
Parallel Communication

Joseph D. Touch

USC / Information Sciences Institute (touch@isi.edu)

Abstract'
Advances in communication rates exceed the ability of a
single source to fully utilize a gigabit WAN channel with
existing deterministic protocols. Parallel communication
describes a method for reducing latency by managing
indeterminism and increasing channel utilization, given a
surplus bandwidth-delay product. It involves a
nondeterministic state mechanism, with a modified
protocol interface.

1: Introduction

Recent advances in communication rates have (and
will) outpace the ability of a single source to effectively
utilize channels. This surplus bandwidth, in the form of an
excess bit latency (i.e., bandwidth-delay product), pro-
vides an opportunity for increased channel utilization.
Here we present one paradigm for using such an opportu-
nity, called Parallel Communication.

Parallel Communication extends the channel functions,
to permit more responsive user service in domains with
high bit latency, through increases in the effective channel
utilization. Parallel Communication specifies the ways in
which sets of communication are managed together, and
describes a modification of our existing protocol para-
digms that can better utilize links with high bit latencies.

2: Characteristics of Gigabit networks

Gigabit networks are characterized by a high band-
width-delay product (we prefer bit latency, the latency

measured in bits, rather than time), and by the relationship
of this product to the messages exchanged. In Figure 1. the
equivalences between various speed and scale networks
are shown. The bit latency characterizes the protocol oper-
ation [9]. Since a gigabit LAN has a bit latency equivalent
to a 100 kilobit WAN (ignoring topology issues), TCPAP
(which has worked on WANs up to 1.5 Mbps) should suf-
fice.

All existing protocols incur several trips worth of
latency during connection setup. Existing protocols also
attempt to pipeline the data transfer during the connection
as well. Here we are considering only the mid-stream utili-
zation (ignoring setup) and including conventional pipe-
lining. By these measures, existing protocols, which work
in WANs up through 45 Mbps, will suffice in LANs
through 100 Gbps (and MANS through 10 Gbps) (see the
45 Mbps WAN rate line in Figure 1).

Network Sire and Speed Equivalence#
In terms d bit latency

olpwrpu-
loo00
1,&- I WAN r.1.

WO -*- +-- ... wP*- t--.- 1Gbps
lSOMbps
45Mbps

**-.--- ..
10

1 -

0 1.5Mbps
0 1

OsSKbps
001 -'

0.001 -
0001 1 I I

Network Size mks

FIGURE 1. Network equivalences. (diagonal
dashed lines specify bit latency equivalence)

1. This research was sponsored by the Defense Advanced Research
Projects Agency through Ft. Huachuca Contract No. DABT63-91-C-
OOO1. The views and conclusions contained in this document are those of
the authors and should not be interpntd as representing the official poli-
cia, either exp.csscd or implied, of the Department of the Army, the
Defense Advanced Research Projects Agency, or the U.S. Govmment.

Bit latency has exhibited three phases of evolution. In
the first phase, characterized by NCP in the ARPANET in
1970-1980 [2], the channel bit latency was small com-
pared to the average computer buffer size. TCP became
Prevalent in 1980 as the bit latency increased, and
approached the average file size [6]. TCP is a sliding-win-

0743-166W93 $03.00 Q 1993 IEEE
4d.3.1

505

dow flow control mechanism for transfer of linear
sequences of data, and thus works well only when the
buffer space is as large as the bit latency of the channel,
and where the file size is at least an order of magnitude
larger than this [7]. The sliding-window mechanism in
TCP (and other protocols) relies on the availability of a
large linear stream of messages in order to occupy the
channel during the round trip time.

Gigabit WANs are different because the channel is no
longer sufficiently occupied by file transfer. A file that
dominated the window size of a 1.5 Mbps channel, now
occurs as a small ‘blip’ on a 1 Gbps channel (Figure 2). An
entire file now occupies a gigabit WAN channel as a con-
ventional Rpc message occupies a 10 Mbps MAN chan-
nel.

