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Abstract - Hosts providing important network services such as
HTTP and FTP incur a per-connection memory load from TCP
that can adversely affect their connection rate and throughput.
The memory requirement is directly tied to the number of con-
nections; caching and other sharing methods will not alleviate it.
We hav e observed HTTP throughput reductions of as much as
50% under SunOS 4.1.3 due to this loading.

This paper advocates off-loading the memory requirements to
the growing number of clients. This reduces server memory
requirements as connection rate at that server gro ws due to
increases in the number of clients and the bandwidth available
on the network. Our approaches control server memory load
better with growing client load than per-transaction techniques
such as persistent HTTP connections. Our approaches also
interoperate with persistent connections to take advantage of
their other benefits.

This paper describes the causes of the memory loading, called
TIME-WAIT loading, and defines three methods of alleviating it
that scale with increasing number of clients. We present mea-
surements of the systems and a comparison of their properties.

1. Introduction

The Transmission Control Protocol (TCP)[1] provides reli-
able byte-stream transport to hosts on the Internet. TCP is
used by most network services that require reliable transport,
including the Hypertext Transport Protocol (HTTP)[2].
TCP’s method of isolating old connections from new ones
results in an accumulation of state at busy servers that can
reduce their throughput and connection rates. The effect on
HTTP servers is of particular interest because they carry a
large amount of Internet traffic.

TCP requires that the endpoint that closes a connection
blocks further connections on the same host/port pair until
there are no packets from that connection remaining in the
network[2]. Under HTTP, this host is usually the server[2].

To temporarily block connections, one endpoint keeps a
copy of the TCP control block (TCB) indicating that the con-
nection has been terminated recently. Such a connection is in
the state[1]. Connections in are
moved to CLOSED and their TCB discarded after enough
time has passed that all packets from the same connection
have left the network. Packets leave the network by arrive at
one of the endpoints and being rejected, or arriving with an

expired time-to-live (TTL) field at a router and being deleted.

For endpoints that are the target of many connections,
thousands of connections may be in state at any
time, which introduces significant memory overhead. We
refer to this condition as TIME-WAIT loading.

If the endpoint’s TCP implementation searches all TCBs
when delivering packets, loading will directly
affect its performance. The presence of many
TCBs can increases the demultiplexing time for active con-
nections. We hav e seen throughput drop by 50% at loaded
endpoints, and the effect on commercial servers has been
noted elsewhere[3]. Some TCP implementations address the
demultiplexing problem without addressing the memory load;
we discuss them in Section 2.2.

The design of TCP places the TCB at the
endpoint that closes the connection; this decision conflicts
with the semantics of many application protocols. The File
Transfer Protocol (FTP)[4] and HTTP both interpret the clos-
ing of the transport connection as an end-of-transaction
marker. In each case, the application protocol requires that
servers close the transport connection, and the transport pro-
tocol requires that servers incur a memory cost if they do.
Protocols that use other methods of marking end-of-transac-
tion, e.g., SUN RPC over TCP[5], can have the clients close
connections at the expense of a more complex application
protocol.

If the number of clients continues to increase, the only way
to keep server memory requirements constant is
to move the TCBs to clients. Aggregating
more requests per connection merely reduces the growth of
the memory load with respect to increasing client load; mov-
ing the load to clients distributes server memory load to the
cause of that load.

As networks become faster and support more users, the
connection rates at busy servers are likely to increase, result-
ing in more loading. Even if packet demulti-
plexing is done efficiently, the memory cost of
loading can become a significant drain on server resources.
Servers will need additional physical memory resources to
support the load. For embedded servers using TCP, this
translates directly to a higher cost in dollars and power.
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Distributing the TCBs across clients scales better than per-
transaction load reductions like persistent HTTP connections
for controlling loading. The transaction rate is
being driven up by the increasing bandwidth and the growing
number of users. Reducing each transaction’s cost only slows
the growth rate. Offloading TCBs to clients distributes the
load more equitably as the number of clients grows, riding the
growth curve instead of throttling it. Because Persistent con-
nections reduce other per-connection costs, such as extra con-
nection establishment overhead, our systems interoperate
with them.

