
2a.4.1

Abstract 1,2

Communication latency can be reduced by increasing
bandwidth via a sender-based anticipation technique
called Parallel Communication. Here we apply this
method to anonymous FTP. Our analysis of log files
indicates that latency can be reduced to 2 round-trip
times, as small as 0.6 round-trip time/file, for a 7x
increase in bandwidth. This technique applies to up to
95% of the FTP traffic. This method is expected to be
especially useful in reducing latency in automated FTP
access, such as in the World-WideWeb.

1: Introduction

Current gigabit networking research addresses limita-
tions of communication and computation “imposed by fac-
tors other than the finite speed of light” [10].
Communication limits computation via latency, and com-
putation limits communication, especially regarding cod-
ing and compression [13]. There is a need for an
“information theoretic theory of networks” [10]. Just as
computation is analyzed at various levels of abstraction,
from the Boolean/gate logic levels, through the abstract
machine to algorithms, communication must go beyond
the bit-level coding and communication theory, to an algo-
rithmic abstraction.

To this end, we are addressing the ‘finite’ limits of
communication latency. Whereas the speed of light
remains a fundamental limit, propagation latency alone is

1. This research was partially sponsored by the Advanced Research
Projects Agency through Ft. Huachuca Contract No. DABT63-91-C-
0001. The views and conclusions contained in this document are those of
the authors and should not be interpreted as representing the official poli-
cies, either expressed or implied, of the Department of the Army, the
Advanced Research Projects Agency, or the U.S. Government.

2. This work is also based on research supported by the Information Sci-
ence and Technology Office of the Advanced Research Projects Agency,
under contract NAG-2-639, and by an AT&T Graduate Research Fellow-
ship, grant #111349.

not a limit to interaction latency in many cases. There are
often ways to reduce the user-perceived communication
latency to below that of speed-of-light propagation [13].

Network rate increases do not address the problem of
propagation latency given effectively infinite bandwidth3.
What will this available bandwidth be used for? What will
be changed as a result? We propose using excess band-
width to reduce propagation latency. This assumes that
bandwidth is a plentiful resource and latency is not.

We are interested in considering bandwidth as a means,
rather than an end. We want to investigate the real funda-
mental limit of communication - that of propagation
latency, which is not currently being addressed [10].

1.1: Is this a problem?

From its inception in 1969 through 1988, available
communication bandwidth remained constant in the Inter-
net backbone as other computer resources grew. Band-
width is resuming its own technology curve [13]. We
notice that its rate of increase is challenging that of other
computational resources, such as CPU rate, workstation
memory, disk capacity, etc.

On a per-year basis, workstation sizes increase at a rate
of 1.26x [12]. DRAMs increase at a well-established rate
of 1.59x, equivalent to 4x in 3 years. Disk capacity
increases at 1.26x, equivalent to 2x in 3 years [5]. Micro-
processors power increases at 1.38x (2x in 2 years, sus-
tained since 1979), and recently at up to 2x per year. The
Internet communications rate has increased at 2.34x in
’86-’90 (T-1 to T-3, 30x in 4 years), and at 1.28 in ’90-’95
(T-3 to OC-3, 3.44x in 5 years), after a period of dormancy
(’79-’86). The Internet is expected to increase at 1.52x in
the ’95-2000 period (OC-3 to OC-24, 8x in 5 years).

Figure 1 depicts these rates as slopes. Workstation sys-
tem (system) and disk rates (disk) are identical. Micropro-
cessors are shown both as their sustained rate of increase

3. Specifically, we consider the limit of finite values of BW, as those
values approach infinity.

An Experiment in Latency Reduction

Joseph D. Touch and David J. Farber

USC / Information Sciences Institute (touch@isi.edu)
Univ. of Pennsylvania (farber@cis.upenn.edu)

Reprinted from IEEE Infocom ‘94, Toronto Can., pp.175-181, June

175

2a.4.2

(μP) and their peak rate (μP*); the latter includes architec-
tural phases that cannot be expected to continue [5]. The
Internet backbone rates are shown as a shaded area, where
the recent sustained increases are shown darker. The fig-
ure illustrates that communication speed increases are
expected to keep pace with microprocessors, but not mem-
ory, although the growth rates are too close to definitely
call1.