In Figure 2, the file is 30x as large as the window size’
of a conventional 1.5 Mbps WAN, or approximately 1
Megabit (125 K bytes). At 45 Mbps, the window needs to
be 30x larger to occupy the channel during the bit latency,
and so the same file no longer fills the round trip window.
At 150 Mbps this effect is even more pronounced. At 1
Gbps, the file is a very small message, as compared to the
round trip pipeline. If we compare the file duration to the
channel latency, and graphically normalize for the larger
of the two, we observe that the situation is practically
reversed (Figure 3).

WAN mm

1.5-

1:1 m 46 Mbm

1.3 m 150UB.

1:20 1 aop9

FIGURE 2. Relative sliding-window sizes (bit
latency) vs. fixed 1 Megabit file size, as bit rate
increases.

TCP dldlng-wlndorr donuln
1.5 Mbpr channel

-J

FIGURE 3. Reversal of the dominance of file
duration over bit latency.

We are now in a period in which the file sizes are near
the bit latency of proposed channels (at 150 Mbps rates,

1. The window size is optimally the same as the bit latency [7].

this is a 3 Mbit or 400 K byte file). As the channel rates
increase with technological advances, the single-source
channel utilization will decrease. Conventional protocols
cannot otherwise sufficiently occupy the channel. These
protocols were designed for low latency message
exchange (RPC), or high-latency linear stream communi-
cation where the stream is much longer than the latency
(TCP). We now have a case where even entire file
exchanges appear as a brief message exchange, and where
a channel will be idle because no data is waiting for trans-
mission.

Satellite protocols also operate in high bit latency, high
bandwidth domains. Satellite networks have unique topol-
ogy and resource distribution characteristics, so their solu-
tions are not applicable to general WAN protocols [7]. The
centralized management afforded by the satellite aanspon-
der is defeated by its requisite simplicity, in order to sat-
isfy severe weight, reliability, and power restrictions. As a
result, satellite protocols use simple fixed-window syn-
chronous protocols and a high degree of deterministic
channel multiplexing to increase utilization in spite of
their high latency environment.

Figure 4 shows how the size of the RAM buffers com-
pares to the bit latency of the channel as bit rates increase;
we assume here that file sizes are growing in proportion2.
In the period between 1970 and 1985, the amount of buffer
space available was 40x larger than the bit latency of the
Intemet. Advances in the channel rates are diminishing
that gap rapidly, and buffer size will be approximately 3x
the bit latency.

1 0 0

i
? l

I 0.01

f 0.1

8

FDOI-2
FDDI

I I
0.001 , 1

1- 1070 1071 1905 1 W 1886 aOa, 2006

0 WAN Bit-Latency I 3 ode Buffer size

FIGURE 4. The gap between RAM buffer size and
bit latency.

Figure 4 also shows the bit latencies of Ethemet3,
FDDI, and FDDI-2, based on specified maximum network
sizes of 2.5 Km for Ethernet and 200 Km for FDDI [7].

2. This is a loose bound, because we assume the entire RAM contents
are dedicated to the buffer.
3. Ethernet is a trademark of the Xerox Corporation.

44.3.2
506

These protocols never incur bit latencies very close to the
size of the node buffers, as will wcur at T3 (45 Mbps,

(1.244 Gbps, 2000, planned) rates in WANs [l].
In summary, effective channel use requires occupying

the bit latency, but small transaction message sizes are a
limiting factor (e.g., TCP where files are smaller than
sender windows, and RPC in general).

There are two ways around this: the management of
sets of files or streams, and indeterminism within a single
stream. These are discussed below.

1990). STS-3 (155.52 Mbps, 1995, planned), and STS-24

3: Imprecision of state

The main problem with existing protocols is that they
are based on deterministic models of remote state. In a net-
work with high bit latency, we cannot rely on a consistent,
deterministic global state to be maintained in a timely
fashion. A deterministic model will not let enough infor-
mation be put into the stream to fully utilize the channel
until after a reply is received.