This work presents three systems to distribute the
build-up to clients. We suggest avoiding
loading by negotiating which endpoint will

hold the TCB during connection establishment.
This provides the most control over location by
making the placement an explicit part of connection estab-
lishment; however, performing this negotiation and respecting
it when the connection is closed requires significant changes
to TCP.

In light of this, we also discuss two less invasive alternative
solutions: a modification to TCP that shifts the
TCB from server to client when the connection is closed; and
a modification to HTTP that supports the client closing the
connection and holding the TCB.

2. The State

This Section discusses the state and its use in
TCP in some detail, and how the state impacts
the performance of busy servers.
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Figure 1: The Problem Addressed by the State

2.1. The Function of

The purpose of is to prevent delayed packets
from one connection being accepted by a later connection.
Concurrent connections are isolated by other mechanisms,
primarily by addresses, ports, and sequence numbers[1].

The state avoids the situation depicted in
Figure 1. Arrows represent packets, and endpoints’ time lines
run down the page. Packets are labelled with the header flags
that are relevant to connection establishment and shutdown;
unlabelled packets carry only data.

Specifically:

• A connection from (address a, port p) to (address b, port
q) is terminated

• A second connection from (address a, port p) to (address
b, port q) is established

• A duplicate packet from the first connection is delayed
in the network and arrives at the second connection
when its sequence number is in the second connection’s
window.

If such a packet appears, there is no way for the endpoints in
the second connection to determine that the delayed packet
contains data from the first connection.

This confusion can only exist if a second connection from
(address a, port p) to (address b, port q) is active while dupli-
cate packets from the first connection are still in the network.
TCP avoids this condition by blocking any second connection
between these address/port pairs until one can assume that all
duplicates must have disappeared.

Connection blocking is implemented by holding a
TCB at one endpoint and checking incoming

connection requests to ensure that no new connection is
established between the blocked addresses and ports.
Because only a connection between the same endpoints can
cause the confusion, only one endpoint needs to hold the
state. The TCB is held for twice the maximum segment life-
time (MSL).

The MSL is defined as the longest period of time that a
packet can remain undelivered in the network. Originally, the
TTL field of an IP packet was the amount of time the packet
could remain undelivered, but in practice the field has become
a hop count[6]. Therefore, the MSL is an estimate rather than
a guarantee. The Internet host requirements document sug-
gests a using 2 minutes as the MSL[7], but some implementa-
tions use values as small as 30 seconds[8]. Under most con-
ditions waiting 2 MSL is sufficient to drain duplicates, but
they can and do arrive after that time. The chance of a dupli-
cate arriving after 2 MSL is greater if MSL is smaller.
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Figure 2: The TCP State Machine For Closing Connections1

TCP requires that the endpoint that initiates an active close
of the connection eventually enters . Closing a
connection that is in the ESTABLISHED state is called
actively closing, closing from CLOSE-WAIT is passively
closing. If both ends close the connection from ESTAB-
LISHED, this is a simultaneous close, and both endpoints do
a modified active close[1]. (See Figure 2.) Intuitively, the
first endpoint to close a connection closes it actively, and the
second passively; HTTP and FTP servers generally close con-
nections actively.

Tying the state to the closing method simpli-
fies the TCP state diagram because no information from the
connection establishment affects connection termination.

2.2. Performance Problems at Busy Servers

Because client/server protocols are generally synchronized
request/response protocols, the protocol specification usually
determines which endpoint will close the transport connec-
tion. For example, FTP clients know a file has been delivered
successfully if the connection on which the file was trans-
ferred closes gracefully[4]; this implies that the server closes
connections.

TCP commentators encourage client/server systems to
arrange for the client to close connections to avoid

loading[8]. Many protocols, such as FTP, do
not follow this convention. We discuss the reasons for this in
Section 2.3.

Because application protocols do not take
TCB distribution into account, heavily loaded servers can
have thousands of connections in that consume
memory and can slow active connections. In BSD-based
TCP implementations, TCBs are kept in mbufs, the memory
allocation unit of the networking subsystem[9]. There are a
finite number of mbufs available in the system, and mbufs
consumed by TCBs cannot be used for other purposes such as
moving data. Some systems on high speed networks can run

1 The diagram layout is modelled after one appearing in [8].

out of mbufs due to buildup under high connec-
tion load. A SPARCStation 20/71 under SunOS 4.1.3 on a
640 Mb/s Myrinet[10] cannot support more than 60 connec-
tions/sec because of this limit.