FIGURE 1. Comparative rates

1.2: Existing Approaches

Existing methods to accommodate bandwidth increases
include high performance protocols (XTP [4], VMTP [3],
Delta-t [14]), and methods to increase the window size of
sliding-window mechanisms [7][8][9].

High performance protocols primarily address imple-
mentation issues. If protocols cannot be implemented
effectively at high speeds, neither can user applications.
However, if context switching is expensive for protocols,
it is for user applications, too. In fact, many so-called ‘pro-
tocol performance issues’ reduce to workstation perfor-
mance issues. This is to say that they are interesting and
important, but not specifically communication issues. We
have shown a sort of protocol ‘relativity’, that a protocol
does not know the speed at which it operates, only the
number of bits in transit between communicating entities
[12]. As a result, protocols are sensitive to the bandwidth-
delay product, not the raw bandwidth rate. A gigabit LAN
is equivalent to a kilobit WAN, in that respect. There are
significant implementation issues that accompany raw rate
increases, but existing protocols suffice2.

1. Tthese are rough estimates at best., so further statistical analysis is not
warranted.

DRAM

System
DiskμP

μP*

0x

1x

2x

0 1 2

G
eo

m
et

ri
c

Year

BW

In
cr

ea
se

Methods to increase window sizes require that sizes
grow as communication rates increase. Existing methods
that address high bandwidth-delay product environments
will not be adequate in the future. These methods are
aimed at increasing the window size of sliding window
transport protocols, such as TCP. Measurements of anony-
mous ftp access here at ISI have shown that the average
file size transferred is 65KB, and 210KB at NCSA (a large
ftp site with available log files). At rates below 1.5 Tbps in
a LAN (100m), and 25Mbps in a WAN, the window size
does not affect the transmission rate at ISI. The minimum
rates are 500 Gbps LAN, and 8Mbps WAN for window
size to affect NCSA transfers. As a result, we address
gigabit WAN networks, because nothing new need be
done in a LAN at the expected rates.

1.3: Anticipation

Anticipation has been used at the CPU, system, and
application level in systems to reduce latency. Methods
include caching and prefetching have been used in all
these arenas to address access latency, usually directed at
an I/O latency bottleneck [5].

Source anticipation has been used in file systems, so
that when a file is accessed, its entire contents are trans-
mitted. It has also been used in database systems, and, as
with file systems and lower layer instances, solutions are
directed at I/O (bandwidth) bottlenecks.

Other research in databases has recently considered
using I/O bottleneck solutions to address propagation
latency as well. The I/O bottleneck was addressed by the
Datacycle architecture at Bellcore [6]. In this system, the
database was repeatedly pumped at receivers, where high-
speed filters extracted the appropriate reply. High-band-
width fiber was used from the pump to the receivers, and a
low-bandwidth return path was used for update requests.

The “Send-on-Demand” (SOD) architecture uses the
Datacycle integrated with many-to-many communication
to provide distributed database performance with Datacy-
cle anticipation [1]. SOD periodically pumps information
out to the participant pumps, in the manner of periodic
state update via timers of the Delta-t protocol [14]. Their
goal, as in Mirage [11], is rollback-free anticipation.
Mirage performs breadth-first search(BFS) Time-Warp-
like anticipation, where the BFS alternates cover the space
of possible states, thus avoiding rollback.

2. Technology required includes parallel implementations, high-perfor-
mance hardware or software implementations, and better integration of
protocol processing with other workstation processing. These require
changes in protocol implementations, rather than changes of the proto-
cols themselves.