Relaxing the model to introduce imprecision of state in
the system involves partitioning the states of the model of
the remote state, and increasing the message set to com-
pensate. The result is a decrease in individual message
utility. Partitioning the state requires messages to be
labelled with partition identifiers, so that the message data
is used only when received by its corresponding partition
member state. The idea is to send “all possible next
requests”, but to restrict the requests to be less specific.
The “set of all possible next requests” we call a set ofcom-
munication .

For example, consider a variation of TCP’s sliding-win-
dows in which buffers are not arranged as a linear
sequence (Figure 5) , but rather as a tree (Figure 6). In
either case, as messages are sent, the buffer space is con-
sumed (the ‘slack’ in the figures), limiting the amount of
information in transit. In the TCP case, the lack of ‘more
file to send’ is an impediment to buffer use, in the high-bit
latency case. In the Branching Windows case, at each
point in the protocol, a decision is made about which
branch to explore. As messages are received, they specify
the correct remote branch, and incorrect branch compo-
nents are removed. The protocol generally operates as
before, except that when ‘window #4‘ (i.e., level 4 in the
tree) is active, many possible versions of that window are
valid. This allows the window to expand to the bit latency,
rather than being restricted by the input stream to TCP.
We sacrifice precision of state, and increase the number of
messages that are required, because we need to send mes-
sages to each possible remote state.

The result is that this system no longer requires feed-
back at each level of the tree in order to proceed and
descend to the next level. We do not need to know the

exact state of the remote system, so long as we keep track
of ALL the possible states of that system, and communi-
cate as if all were potentially there. Scale issues are
addressed in the tradeoff between the number of partitions,
and the overhead of each partition. One requirement of
this method is that a particular remote node, in a single
state, should not be aware that we are sending messages to
his ‘possible siblings’. As a result, we put conditionals, or
guards, on the messages, so that the remote node receives
only those messages addressed with its current state.

REAR FRONT

k k

SLACK

FIGURE 5. Conventional sliding-windows.

WINDOW
FRONT

SLACK

FIGURE 6. Branching windows

4: Implications

Other researchers have also examined the problems cre-
ated by increased bit latency [5] . Proposed solutions use
pipelining and process parallelism to increase channel uti-
lization. Pipelining is not effective in reducing start-up
latency, the kind which precedes every round-hip message
exchange. Increasing the pipelining is the desired result,
but cannot be achieved per se. The file size has become a
limitation to filling the pipe. We now must consider send-
ing multiple files or having multiple sessions to compen-
sate.

Process parallelism uses a set of processes to fill the
pipeline with messages or files. The processes’ data
streams are multiplexed together, so that when one process
runs out of data to send, another will be activated to use
the channel. The sender needs to determine the state of the
receiver, because the source of the data depends on which
process is currently active. Process parallelism denotes a
set of collectively managed processes, but it is not the pro-
cess set that permits the channel utilization, but rather their
management as a set. Process parallelism is equivalent to

44.3.3
507

Parallel Communication, because the management of non-
deterministic context switching is equivalent to the nonde-
terministic remote state in our model.

&fetched anticipation, as used in cache management,
does not help reduce bit latency induced channel underuti-
lization. If the information could be deterministically pre-
dicted, it would have been used to fill the pipeline via
conventional linear-anticipation protocols (i.e., linear
lookahead, as in sliding-window). Anticipation that
attempts to predict remote state, and recovers if in error,
only increases the imprecision of state across the channel.
Instead, a method of anticipation that uses the imprecision
of state, but does not require recovery in the conventional
sense, can be used effectively [9]. This is sender based
anticipation, where a set of possible messages is sent, and
where the anticipator’s notion of remote state is refined,
but not recovered.

Parallel Communication is based on sender-based
anticipation, the sender using an imprecise state model of
the receiver, and having the sender manage the set of pro-
cesses together (rather than individually). The idea is to
send the ‘set of all possible next requests’, and permit the
local notion of remote state to become imprecise, in
exchange for later refinement via received messages. Par-
allel Communication uses the increased bit latency of the
channel to send sets of messages, only part of which are
useful. The result is that the channel is used to forward
messages correlated to possible futures of the receiver.
This more accurately models the imprecise state of the
remote participant.