Demultiplexing incoming packets requires searching the
endpoint’s list of TCBs which will be full of of
TCBs at a loaded server. In a simple imple-
mentation, the TCB list is searched linearly to pass the packet
to the appropriate connection, which can be a bottleneck.
The additional search overhead can cut throughput in half
between two SunOS 4.1.3 SPARCStations on a Myrinet. We
show an example in Section 5.

Modern TCP implementations avoid the overhead of the
linear search of TCBs when demultiplexing
packets. BSDI/OS keeps TCBs at the end of
the list of TCBs, so that they can be used as a terminator for
the linear search[11]. Looking TCBs up in a hash table
reduces lookup times both for systems with many

TCBs and for many active connections[12].

Some systems address loading by using a
shorter MSL, hoping to age the TCBs out of the
system sooner, which weakens the protection afforded by

. If TCBs are kept at clients, they
can afford to keep them for the full MSL. Using a shorter
MSL at servers alleviates the memory usage problem, but can
affect the integrity of communications with any host to which
it connects. The size of the MSL to maintain a given memory
usage level is inv ersely proportional to the connection rate.
This implies that connections will be least protected at the
most loaded servers.

Even in TCP implementations that demultiplex packets
efficiently, such as those mentioned above,
TCB accumulation consumes memory. Systems such as per-
sistent HTTP connections can reduce the per-transaction
server memory cost, but the Internet continues to grow both
in terms of available bandwidth and in terms of number of
users. The result is that busy servers will be seeing more
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connections per unit time, which translates directly into
increased memory usage.

Spreading the memory requirement to the growing number
of clients scales better than reducing the per-transaction cost
at the server when the number of transactions is still growing.
Per-transaction systems try to reduce the cost of each client,
but the requirements still grow with increasing Internet traf-
fic. Distributing the TCBs to clients takes
advantage of their growing number to reduce the memory
load on servers. Our systems support persistent connections
in order to share their other benefits, such as avoiding extra
TCP 3-way handshakes.

2.3. Server Close and Application Semantics

Using connection close to delimit transactions is a clean
abstraction with unintended performance impact under TCP.
HTTP and FTP servers signal the end of a transaction by
closing the transport connection. As we argued above, this
can load servers[2,4]. These protocols carry
the majority of the TCP traffic in the wide area Internet today.

Using the TCP connection closure as part of a simple
request/response protocol results in simpler protocols. In
such as system, the semantics of TCP’s close make it an
unambiguous end-of-transaction marker.2 Without this mech-
anism, protocols are forced to specify transaction length
explicitly, or to provide an unambiguous end-of-transaction
marker.

Providing an unambiguous end-of-transaction marker in
the data stream requires that the server either knows the con-
tent length when the response begins, or edits the outgoing
data stream to mask end-of-transaction markers in the data
that the client must restore. Transactions must have a length
field or be byte-stuffed.

If a response is generated dynamically, its length may not
be known when the response starts, making the former fram-
ing methods unwieldy. Such data may be generated on
demand from another program in the system that does not
respect the protocol end-of-file marker. An HTTP server that
supports the Common Gateway Interface (CGI) is such a sys-
tem. Buffering that program’s output to determine its size or
remove embedded end-of-transaction markers slows the
response.

3. Negotiation

This section discusses modifying TCP to negotiate the
TCB holder when the connection is established.

This makes the post-connection memory requirement explicit
and allows either endpoint to decline the connection if the
overhead is unacceptable. Furthermore it is transparent to

2 This is false in protocols that can have multiple pending
requests, e.g., pipelined HTTP requests[13].

applications using the transport, and allows them to close the
transport connection as part of their protocol without incur-
ring hidden costs.

We propose adding a TCP option, TW-Negotiate, that indi-
cates which end of the connection will hold the TCBs. TW-
Negotiate will be negotiated during the three-way handshake
that is used to synchronize TCP sequence numbers. The
three-way handshake has been used to negotiate other
options, such as TCP window scaling[14].