176

2a.4.3

1.4: Interactive Systems

One opportunity for latency-reduction methods is inter-
active systems, especially those involving user-adaptive
interfaces. Latency reduction techniques may be required
for their effective use, to provide responsive interaction.
Interaction with graphical or pictorial information, espe-
cially where highly structured, is a prime candidate.; this
means hypertext and hypermedia. Hypermedia encodes
structural cues to access in its links, which provide appli-
cation-independent access to application-specific informa-
tion, of the specific type required by our methods.

We can also use statistical optimizations to enhance
interactive access to visualization data. Current research
programs emphasize the “intelligent automatic sequencing
and spatial organization of visual or auditory information,
to match the...goals of the user.” [10] One particular goal
of these optimizations is the user perception of low
latency, regardless of propagation latency.

2: An illustrative experiment
- file transfer latency reduction

The following is an illustrative experiment in latency
reduction, applied to an interactive ftp session. The experi-
ment determines the extent of gain and cost in using Paral-
lel Communication methods to reduce propagation
latency. Parallel Communication is a method of sender-
based anticipation using coarse remote state, and is based
on Mirage, an abstract model of latency in communication
protocols [11] [13]. The gain is the reduction in per-trans-
action propagation latency; the cost is the increased band-
width required. In the case of ftp, coarse state is the current
working directory (cwd) of the user. When a user types
“cd”, she indicates a change in that state. The server antic-
ipates the requests that follow that state change by sending
“every possible next request” [11]. In ftp, this reduces to
sending the entire contents of the cwd after each “cd”.

We chose ftp because it exhibits a limited communica-
tion parallelism, and because we could experiment using
available log information. It isn’t optimal because the par-
allelism isn’t multilevel, as in hypermedia.

The following results were obtained from file transfer
logs of anonymous access at ISI (ftp.isi.edu) and NCSA
(ftp.ncsa.uiuc.edu). Ideally, we’d perfer to measure the
utilization of a distributed hypermedia system, e.g., the
World-Wide Web [15], but here we’ll start with some
locally-available information, and see where it leads.

Currently, in ftp, users usually “cd” to a directory, and
retrieve files from that directory. A user session is defined
as the contiguous set of file transfers initiated by a user,
and is composed of a number of directory sessions. A

directory session is defined as a contiguous set of transfers
of a single user in a single directory.

What is the effect of a ‘degenerate’, 1-step case of Par-
allel Communication, in which the entire first-level con-
tents of a directory1 are sent at the beginning of a directory
session (i.e., no subdirectories)? What would the user-per-
ceived latency reduction be? What would the server load
be? What channel bandwidth would be required? What
would the effective channel utilization (bytes kept/sent)
be? I.e., what are the benefits (latency reduction), and
what are the costs (load, bandwidth, utilization)?

2.1: Measurements

The following data are the result log files kept at ISI,
and publicly available via anonymous ftp from NCSA
(Table 1). The ISI logs represent 2.1 gigabytes of trans-
fers, consisting of 32,000 files transferred in 9,000 ses-
sions. The NCSA logs represent 12 gigabytes of transfers,
consisting of 54,000 files transferred in 38,000 sessions.
The numbers are represented as average±standard devia-
tion.

TABLE 1. File and transfer sizes

File sizes are 65KB±2.5KB for ISI2, and 210K±2.3K
for NCSA (Table 1). User sessions consist of 1.1±0.005
directory sessions on both systems, and directory sessions
consist of 3.6±0.1 file transfers at ISI, and 1.4±0.009 at
NCSA (Table 2). A user retrieves a total of 4.1±0.2 files
from ISI and 1.6±0.02 from NCSA (Table 2), for a total of
270K±13K bytes at ISI, and 350K±4K at NCSA (Table 1).

TABLE 2. Session sizes

1. We model ftp access as “cd”/“get”/“get”... We could have modelled it
as “cd”/“ls”/“get”/“get”... This adds negligibly to the model we present,
as will be discussed later.

2. This may seem to be a very narrow range, but note that it represents
weighting by frequency of byte and file. Certain files dominate the traffic
- e.g., the text “info” files.

