below. 

1990). STS-3 (155.52 Mbps, 1995, planned), and STS-24 

3: Imprecision of state 

The main problem with existing protocols is that they 
are based on deterministic models of remote state. In a net- 
work with high bit latency, we cannot rely on a consistent, 
deterministic global state to be maintained in a timely 
fashion. A deterministic model will not let enough infor- 
mation be put into the stream to fully utilize the channel 
until after a reply is received. 

Relaxing the model to introduce imprecision of state in 
the system involves partitioning the states of the model of 
the remote state, and increasing the message set to com- 
pensate. The result is a decrease in individual message 
utility. Partitioning the state requires messages to be 
labelled with partition identifiers, so that the message data 
is used only when received by its corresponding partition 
member state. The idea is to send “all possible next 
requests”, but to restrict the requests to be less specific. 
The “set of all possible next requests” we call a set ofcom- 
munication . 

For example, consider a variation of TCP’s sliding-win- 
dows in which buffers are not arranged as a linear 
sequence (Figure 5) ,  but rather as a tree (Figure 6). In 
either case, as messages are sent, the buffer space is con- 
sumed (the ‘slack’ in the figures), limiting the amount of 
information in transit. In the TCP case, the lack of ‘more 
file to send’ is an impediment to buffer use, in the high-bit 
latency case. In the Branching Windows case, at each 
point in the protocol, a decision is made about which 
branch to explore. As messages are received, they specify 
the correct remote branch, and incorrect branch compo- 
nents are removed. The protocol generally operates as 
before, except that when ‘window #4‘ (i.e., level 4 in the 
tree) is active, many possible versions of that window are 
valid. This allows the window to expand to the bit latency, 
rather than being restricted by the input stream to TCP. 
We sacrifice precision of state, and increase the number of 
messages that are required, because we need to send mes- 
sages to each possible remote state. 

The result is that this system no longer requires feed- 
back at each level of the tree in order to proceed and 
descend to the next level. We do not need to know the 

exact state of the remote system, so long as we keep track 
of ALL the possible states of that system, and communi- 
cate as if all were potentially there. Scale issues are 
addressed in the tradeoff between the number of partitions, 
and the overhead of each partition. One requirement of 
this method is that a particular remote node, in a single 
state, should not be aware that we are sending messages to 
his  ‘possible siblings’. As a result, we put conditionals, or 
guards, on the messages, so that the remote node receives 
only those messages addressed with its current state. 
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FIGURE 5. Conventional sliding-windows. 
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FIGURE 6. Branching windows 

4: Implications 

Other researchers have also examined the problems cre- 
ated by increased bit latency [5 ] .  Proposed solutions use 
pipelining and process parallelism to increase channel uti- 
lization. Pipelining is not effective in reducing start-up 
latency, the kind which precedes every round-hip message 
exchange. Increasing the pipelining is the desired result, 
but cannot be achieved per se. The file size has become a 
limitation to filling the pipe. We now must consider send- 
ing multiple files or having multiple sessions to compen- 
sate. 

Process parallelism uses a set of processes to fill the 
pipeline with messages or files. The processes’ data 
streams are multiplexed together, so that when one process 
runs out of data to send, another will be activated to use 
the channel. The sender needs to determine the state of the 
receiver, because the source of the data depends on which 
process is currently active. Process parallelism denotes a 
set of collectively managed processes, but it is not the pro- 
cess set that permits the channel utilization, but rather their 
management as a set. Process parallelism is equivalent to 
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Parallel Communication, because the management of non- 
deterministic context switching is equivalent to the nonde- 
terministic remote state in our model. 

&fetched anticipation, as used in cache management, 
does not help reduce bit latency induced channel underuti- 
lization. If the information could be deterministically pre- 
dicted, it would have been used to fill the pipeline via 
conventional linear-anticipation protocols (i.e., linear 
lookahead, as in sliding-window). Anticipation that 
attempts to predict remote state, and recovers if in error, 
only increases the imprecision of state across the channel. 
Instead, a method of anticipation that uses the imprecision 
of state, but does not require recovery in the conventional 
sense, can be used effectively [9]. This is sender based 
anticipation, where a set of possible messages is sent, and 
where the anticipator’s notion of remote state is refined, 
but not recovered. 

Parallel Communication is based on sender-based 
anticipation, the sender using an imprecise state model of 
the receiver, and having the sender manage the set of pro- 
cesses together (rather than individually). The idea is to 
send the ‘set of all possible next requests’, and permit the 
local notion of remote state to become imprecise, in 
exchange for later refinement via received messages. Par- 
allel Communication uses the increased bit latency of the 
channel to send sets of messages, only part of which are 
useful. The result is that the channel is used to forward 
messages correlated to possible futures of the receiver. 
This more accurately models the imprecise state of the 
remote participant. 