One effect of Parallel Communication is that, in order
to predict the possible futures of the remote node, a
detailed model of the operation of the state of the remote
node is required. This indicates that layering can obscure
the state evolution that is required for the sender to ana-
lyze the possible states of the receiver. Parallel Communi-
cation methods are not applicable to existing protocol
implementations, e.g., TCP, since they are linear only, and
the bit latency exceeds the linear message size (file size).
This method is applicable to the ‘sets of processes’ solu-
tion, because the set appears as a single (total) nondeter-
ministic remote process (appropriately).

4.1: Implications of these observations

Thus far, we have observed that existing protocols do
not permit single sources to effectively occupy a high bit
latency channel. There are some obvious implications to
this observation, and to the notion of sender-based antici-
pation as its compensation.

First, a single source cannot occupy the channel, but a
set of sources can. We do not address the aggregate shar-
ing of a channel. Such shared use is provided by either
deterministic multiplexing, or nondeterministic multiplex-

ing. Deterministic multiplexing is an agreed solution; we
are concemed with cases where it is not possible. Nonde-
terministic multiplexing requires a higher level protocol to
determine component agreement between the sender and
receiver, and such a protocol is equivalent to Parallel
Communication methods (as addressed later).

Second, files are messages that are too short to occupy
a high bit latency channel. To make protocols regain per-
formance, we consider the files as the component blocks
of transmission, and consider the higher level structure of
the file transmission. The files become the components of
a rich structure of data flow, for which current protocol
mechanisms are not suited.

The result of this latter observation is that existing pro-
tocols are suited to linear stream communication (i.e., con-
ventional files), and that PC is suited to rich structure
streams, such as file sets and trees. There are other exam-
ples of rich structure data streams, static examples of
which are hypertext and hypermedia, and dynamic exam-
ples of which are ‘object’ data structures.

Another observation is that sender anticipation can also
be used with linear streams (conventional files) where
indeterminism is introduced by transmission errors. In this
case, PC reduces to a form of forward error correction
(FEC), and file components are repeated [101.

In all these cases, we are using the network as a cache,
to reduce the bit latency between the sender and the
receiver. This network cache differs from a conventional
cache, in that its contents change over time, and this
change is controlled by the source of the cache data.

5: An Example of Parallel Communication

Consider the case where the round trip bit latency, for-
merly much smaller than the size of the file, is now much
larger (Figure 4). The channel now offers more bandwidth
than conventional applications can manage. Rather than
stopping at a single file or message, further messages can
be sent, anticipating the requests of the receiver. This
requires management of the set of messages at the sender,
to prevent rollback that would nullify the latency advan-
tage. In Figure 7, a single message sent in a long window
does not utilize the additional bandwidth available. In Par-
allel Communication, the sender emits conditional mes-
sages in a tree, depicted here as smaller line widths and
lighter lines denoting the probability of utilization at the
receiver. The channel sees this tree as a conventional
sequence of messages, using the entire window. The
receiver in this example selects only those messages
appropriate to its current state, resulting in receipt of 4x as
many messages as a single-message scheme. The mes-
sages are no longer probabilistic at the receiver (solid
black message segments), because its local state deter-
mines the active message component of the sent tree.

44.3.4
508

This method works only where the interaction is
latency limited, rather than bandwidth 1imited.The serv-

through opcode analysis at the server, which is computa-
tionally intensive. We also assume that the receiver can
process the opcodes at the rate received; if not, some
sender pacing or receiver buffering is required to prevent
overrun during some parts of the communication, particu-
larly when the message guards cannot be computed at the
rate received.

In &he case where the processing power and bandwidth
are available to compensate for latency, speedups of
3000~ are possible [8].

Mnuw

* * er’s model of the workstation’s state is constructed
%!?

Bi l -La~Wzndrr

4 SiigleMesage I
Parallel Communlcatbn

sendetsview I ii$l
parallel Communlcatiin I channel v i

4 parallel Communication
Receiver’s View - I I -

FIGURE 7. Parallel Communication visualized.