ISI NCSA

File size 65K ± 3K 210K ±3K

bytes/user 270K ± 13 350K ± 4

bytes/directory 6.9M ± 0.15 2.1M ± 0.016

ISI NCSA

Sessions/user 1.1 ± 0 1.1 ± 0

Files/session 3.6 ± 0.2 1.4 ± 0

Files/user 4.1 ± 0.2 1.6 ± 0

Files/directory 114 ± 3 11 ± 0.1

177

2a.4.4

First, some justification of this analysis. The conven-
tional wisdom of ftp access is that the dominant portion of
transfers are of single files, because most users of anony-
mous ftp know what they came for. Conventional wisdom
also is that ftp files are fairly large, i.e., 100KB and up.

At ISI, only about 38% of directory sessions involve
multiple file transfer, but about 83% of files transferred
are solo (because group-transferred files are often trans-
ferred as part of a large set of files) (Figure 2). In terms of
the raw bytes transferred, 61% of the bytes are part of
multi-file sessions. The skew towards single file sessions
is probably the result of the RFC files at ISI (qualitatively
verified by the logs1).

FIGURE 2. Percent of transfers in multiple files

At NCSA, 14% of directory sessions involve multiple
file transfer, but about 42% of files transferred are solo
(Figure 2). In terms of the raw bytes transferred, over 95%
of the bytes are part of multi-file sessions.

If we were to send the entire directory every time a user
“cd’s” to it, we’d send 114.9±2.8 files at ISI, but only
11±0.1 at NCSA (Table 1), and achieved about 3.4% per-
byte efficiency (3.4% of the bytes sent would be those
requested) at ISI, and 15% efficiency at NCSA (Table 4).

TABLE 3. Cost and efficiency

1. We note that the RFCs uniform average is 56K±3K. Considering only
text RFCs (96% by file count), that’s 46K±2K. But even these numbers
aren't relevant, because they need to be byte-weighted by transfer. We are
performing this analysis now.

ISI NCSA

per-byte efficiency 3.4% 15%

BW cost 30x 6.7x

BW/latency eff. 14-27% 29-56%

0 50 100

Sessions

Files

Bytes

Percentage

Measured per:

ISI

NCSA

2.2: Analysis - existing ftp method

Consider this session, in the optimistic case that a “cd”
costs 2 trip times of latency (i.e., 1 rtt {round-trip time}),
and files are transferred using TCP (Figure 3). TCP
requires 3 trip times to open a connection, where the first
trip time can overlap with the most recent “cd” request. A
file can be sent as part of that exchange, and the close can
occur via time-out. The total for TCP, per file, assuming
transmission without interruption, costs 1.5 rtts + file
transfer time. As BW goes to infinity2 the file transfer time
approaches zero3, and the open/close protocol dominates
(Figure 4). The file transfer itself is limited by the server
capacity, rather than the rtt.

FIGURE 3. ftp action sequence, symbolic notation

FIGURE 4. Transaction time as BW increases

2. BW is never infinite - that would violate physical laws, by requiring
infinite negative entropy in a finite space-time. We can however consider
an increasing series of finite BW values.

3. Never actually zero, as a result of the finiteness of the BW value.

User Server

FTP cd

FTP OK

cd

get file FTP get file

FTP OK

TCP syn

TCP syn+ack

TCP ack

file rec’d
file sent

TCP DATA

User Server

cd

get file

file rec’d
file sent

get file

file rec’d
file sent

file rec’d
file sent

User Server

cd

get file

file rec’d
file sent

Latency =

User Server

cd

get file

file rec’d
file sent

Latency =

as BW increases
1 rtt+(2 rtt + file xfer)*num files 2 rtt +(1 rtt * num files)

178

2a.4.5

For the average 1 “cd” plus 3.6 files transferred, a total
of 1 + 3.6 * 2, or 8.2 rtts are expended at ISI (Table 4). At
NCSA, the average is 1 + 1.4 * 2 = 3.8 rtts. The latency is
reduced to 2 RTTs in the conventional case, and 1 in the
transaction-TCP case. The per file latency is reduced from
2.5 RTTs down to around 0.6 for ISI, and 1.4 for NCSA.