The negotiation algorithm for a client/server connection:

1. Client includes the TW-Negotiate option in the <SYN>
packet for the connection. TW-Negotiate contains the
IP address of the end that will hold the TCB. The
option’s presence indicates that the client supports
negotiation. Clients must send an IP address, to sup-
port the algorithm below for resolving a simultaneous
open.

2. Server returns the <SYN, ACK> packet with TW-
Negotiate set to its choice to keep the
state. If it does not support negotiation, it sends no
TW-Negotiate option.

3. The client decides if the server’s choice is acceptable.
If so, it acknowledges the <SYN, ACK> packet with
the same value of TW-Negotiate. If not it aborts the
connection with an <RST> packet. (The connection is
aborted as though it failed to synchronize, and intro-
duces no new failure modes to TCP.) Aborting the
connection from this unsynchronized condition leaves
no extra state at either endpoint; the server returns to
LISTEN, and the client closes the connection. If the
server returned no TW-Negotiate option, the connec-
tion will use current TCP semantics: the side that
issues the active close will enter (or both
will if they close simultaneously).

This algorithm handles any non-simultaneous connection
establishment; the following handles the simultaneous case.
During a simultaneous open, neither endpoint is in the server
role, so neither has the TW-Negotiate value has priority. As
establishment progresses, both sides will find themselves in
SYN-RCVD (the state transitions are CLOSED SYN-
SENT SYN-RCVD) Each will know two TW-Negotiate val-
ues: theirs and the other endpoint’s[1]. From here, each end-
point behaves as if it were a client in step 3 of the negotiation
and had received the value in Table 1 from its peer. At most
one endpoint will disagree with the conclusion, and send an
<RST>.

This algorithm guarantees that the endpoints will agree on
which will enter when the connection is dis-
solved, or will fall back to TCP semantics if either side does
not support negotiation.
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TW-Negotiation TW-Negotiation
Values Known Value To Use

Either Contains No Option No Option
The Same IP Address That IP Address
Tw o Different IP addresses Larger IP Address

Table 1: Negotiation Values for Simultaneous Open

As an example of a negotiation when two endpoints simul-
taneously open the same connection, consider two endpoints,
A and B. A’ s IP address is larger. Both always attempt to
negotiate holding their own TCB, i.e., they
send their own address in the TW-Negotiate option. The two
endpoints attempt to open the connection, the <SYN>s cross
in the network and both receive a <SYN> before they hav e
received a <SYN, ACK>. The endpoints know the value of
both TW-Negotiate options, but neither is in the server role
above and can make the “final offer”. they both act as if they
had were clients and had sent a <SYN> with their preferred
value, and received a <SYN, ACK> with A’s address. They
use A’s address based on Table 1.

If having A hold the TCB is acceptable to
both, they will both send an <SYN, ACK> with A’s address
in the header, and the connection will be established (after the
final <ACK> exchange). If B is unwilling to have A hold the
TCB, it will send an <RST> and the connection will never be
established. A will always send a <SYN, ACK> because
Table 1 has selected its preference; this will always be true of
one endpoint, so only one will send the <RST>.

This system is biased toward endpoints with larger IP
addresses; however, simultaneous attempts to establish con-
nections are rare and never occur in client/server systems.
Should systems evolve that exhibit frequent simultaneous
connection establishment attempts and loading,
the protocol can be modified to include a random number in
each header and use that to pick the TCB holder.

When the a connection connection that has a negotiated
holder is closed, the two endpoints will

exchange <FIN> packets as usual, and the
holder will enter and the other endpoint will
enter CLOSED, reg ardless of which end closed actively and
which (if either) passively.

When negotiation is added to a endpoint’s operating sys-
tem, most applications will use system-wide defaults for the
TW-Negotiate option. These defaults will be set to minimize
server load, i.e, to hold TCBs at clients. A
mechanism, such as a socket option, will be provided to allow
applications to override the default setting.

The negotiation algorithm allows busy servers to accept
connections only from clients that are willing to incur the

overhead. Application algorithms do not have
to alter their use of connection close in their protocol, and
incur no hidden performance penalty associated with the

distribution of TCBs.