Parallel Communication is particularly well suited to
hypermedia communication, where the structure of the
message flow is indicated by information links. Hyperme-
dia using interactive digital video is one example where
message sizes are large (still video images or brief full-
motion), and the link structure is rich and hierarchical,
rather than merely linear.

5.1: A CPU-memory interface

One example that demonstrates the potential for Paral-
lel Communication is the interaction between a worksta-
tion and its disk server. The workstation consists of the
CPU, RAM, and local U 0 (user, data measurement, etc.);
the server contains the read-only program. The server is
the receiver of the opcode stream, and the workstation is
the sender. The state of the receiver is the CPU program
counter. We present this interface in terms of an opcode
stream, although it can be applied to page-level communi-
cation as well.

In conventional protocol interaction, the server
responds to explicit requests from the workstation. Each
request indicates the receiver’s current program counter,
and the sender reacts by emitting the appropriate opcodes.
Nothing occurs in the latency between requests.

In Parallel Communication, the server models the
workstation as a set of possible program counters. The
server emits an opcode appropriate for each of the possible
program counter during the interval between requests. As
a result, requests are preemptively serviced. The worksta-
tion receives an early reply to a request, compared to the
actual latency interval. The latency is thus reduced.

6: Future directions

We need to apply this technique to higher levels of the
protocol, because that is where the information resides,
i.e., information on the characteristics of the sets of pro-
cesses. For example, we need an interface in which the
conventional application-layer OUT signals of OPEN,
CLOSE, and SEND, and the IN signals of OPEN-RE-
QUEST, CLOSE-REQUEST, and RECEIVE, are supple-
mented by the OUT signal of
SEND-CONDITIONAL-REQUEST, and IN by
RECEIVE-CONDITIONAL. In this way the protocol
stack can indicate to the application that additional band-
width is available for Parallel Communication, and the
application can indicate sufficient remote state so that only
applicable messages are passed up to the remote receiver.

In existing protocols (IEEE 802.2 LLC [4], TCP [61),
there is a set of flow control signals that is used to negoti-
ate a description of the ‘lossless’ buffering available for
the channel. This buffering currently represents a capabil-
ity of the buffer software, although that capability is some-
times determined as a function of round trip capacity
measurements on the data link. The network layer at the
source node can receive a signal from its local transport
layer indicating the amount of data that layer can accept
for ‘lossless’ transmission. The destination node can send
a signal to its local transport layer indicating the amount of
data that the destination can accept without overflow.
These signals model a notion of the stream as a linear
sequence of messages that will occupy these buffers. The
buffer sizes indicated are restricted by a set of rules, i.e.,
that the source has enough space to occupy the round trip
bit latency, that the receiver has the same space, and that
the file is much smaller than these buffers.

Existing interfaces do not consider the case where the
source is more severely limited by the messages sent than
by the channel or receiver capabilities. We are currently
developing the extensions to TCP providing the required
signals for Parallel Communication. The control interface
augments the conventional signals of OPEN, CLOSE,

4d.3.5
509

SEND, and RECEIVE with signals to the application layer
that request conditional data from the sender, and request
state resolution information from the receiver. This effec-
tively splits the linear buffer sequence into a tree of possi-
ble remote buffer states. The remote buffer remains a
deterministic linear sequence; only the sender’s perception
of that sequence changes to accommodate latency-induced
imprecision. The sender’s buffer needs information from
the application layer describing the ways in which the
remote state can become less precise over time, and ways
to specify labels to guard the receipt of the messages. The
receiver’s buffer management is augmented to use infor-
mation about its local state to filter the incoming data
stream, and restrict receipt of messages.

6.1: Details of NFS Parallel Communication

The required TCP extensions support branching win-
dows and provide application-layer signalling of excess
bandwidth that can be used for latency reduction. These
extensions support the development of application-layer
modifications, which can be implemented as intermediar-
ies to existing protocols (Figure 8). Here we replace the
conventional RCPAJDP NFS interface with a branching-
TCP version.