TABLE 4. Trip time reduction

The total bandwidth consumed by sending the entire
directory vs. sending only those files requested is the
reciprocal of the bandwidth “efficiency” (BW efficiency is
defined as [bytes used]/[bytes sent], i.e., [sum of file sizes
requested]/[sum of file sizes of the directory]). The total
bandwidth consumed is approximately 30x larger (1/
3.4%) at ISI, and only 6.7x (1/15%) at NCSA.

2.3: Analysis- Parallel Communication method

Parallel Communication indicates sending the entire
directory in reply to the “cd” (Figure 4). The file reply
latency can vary, depending on the method used. We pro-
pose using Transaction-TCP [2], which should be open for
the entire ftp session anyway. The “cd” is a transaction,
and the files follow on the heels of the “cd”. As a result,
the “cd” and entire directory send occur in 1 rtt. If instead
we perform the “cd” separately, and send the entire direc-
tory as 1 TCP transfer (1 rtt when overlapped with the
“cd”, as shown), we end up with 2 rtts cost. The result
drops to between 1 and 2 rtts, depending on whether you
count the send as a remote TCP transfer.

FIGURE 5. Pre-sending directory after a cd request

ISI NCSA

RTT original 8.2 RTTs 3.8 RTTs

RTT new 1-2 RTTs 1-2 RTTs

orig. RTT per file 2.3 RTTs 2.7 RTTs

new RTT per file 0.3-0.6 RTT 0.7-1.4 RTTs

User Server
cd

Latency =

User Server
cd

get file

file rec’d

file sent

Latency =

as BW increases

get file

file rec’d
file sent

get file

file rec’d
file sent

get file
file rec’d

file sent
file sent

= 2rtt
1rtt + (2rtt *N)

1rtt +1rtt

At ISI, this result reduces 8.2 rtts to between 1 and 2 rtts
(Table 4). The latency reduction, assuming bandwidth
availability, is between 8.2x and 4.1x speedup. At NCSA,
it reduces 3.8 rtts to between 1 and 2, for a total of 3.8x to
1.9x speedup.

At ISI, a 30x bandwidth increase supports a speedup
between 8.2x and 4.1x, or a ratio cost of between 3.7:1 and
7.3:1 (Table 3). The bandwidth increase is between 27%
and 14% effective at ISI. At NCSA, a 6.7x bandwidth
increase supports a speedup between 3.8x and 1.9x, or a
ratio cost of 1.8:1 and 3.5:1. The bandwidth increase is
between 56% and 29% effective at NCSA.

In order to perform sender-based anticipation, the entire
directory must be in transit after a request1. The entire
directory transmission time should be some fraction (less
than 1/5) of the BW-delay product. The average entire
directory size (weighted by use2) is 6.9 M bytes (±150KB)
at ISI, and 2.1 M ±16KB at NCSA (Table 1).

There are two ways to look at latency and bandwidth as
they correlate to directory size. For a given directory size
and bandwidth, there is a minimum latency at which send-
ing the entire directory is better than sending a direct file
as a response. Alternately, for that same directory size and
a given latency, there is a minimum bandwidth required.

At ISI, at 1 Gbps, this requires 55 ms to transmit the
entire directory as a response to the “cd” request (Table 5).
The overall propagation latency would need to be about
300 ms latency, for propagation costs to dominate. This
time is achieved in satellite links (vs. 20 ms speed-of-light
and 100 ms total ground propagation delay within the
USA). At NCSA a 1 Gbps line needs 16 ms latency in-
transit, or 80 ms propagation, achieved in the Internet
today within the USA (coast-coast).