3.1. Barriers to Adoption

Although the algorithm above is simple to describe, it rep-
resents a significant change to the TCP state machine. Many
TCP implementations are descended from the original BSD
reference implementation of the TCP/IP stack that directly
implements the TCP state machine[9]. Implementing
changes to that state machine would require significant pro-
gramming and testing effort. Furthermore, proofs of TCP
correctness that rely on the TCP state machine would be
invalidated.

The state machine changes reflect the fact that information
from connection establishment affects the closure. Currently,
once an endpoint has finished the three-way handshake and
entered the ESTABLISHED state, it is impossible to tell what
role it played in creating the connection. By using informa-
tion from the connection establishment to determine the end-
points’ behavior when the connection is terminated, we have
created two states that represent an established connection,
and which state a connection enters depends on the result of
an option negotiation.

Negotiating the TCB holder when the con-
nection is closed disrupts the state machine less, but reduces a
endpoints’ control over their resources. A client in a system
that negotiates the holder before the connection is established
cannot get the data it wants without reaching an agreement
with the server about which side bears the costs of the

TCB; a client in a system that negotiates the
holder when the connection closes can always leave the
server paying the cost. We prefer a system that
makes agreement on the allocation of connection costs a pre-
requisite to incurring them. However, because allocating the

state at connection close time is simpler, we
have implemented an example of that system, which we dis-
cuss in Section 5.1.

We feel that the benefits of providing applications more
control over the endpoint resources that they commit to a con-
nection has significant advantages. The proposed system iso-
lates that protocol behavior, which makes the solution more
general than, for example, reversing the roles of active and
passive closer. Finally it isolates application programs from
an implementation detail of the transport protocol, allowing
new application protocols to meet the needs of applications
rather than being bent out of shape by transport.

4. Other Systems to Avoid TCB Loading

In this section we propose two less ambitious solutions to
the server loading problem. Each solution is a
small change to an existing protocol that reduces

loading in HTTP and FTP servers. One system
modifies TCP to exchange TCBs after a
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successful close, the other modifies HTTP to encourage
clients to close the underlying TCP connection. We chose to
modify HTTP because it is a large component of Internet traf-
fic.

These solutions are intended to be practical ones. As such,
they are incrementally deployable and compatible with exist-
ing protocol specifications. Both the TCP and HTTP solu-
tions realize benefits without modifying the server systems,
although additional benefits accrue if both client and server
implement the HTTP changes. Neither set of changes vio-
lates the current TCP or HTTP specifications, so changed sys-
tems will operate in today’s Internet.

We hav e implemented both systems, and observed that
both significantly reduce the loading on HTTP
servers. We discuss the performance of both systems in Sec-
tion 5. Patches which implement the systems are available
from the authors.

4.1. Transport Level (TCP) Solution

The TCP solution exchanges the state
between the server and client when the connection is closed.
We modify the client’s TCP implementation so that after a
successful passive close, it sends an <RST> packet to the
server and puts itself into a state. The <RST>
packet removes the TCB in state from the
server; the explicit transition to a state in the
client preserves correct TCP behavior.

If the client <RST> is lost, both server and client remain in
state, which is equivalent to a simultaneous

close. If either endpoint reboots during the <RST> exchange,
the behavior is the same as if an endpoint running unmodified
TCP fails with connections in state: packets
will not be erroneously accepted if the endpoint recovers and
refuses connections until a 2 MSL period has elapsed[1,7].
The behavior of an active close is unaffected.

Using an <RST> packet means that this system only works
with TCP stacks that accept <RST> packets that arrive for a
connection in state. Such stacks are susceptible
to assassination[15], which can lead to connec-
tions becoming desynchronized or destroyed.
assassination is the accidental or malicious deletion of a

TCB at an endpoint, which can lead to confu-
sion as shown in Figure 1.

Our system assassinates states at the server
and replaces them at the client, which does not change TCP’s
behavior. Adding our system to a server that is susceptible to

assassination does not make it more vulnerable,
but a server that implements the changes in[15] to prevent
assassinations will not benefit the system described in this
section. Interactions between a server that prevents

assassination and a client that implement our
changes do not compromise guarantees.