Existing NFS

NFS
SERVER

USER

STATION
WORK-

Latent-NFS
I

NFS
SERVER

USER

STATION
WORK-

FIGURE 8. Implementation of the NFS
intermediaries called the pump and filter.

The pump and filter implement the application modifi-
cations. The pump modifies the server side of the inter-
face; the filter modifies the client side. The pump manages
the sending of all possible next requests, and manages the

possible states of the client. The pump uses the server-side
TCP signal of excess bandwidth to initiate sending the
anticipatory messages, and the branching window allows
the pump to send alternate streams of messages to the cli-
ent. As the pump emits these messages, the branching in
the server-side TCP increases.

The filter allows the client application to receive only
those messages that correspond to a particular state. The
client application signals its TCP interface to filter the
incoming stream based on a branch identifier. This client-
side TCP also indicates branch selections to the server-
side TCP, to reduce the branching at the server.

The branching increases by the pump and decreases by
the filter’s messages to the pump determine the extent to
which the excess bandwidth can be used to reduce the
observable latency [9].

General algorithms for the pump and filter are given in
detail in [9]. A specific pump and filter for managing
CPU-memory opcode communication is given in detail in
[8]. The pump and filter shown here (Figure 9) exemplify
characteristics of the TCP branching windows mechanism
and the application-layer extensions together.

I
Request Respnse Avail.BW

I Request Response
L

FIGURE 9. Detail of the interaction of the pump
and filter.

6.2: Some preliminary performance results

In earlier work, we performed some experiments to
measure the potential performance increases through Par-
allel Communication methods. Using a simplified model,
and some dynamic opcode traces, we were able to com-
pute the expected benefits.

For these observations, we define speedup as the ratio
of actual execution time to “optimal” execution time, the
latter being the time to execute on a local system with zero

44.3.6
510

latency and infinite bandwidth between the CPU and
memory (Equation 1). For these equations, we define:

N = number of pages fetched
t = time to execute a page
missrate = percentage of pages not in the cache
pBW = page bandwidth
pD = page degree
pL = page linearity
rtt = round trip time

The page bandwidth is the number of pages communi-
cated per unit time over a channel, the page degree is the
average number of pages that a single page ever jumps to,
and the page linearity is the average number of pages exe-
cuted in a linear sequence (due to ‘running off the end’).

OPTIMALtime = N x t

Equation 2 describes the execution time when the CPU
is separated from the memory. Equation 3 describes the
same when a page cache is added near the CPU, and the
miss ratio is measured over the trace.

DISTANTtime = N x (t + r t t)

(EQ 3)
We can approximate the average expected execution

time achieved by using Parallel Communication by the
formula in Equation 4 [8].

CACHEDtime = N x (t + rtt x missratio)

r t t x p B W x (p D - 1)

PL x PD
p D x rtt

(EQ 4)
We have already performed such measurements at the

individual opcode level on the Sun SPARC architecture
running the GNU C compiler weighted benchmark from
the SPEC Benchmark Release 1.0 [lo], a TEX benchmark
noted in [3]’, and C-language versions of both Dhrystone
and Linpack2. Our results are equivalent to an NFS trace
where the page size is a single opcode. Although these
conclusions do not imply correspondence with NFS case,
they have justified further research including the NFS
experiments.

1. The software supplement of [3] is available via anonymous FlT at
max.stanford.edu.
2. These benchmarks are available via Intemet e-mail; send queries to
netliW@surfer.epm.omI.gov.

Figure 10 shows the channel utilization curve, for con-
ventional (solid line in the figure) and versions of Parallel
Communication (dashed lines). The channel utilization for
the conventional case is determined by the channel occu-
pancy; the PC case is determined by the occupancy
divided by the expected utilization. PC uses the channel to
send messages, some of which are not used when
received. We have plotted utilization as ‘utilized messages
per unit time’. The raw channel utilization in the PC cases
is always 1008, because possible future requests are
always being sent. The different PC versions denote dif-
ferent versions of implementation, some less complete
than others.