TABLE 5. Break-even points

Alternately, at 20 ms latency ISI requires a link speed
of 2.75Gbps, at 100 ms it requires 0.6 Gbps in-transit.
Assuming a factor of 5x where the data transmission
becomes negligible compared to propagation latency, this
means 14 Gbps speed-of-light, or only 3 Gbps propagation

1. We could also send a directory listing with a “cd”, modelled after a
“cd”/“ls”/“get”/“get”/... interaction. The “ls” output represents about 10-
100 chars per file. Upper-bound, that's about 10,000 chars at ISI, and
1,000 chars at NCSA. That's noise on these numbers, though.

2. We weight averages by number of times a file is transferred, and by
the number of bytes in the file. Thus the weight represents the effect a
directory has on the overall communication byte stream.

ISI NCSA

1 Gbps delay req. 55-300ms 16-90ms

USA rate min. 3 Gbps 800 Mbps

179

2a.4.6

(Table 5). At 20 ms NCSA requires a link speed of 800
Mbps. Assuming a factor of 5x as before, this requires 4
Gbps speed-of light, or 800 Mbps propagation.

Multiple file sessions are not required here, because the
directory contents are transferred as soon as the “cd”
request is indicated. A more aggressive implementation
would send from the ‘last known node’ in the directory
structure, going beyond the single directory level1. The
result is that the server is driven at the network bandwidth.
This replaces a physical limitation with a performance
limitation. It is also a good argument for using the network
itself as storage, to avoid server processing costs. The
work of the server is increased to provide latency reduc-
tion without increasing the work of the receiver (other
latency reduction methods, such as prefetching and cach-
ing, increase receiver workload to reduce latency).

3: Why is this interesting?

This experiment is based on the Mirage model of
latency in communication [11]. In Mirage, latency induces
imprecision of state, which is resolved via feedback.
Latency is accommodated via source anticipation. Mirage
is the name of the model; Parallel Communication is the
name of the protocol derived from the model [13]. The
model is based on analogies between protocols and latent
interaction and quantum physics [12].

In source anticipation, the state of the receiver is parti-
tioned into subsets, and messages are pre-sent labelled for
each subspace. The result is a breadth-first search of the
remote space, in contrast to the depth-first search of Time-
Warp-like protocols. As a result, Mirage never backs-up;
instead, it resolves the ambiguous remote state into one of
the sub-states.

Latency reduction in FTP is a one-level, non-recursive
Mirage protocol. Mirage indicates that the extent of the
latency reduction is a function of the bandwidth available,
the branching of state, and the linearity within a single
state. The branching here corresponds to the number of
files per directory, and the linearity corresponds to the
sizes of the files. The feedback corresponds to the “cd”
requests. The efficiency and effectiveness of Mirage
depend on the partitioning of the space, which here corre-
sponds to the power-set of files actually selected, vs. the
files in the directory.

In effect, this experiment embeds Parallel Communica-
tion on the i-node structure of the FTP directories, together
with the request-response FTP protocol itself. The result is

1. This is an argument for self-restructuring i-nodes (i.e., physical
restructuring without logical effect). Thus accessing the data would have
an effect on the structure of that data. Essentially, this is Parallel Commu-
nication on the i-node structure of the server directory.

a system which uses bandwidth to compensate for latency,
using known structure of the interaction to beat the
“speed-of-light” limit.

4: What next?

Actually, ftp isn’t quite what we had in mind. Ftp users
are interactive, and don’t care about propagation latency.
Ftp also has a very flat structure, especially here at ISI and
at NCSA- ftp directories aren’t very deep, and files are
often rooted in a single directory only. We’d prefer to
measure the speedup of a system that shows a truly inter-
active nature, with large chunks of information, and a rich
structure.

One candidate of particular interest is the World-Wide
Web [15]. WWW uses some of the same mechanisms as
ftp, but uses embedded textual “cookies” to indicate
hypermedia links to other files, rather than the ftp direc-
tory structure. We are in the process of looking into log
and raw file access of WWW components, for further
investigation.