Our system modifies the TCP state machine by changing
the arc from LAST-ACK to CLOSED to an arc from LAST-
ACK to and sending an <RST> when the arc is
traversed. (See Figure 2 for the relevant section of the TCP
state diagram.) To reduce loading from FTP or
HTTP, these modifications need to be made only to clients.

Hosts that act primarily as clients may be configured with
the new behavior for all connections; clients that serve as
both client and server, such as HTTP proxies, may be config-
ured to support both the new and old behaviors. Supporting
both swapping and non-swapping close is straightforward,
although it requires a more extensive modification of the TCP
state machine.

To allow both behaviors on the same host we split the
LAST-ACK state into two states, one that represents the cur-
rent behavior (LAST-ACK) and one which represents the
modified behavior (LAST-ACK-SWAP).3 If the client invokes
close while in CLOSE-WAIT, current TCP semantics apply;
if the client invokes close_swap in the same state, the
<RST>-sending behavior applies. Close and close_swap are
indistinguishable if invoked from ESTABLISHED.

The state machine in Figure 3 implements both behaviors.
Compare it with the earlier Figure 2, which shows the state
machine for TCP’s connection closing behavior. The details
of active and simultaneous closing are unchanged from Fig-
ure 2, and are omitted for clarity.

Adding close_swap does not require adding a system call.
One implementation of close_swap adds a per-connection
flag that changes the default behavior when set. When a con-
nection with the flag set is closed, the close system call calls
close_swap instead. Endpoints that are primarily clients set
their default close behavior to be close_swap, endpoints that
are primarily servers will default to close.

The performance of this system is limited by how effi-
ciently the endpoint processes <RST> packets. Endpoints
that incur a high overhead to handling <RST>s, or delay pro-
cessing them are not good candidates for this approach.

This system also changes the meaning of the <RST>
packet. An <RST> packet currently indicates an unusual
condition or error in the connection; this system proposes
making it part of standard connection closing procedure.

The TCP solution described in Section 3 does not suffer
from the drawbacks associated with using <RST> packets,
either in terms of exposing systems to incorrect TCP seman-
tics or in terms of additional processing time for <RST>
packets.

3 These states may both be reported as LAST-ACK to moni-
toring tools for backward compatibility.
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Figure 3: Modified TCP State machine for swapping states

4.2. Application Level Solution for HTTP

The systems in Section 3 and Section 4.1 both involve
changes to the transport protocol which is used by many
applications. Directly modifying an application protocol that
is loading servers may control the loading problem and mini-
mize the effect on other applications.

This section describes modifications to HTTP that alleviate
the contribution of that protocol to loading. We
chose to modify HTTP because it is a major source of
client/server Internet traffic.

Early versions of HTTP relied on the closing of the TCP
connection to indicate the end of a transaction. Among the
changes is HTTP 1.1[2] is the support of persistent connec-
tions, a technique that allows clients to pass multiple transac-
tions over the same TCP connection. In order to support per-
sistent connections, the end-of-connection and end-of-trans-
action indications have been decoupled. This decoupling
allows us to modify HTTP to allow clients to actively close
connections and therefore hold the state.

We modify HTTP 1.1 to include a notification from the
client that the connection is closed. This notification takes
the form of an extension request, called CLIENT_CLOSE.
An extension request is a new HTTP command, like PUT or
POST, that is not explicitly defined in the HTTP specifica-
tion[2] A CLIENT_CLOSE request requires no reply. It ter-
minates a series of requests on a persistent connection, and
indicates to the server that the client has closed the TCP con-
nection. A client will close the TCP connection immediately
after sending the CLIENT_CLOSE request to the server.

A CLIENT_CLOSE request differs from including a Con-
nection: close in the header of a request because a
request that includes Connection: close still requires
a reply from the server, and the server will (actively) close the
connection[2]. A CLIENT_CLOSE request indicates that the
client has severed the TCP connection, and that the server
should close its end without replying.

CLIENT_CLOSE is a minor extension to the HTTP proto-
col. Current HTTP clients conduct an HTTP transaction by
opening the TCP connection, making a series of requests with
a Connection: close line in the final request header,
and collecting the responses. The server closes the connec-
tion after sending the final byte of the final request. Modified
clients open a connection to the server, make a series of
requests, collect the responses, and send a CLIENT_CLOSE
request to the server after the end of the last response. The
client closes the connection immediately after sending the
CLIENT_CLOSE.