Conventional

o . 2 . 20 40 60 80 100

Round Trip Bit Latency (in opcodes)

FIGURE 10. Effective channel utilization

The expected speedup of a program execution is
defined as the ratio of the PC execution time (dashed lines
in the figure) divided by the remote execution time (solid
line) (Figure 11). As the bit latency increases, PC exhibits
a linear increase in utilization for a brief time, then a loga-
rithmic increase.

Q -0 2 { ,/‘
.1

*r / Conventional 1 I
60 80 100 20 40

Round Trip Bit Latency (in opcodes)

FIGURE 11. Expected execution time speedups of
various PC implementations.

44.3.7

1

511

http://max.stanford.edu
mailto:netliW@surfer.epm.omI.gov

6.3: A note on beating the setup latency

Earlier we noted that all measurements and compari-
sons to existing protocols were made midstream, whereas
setup round trip latencies were ignored.

One way to address channel latency during the setup
exchange is to apply Pc methods to the setup itself, rather
than just to the transport portion of the protocol, as has
been done here. The initiator of a connection sends an
‘open request’ as usual, and starts sending data in anticipa-
tion of the future reception of the ‘connection accept’ mes-
sage, thus avoiding the initial round trip setup 1atency.The
data can be used only in a conditional (revocable) sense,
either by rollback or branching histories. If the request is
denied, the data sent must have been ignored by the
receiver.

The result is equivalent to a fast-setup, where the data
transport occurs before the setup completes. This is
accomplished without modification to the protocol; by
implementing the protocol using PC methods, a degree of
asynchronous setup is achieved.

7: Conclusions

We have to date developed the description of a possible
channel utilization protocol method, and performed some
preliminary measurements that indicate a potential gain.
We are in the process of developing a full emulation
experiment, in order to measure the gains on an NFS sys-
tem at the page level. A final implementation of the sys-
tem, pending the outcome of these measurements, is also
planned.

8: Acknowledgments

We would like to thank Ted Faber of the Univ. of Wis-
consin, Madison, and Jon Postel, Bob Felderman, Steve
Casner, Eve Schooler, and Greg Finn of IS1 for editing and
feedback on the content of this document.

9: References

ANSI - American National Standards Institute, Digital
Hierarchy Optical Intelface Rates and Formats Specifica-
tion, T1.105-1988, Draft March 10, 1988.

Can; C.S., Crocker, S.D., and Cerf, V.G., “HOST-HOST
Communication Protocol in the ARPA Network.” In Spring
Joint Computer Conference, AFIPS, 1970, pp. 589-597.

Hennessy, John L., and Patterson, David A., Computer
Architecture: A Quantitative Approach. Morgan Kaufmann,
San Mateo, CA, 1990.

Institute of Electrical and Electronics Engineers, Logical
Link Control, American National Standards ANSIIIEEE
STD 802.2. 1985.

Kleinrock. Leonard, “The Latency I Bandwidth Tradeoff in
Gigabit Networks:’ IEEE Communications Magazine, Vol.
30, No. 4, April 1992, pp. 3640.

Postel, Jon, “Transmission Control Protocol:’ RFC-768,
DARPA Network Working Group Report, USC I Informa-
tion Sciences Institute, August 1980.

Tannenbaum, Andrew S., Computer Networks, Prentice-
Hall, NJ, 1988.

Touch, Joseph D., and Farber. David J., An Active Insfruc-
tion Decoding Processor-Memory Interface, patent pend-
ing, Univ. of Pennsylvania, September 1991.

Touch, Joseph D.. Mirage: A Model for Latency in Commu-
nication, Ph.D. dissertation, Dept. of Computer and Infor-
mation Science, Univ. of Pennsylvania, 1992. Also available
as Dept. of CIS Tech. Report MS-CIS-92-42 I DSL- 11.

[lo] The SPEC Benchmark Report, Waterside Associates. Free-
mont, CA, January 1990.

4d.3.8
512