One effect of Parallel Communication is that, in order 
to predict the possible futures of the remote node, a 
detailed model of the operation of the state of the remote 
node is required. This indicates that layering can obscure 
the state evolution that is required for the sender to ana- 
lyze the possible states of the receiver. Parallel Communi- 
cation methods are not applicable to existing protocol 
implementations, e.g., TCP, since they are linear only, and 
the bit latency exceeds the linear message size (file size). 
This method is applicable to the ‘sets of processes’ solu- 
tion, because the set appears as a single (total) nondeter- 
ministic remote process (appropriately). 

4.1: Implications of these observations 

Thus far, we have observed that existing protocols do 
not permit single sources to effectively occupy a high bit 
latency channel. There are some obvious implications to 
this observation, and to the notion of sender-based antici- 
pation as its compensation. 

First, a single source cannot occupy the channel, but a 
set of sources can. We do not address the aggregate shar- 
ing of a channel. Such shared use is provided by either 
deterministic multiplexing, or nondeterministic multiplex- 

ing. Deterministic multiplexing is an agreed solution; we 
are concemed with cases where it is not possible. Nonde- 
terministic multiplexing requires a higher level protocol to 
determine component agreement between the sender and 
receiver, and such a protocol is equivalent to Parallel 
Communication methods (as addressed later). 

Second, files are messages that are too short to occupy 
a high bit latency channel. To make protocols regain per- 
formance, we consider the files as the component blocks 
of transmission, and consider the higher level structure of 
the file transmission. The files become the components of 
a rich structure of data flow, for which current protocol 
mechanisms are not suited. 

The result of this latter observation is that existing pro- 
tocols are suited to linear stream communication (i.e., con- 
ventional files), and that PC is suited to rich structure 
streams, such as file sets and trees. There are other exam- 
ples of rich structure data streams, static examples of 
which are hypertext and hypermedia, and dynamic exam- 
ples of which are ‘object’ data structures. 

Another observation is that sender anticipation can also 
be used with linear streams (conventional files) where 
indeterminism is introduced by transmission errors. In this 
case, PC reduces to a form of forward error correction 
(FEC), and file components are repeated [ 101. 

In all these cases, we are using the network as a cache, 
to reduce the bit latency between the sender and the 
receiver. This network cache differs from a conventional 
cache, in that its contents change over time, and this 
change is controlled by the source of the cache data. 

5: An Example of Parallel Communication 

Consider the case where the round trip bit latency, for- 
merly much smaller than the size of the file, is now much 
larger (Figure 4). The channel now offers more bandwidth 
than conventional applications can manage. Rather than 
stopping at a single file or message, further messages can 
be sent, anticipating the requests of the receiver. This 
requires management of the set of messages at the sender, 
to prevent rollback that would nullify the latency advan- 
tage. In Figure 7, a single message sent in a long window 
does not utilize the additional bandwidth available. In Par- 
allel Communication, the sender emits conditional mes- 
sages in a tree, depicted here as smaller line widths and 
lighter lines denoting the probability of utilization at the 
receiver. The channel sees this tree as a conventional 
sequence of messages, using the entire window. The 
receiver in this example selects only those messages 
appropriate to its current state, resulting in receipt of 4x as 
many messages as a single-message scheme. The mes- 
sages are no longer probabilistic at the receiver (solid 
black message segments), because its local state deter- 
mines the active message component of the sent tree. 
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This method works only where the interaction is 
latency limited, rather than bandwidth 1imited.The serv- 

through opcode analysis at the server, which is computa- 
tionally intensive. We also assume that the receiver can 
process the opcodes at the rate received; if not, some 
sender pacing or receiver buffering is required to prevent 
overrun during some parts of the communication, particu- 
larly when the message guards cannot be computed at the 
rate received. 

In &he case where the processing power and bandwidth 
are available to compensate for latency, speedups of 
3000~  are possible [8]. 
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FIGURE 7. Parallel Communication visualized. 

Parallel Communication is particularly well suited to 
hypermedia communication, where the structure of the 
message flow is indicated by information links. Hyperme- 
dia using interactive digital video is one example where 
message sizes are large (still video images or brief full- 
motion), and the link structure is rich and hierarchical, 
rather than merely linear. 

5.1: A CPU-memory interface 

One example that demonstrates the potential for Paral- 
lel Communication is the interaction between a worksta- 
tion and its disk server. The workstation consists of the 
CPU, RAM, and local U 0  (user, data measurement, etc.); 
the server contains the read-only program. The server is 
the receiver of the opcode stream, and the workstation is 
the sender. The state of the receiver is the CPU program 
counter. We present this interface in terms of an opcode 
stream, although it can be applied to page-level communi- 
cation as well. 