4.1: Conclusions

We must see beyond the existing implications of the
changes in communication bandwidth rates now occur-
ring. Communication protocol research requires new mod-
els, rather than additional mechanisms and
implementations. New paradigms of communication and
interaction, made possible by the changing nature of high
bandwidth channels, need to be exploited.

In this experiment we used Parallel Communication to
reduce the propagation latency of ftp. At 1 Gbps, 80-
300ms latency is required for bandwidth to be used to
reduce propagation latency. Alternately, at 100ms, a band-
width between 800Mbps-3 Gbps is required. Propagation
latency can be reduced to 2 round-trip times, to as little as
0.6 round-trip time/file. This can be achieved at a cost of
7x additional bandwidth. These results are impressive
when we consider ftp was not the optimal application to
analyze.

We believe that propagation latency can and should be
addressed. We’re nearing a point where bandwidth can be
seen as a means to that end, rather than as merely an end to
itself.

4.2: Acknowledgments

This paper is the result of discussions with and feed-
back of Rafael Saavedra, Bob Felderman, Mike Carlton,
and Jon Postel at USC/ISI, Nick Short at NASA/GSFC,
and Sanjita Banerjee at University of Pittsburgh, as well as
feedback from the reviewers of Infocom.

180

2a.4.7

5: References

[1] Banerjee, S., Li, V.O., Wang, C., “Distributed Database Sys-
tems in High-Speed Wide-Area Networks,” IEEE Journal
on Selected Areas in Communications, V. 11, N. 4, May
1993, pp. 617-630.

[2] Braden, R., “Extending TCP for Transactions -- Concepts,”
RFC-1379, USC/ISI, Nov. 1992.

[3] Cheriton, D.R., “VMTP: A Transport Protocol for the Next
Generation of Communication Systems,” Computer Com-
munication Review, Aug. 1986, p. 406-415.

[4] Chesson, G., et. al., XTP Protocol Definition, Protocol
Engines, Inc., Dec. 1988.

[5] Hennesy, H.L., and Patterson, D.A., Computer Architec-
ture: A Quantitative Approach, Morgan Kaufmann, 1990.

[6] Herman, G., Gopal, G., Lee, K., and Weinrib, A., “The data-
cycle architecture for very high throughput database sys-
tems,” in Proc. ACM SIGMOD Conf., 1987, pp. 97-103.

[7] Jacobson, V., and Braden, R., “TCP Extensions for Long-
Delay Paths,” RFC-1072, LBL and USC/Information Sci-
ences Institute, Oct. 1988.

[8] Jacobson, V., Braden, R., and Zhang, L., “TCP Extensions
for High-Speed Paths,” RFC-1185, LBL and USC/Informa-
tion Sciences Institute, Oct. 1990.

[9] Jacobson, V., Braden, R., and Borman, D., “TCP Extensions
for High Performance,” RFC-1323, LBL, USC/Information
Sciences Institute, and Cray Research, May 1992.

[10] NSF Report 92-109, “Research Priorities in Networking and
Communications,” Oct. 1992.

[11] Touch, Joseph D., Mirage: A Model for Latency in Commu-
nication, Ph.D. dissertation, Dept. of Computer and Infor-
mation Science, Univ. of Pennsylvania, 1992. Also
available as Dept. of CIS Tech. Report MS-CIS-92-42 /
DSL-11.

[12] Touch, J.D., “Physics Analogs in Communication Models,”
Proc. PhysComp '92, Oct. 1992, p.248-252.

[13] Touch, J.D., “Parallel Communication,” Proc. IEEE Info-
com, Mar. 1993, p. 505-512.

[14] Watson, R.W., “The Delta-t Transport Protocol: Features
and Experience,” Protocols for High Speed Networks,
Elsevier, 1989, p. 3-17.

[15] Berners-Lee, T.J., Cailliau, R., Groff, J-F, Pollermann, B.,
“World-Wide Web: The Information Universe,” Electronic
Networking: Research, Applications and Policy, Meckler
Publishing, Connecticut, Spring 1992, p.52-58.