In conventional protocol interaction, the server 
responds to explicit requests from the workstation. Each 
request indicates the receiver’s current program counter, 
and the sender reacts by emitting the appropriate opcodes. 
Nothing occurs in the latency between requests. 

In Parallel Communication, the server models the 
workstation as a set of possible program counters. The 
server emits an opcode appropriate for each of the possible 
program counter during the interval between requests. As 
a result, requests are preemptively serviced. The worksta- 
tion receives an early reply to a request, compared to the 
actual latency interval. The latency is thus reduced. 

6: Future directions 

We need to apply this technique to higher levels of the 
protocol, because that is where the information resides, 
i.e., information on the characteristics of the sets of pro- 
cesses. For example, we need an interface in which the 
conventional application-layer OUT signals of OPEN, 
CLOSE, and SEND, and the IN signals of OPEN-RE- 
QUEST, CLOSE-REQUEST, and RECEIVE, are supple- 
mented by the OUT signal of 
SEND-CONDITIONAL-REQUEST, and IN by 
RECEIVE-CONDITIONAL. In this way the protocol 
stack can indicate to the application that additional band- 
width is available for Parallel Communication, and the 
application can indicate sufficient remote state so that only 
applicable messages are passed up to the remote receiver. 

In existing protocols (IEEE 802.2 LLC [4], TCP [61), 
there is a set of flow control signals that is used to negoti- 
ate a description of the ‘lossless’ buffering available for 
the channel. This buffering currently represents a capabil- 
ity of the buffer software, although that capability is some- 
times determined as a function of round trip capacity 
measurements on the data link. The network layer at the 
source node can receive a signal from its local transport 
layer indicating the amount of data that layer can accept 
for ‘lossless’ transmission. The destination node can send 
a signal to its local transport layer indicating the amount of 
data that the destination can accept without overflow. 
These signals model a notion of the stream as a linear 
sequence of messages that will occupy these buffers. The 
buffer sizes indicated are restricted by a set of rules, i.e., 
that the source has enough space to occupy the round trip 
bit latency, that the receiver has the same space, and that 
the file is much smaller than these buffers. 

Existing interfaces do not consider the case where the 
source is more severely limited by the messages sent than 
by the channel or receiver capabilities. We are currently 
developing the extensions to TCP providing the required 
signals for Parallel Communication. The control interface 
augments the conventional signals of OPEN, CLOSE, 
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SEND, and RECEIVE with signals to the application layer 
that request conditional data from the sender, and request 
state resolution information from the receiver. This effec- 
tively splits the linear buffer sequence into a tree of possi- 
ble remote buffer states. The remote buffer remains a 
deterministic linear sequence; only the sender’s perception 
of that sequence changes to accommodate latency-induced 
imprecision. The sender’s buffer needs information from 
the application layer describing the ways in which the 
remote state can become less precise over time, and ways 
to specify labels to guard the receipt of the messages. The 
receiver’s buffer management is augmented to use infor- 
mation about its local state to filter the incoming data 
stream, and restrict receipt of messages. 

6.1: Details of NFS Parallel Communication 

The required TCP extensions support branching win- 
dows and provide application-layer signalling of excess 
bandwidth that can be used for latency reduction. These 
extensions support the development of application-layer 
modifications, which can be implemented as intermediar- 
ies to existing protocols (Figure 8). Here we replace the 
conventional RCPAJDP NFS interface with a branching- 
TCP version. 

Existing NFS 

NFS 
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STATION 
WORK- 

Latent-NFS 
I 
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SERVER 

USER 

STATION 
WORK- 

FIGURE 8. Implementation of the NFS 
intermediaries called the pump and filter. 

The pump and filter implement the application modifi- 
cations. The pump modifies the server side of the inter- 
face; the filter modifies the client side. The pump manages 
the sending of all possible next requests, and manages the 

possible states of the client. The pump uses the server-side 
TCP signal of excess bandwidth to initiate sending the 
anticipatory messages, and the branching window allows 
the pump to send alternate streams of messages to the cli- 
ent. As the pump emits these messages, the branching in 
the server-side TCP increases. 

The filter allows the client application to receive only 
those messages that correspond to a particular state. The 
client application signals its TCP interface to filter the 
incoming stream based on a branch identifier. This client- 
side TCP also indicates branch selections to the server- 
side TCP, to reduce the branching at the server. 

The branching increases by the pump and decreases by 
the filter’s messages to the pump determine the extent to 
which the excess bandwidth can be used to reduce the 
observable latency [9]. 

General algorithms for the pump and filter are given in 
detail in [9]. A specific pump and filter for managing 
CPU-memory opcode communication is given in detail in 
[8]. The pump and filter shown here (Figure 9) exemplify 
characteristics of the TCP branching windows mechanism 
and the application-layer extensions together. 

I 
Request Respnse  Avail.BW 

I Request Response 
L 

FIGURE 9. Detail of the interaction of the pump 
and filter. 

6.2: Some preliminary performance results 

In earlier work, we performed some experiments to 
measure the potential performance increases through Par- 
allel Communication methods. Using a simplified model, 
and some dynamic opcode traces, we were able to com- 
pute the expected benefits. 

For these observations, we define speedup as the ratio 
of actual execution time to “optimal” execution time, the 
latter being the time to execute on a local system with zero 
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latency and infinite bandwidth between the CPU and 
memory (Equation 1). For these equations, we define: 

N = number of pages fetched 
t = time to execute a page 
missrate = percentage of pages not in the cache 
pBW = page bandwidth 
pD = page degree 
pL = page linearity 
rtt = round trip time 

The page bandwidth is the number of pages communi- 
cated per unit time over a channel, the page degree is the 
average number of pages that a single page ever jumps to, 
and the page linearity is the average number of pages exe- 
cuted in a linear sequence (due to ‘running off the end’). 

OPTIMALtime = N x t 

Equation 2 describes the execution time when the CPU 
is separated from the memory. Equation 3 describes the 
same when a page cache is added near the CPU, and the 
miss ratio is measured over the trace. 

DISTANTtime = N x ( t  + r t t )  

(EQ 3) 
We can approximate the average expected execution 

time achieved by using Parallel Communication by the 
formula in Equation 4 [8]. 

CACHEDtime = N x ( t  + rtt x missratio) 

r t t x p B W x  ( p D -  1) 

PL x PD 
p D  x rtt 

(EQ 4) 
We have already performed such measurements at the 

individual opcode level on the Sun SPARC architecture 
running the GNU C compiler weighted benchmark from 
the SPEC Benchmark Release 1.0 [lo], a TEX benchmark 
noted in [3]’, and C-language versions of both Dhrystone 
and Linpack2. Our results are equivalent to an NFS trace 
where the page size is a single opcode. Although these 
conclusions do not imply correspondence with NFS case, 
they have justified further research including the NFS 
experiments. 

1. The software supplement of [3] is available via anonymous FlT at 
max.stanford.edu. 
2. These benchmarks are available via Intemet e-mail; send queries to 
netliW@surfer.epm.omI.gov. 

Figure 10 shows the channel utilization curve, for con- 
ventional (solid line in the figure) and versions of Parallel 
Communication (dashed lines). The channel utilization for 
the conventional case is determined by the channel occu- 
pancy; the PC case is determined by the occupancy 
divided by the expected utilization. PC uses the channel to 
send messages, some of which are not used when 
received. We have plotted utilization as ‘utilized messages 
per unit time’. The raw channel utilization in the PC cases 
is always 1008, because possible future requests are 
always being sent. The different PC versions denote dif- 
ferent versions of implementation, some less complete 
than others. 

Conventional 

o . 2 .  20 40 60 80 100 

Round Trip Bit Latency (in opcodes) 

FIGURE 10. Effective channel utilization 

The expected speedup of a program execution is 
defined as the ratio of the PC execution time (dashed lines 
in the figure) divided by the remote execution time (solid 
line) (Figure 11). As the bit latency increases, PC exhibits 
a linear increase in utilization for a brief time, then a loga- 
rithmic increase. 
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FIGURE 11. Expected execution time speedups of 
various PC implementations. 
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6.3: A note on beating the setup latency 

Earlier we noted that all measurements and compari- 
sons to existing protocols were made midstream, whereas 
setup round trip latencies were ignored. 

One way to address channel latency during the setup 
exchange is to apply Pc methods to the setup itself, rather 
than just to the transport portion of the protocol, as has 
been done here. The initiator of a connection sends an 
‘open request’ as usual, and starts sending data in anticipa- 
tion of the future reception of the ‘connection accept’ mes- 
sage, thus avoiding the initial round trip setup 1atency.The 
data can be used only in a conditional (revocable) sense, 
either by rollback or branching histories. If the request is 
denied, the data sent must have been ignored by the 
receiver. 

The result is equivalent to a fast-setup, where the data 
transport occurs before the setup completes. This is 
accomplished without modification to the protocol; by 
implementing the protocol using PC methods, a degree of 
asynchronous setup is achieved. 

7: Conclusions 

We have to date developed the description of a possible 
channel utilization protocol method, and performed some 
preliminary measurements that indicate a potential gain. 
We are in the process of developing a full emulation 
experiment, in order to measure the gains on an NFS sys- 
tem at the page level. A final implementation of the sys- 
tem, pending the outcome of these measurements, is also 
planned. 
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