Modified clients are compatible with the HTTP 1.1 specifi-
cation[2]. A server that does not understand
CLIENT_CLOSE will see a conventional HTTP exchange,
followed by a request that it does not implement, and a closed
connection when it tries to send the required error response.
A conformant server must be able to handle the client closing
the TCP connection at any point. The client has gotten its
data, closed the connection and holds the TCB.

We intend to extend CLIENT_CLOSE to include a mecha-
nism for the server to request that the client close the connec-
tion. This is analogous to the current Connection:
close but is initiated by the server and implemented by the
client. Under HTTP 1.1, loaded servers are allowed to close
persistent connections to reduce their load, but they will incur
a TCB by doing so. Allowing servers to
request that the client disconnect sheds the load
at the server as well.

Modifying servers to recognize CLIENT_CLOSE can
make parts of their implementation easier. Mogul et al. note
that discriminating between a persistent connection that is
temporarily idle and one that is closed can be difficult for
servers because many operating systems do not notify the
server that the client has closed the connection until the
server tries to read from it[2]. CLIENT_CLOSE marks clos-
ing connections, which simplifies the server code that detects
and closes connections that clients have closed.
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Having a client decide when to initiate a CLIENT_CLOSE
is somewhat complex. It has to consider user browsing pat-
terns, state of local resources, and the state of server
resources. The last may be the trickiest to incorporate. As
mentioned above, servers may choose to terminate persistent
connections in order to reuse the resources allocated to that
connection. Servers need a mechanism to communicate their
commitment level to a connection, so that clients and servers
are more likely to decide to terminate the same ones[16].

The CLIENT_CLOSE request has been implemented
directly in the apache-1.2.4 server[17] and test programs from
the WebSTONE performance suite[18]. Patches are available
from the authors.

Adopting the HTTP solution is effective if HTTP connec-
tions are the a major source of loading; how-
ev er, if another protocol begins loading servers with

states, that protocol will have to be modified as
well. Currently, we believe HTTP causes the bulk of

loading.

The CLIENT_CLOSE system requires changes only on the
client side, although making servers aware of
CLIENT_CLOSE may enhance the system’s effectiveness.
The system conforms to the HTTP 1.1 specification and
requires no changes to other protocols. to our knowledge, it
creates no new security vulnerabilities.

5. Experiments

In this section we present experiments that demonstrate
loading and show that our solutions reduce its

effects. The proposed solutions have been implemented
under SunOS 4.1.3 and initial evaluations of their perfor-
mance have been made using both custom benchmark pro-
grams and the WebSTONE benchmark[18]. The tests were
run on workstations connected to the 640 Mb/sec Myrinet
LAN.

We performed two experiments. The first experiment
shows that TCB load degrades server performance and that
our modifications reduce that degradation. The second illus-
trates that both our TCP and HTTP solutions improve server
performance under the WebSTONE benchmark, which simu-
lates typical HTTP traffic. The last experiment shows that
our modifications enable a server to support HTTP loads that
it cannot in their default configurations.

5.1. Demonstration of Worst-Case Server Loading

The first experiment was designed to determine if TCB
load reduces server throughput and if our modifications alle-
viate that effect. This experiment used four Sparc 20/71’s
connected by a Myrinet using a user-level data transfer pro-
gram over TCP. The throughput is the average of each of two
client workstations doing a simultaneous bulk transfer to the
server. We varied the number of TCBs at the

server by adding states.

The procedure was:

1. Two client machines establish connections to the
server

2. The server is loaded with TCBs state by
a fourth workstation. This workstation established and
shut down connections as fast as possible until the
server was loaded.

3. The two bulk transport connections transfer data.
(Throughput timing begins when the data transfer
begins, not when the connection is established.

TCBs may expire during the transfer.)

4. Between runs, the server was idled until all
TCBs timed out.

The results are plotted in Figure 4. Each point is the aver-
age of ten runs, error bars are standard deviations. The
“Modified TCP” curve represents a SunOS system with the
TCP modifications from Section 4.1. “Unmodified TCP” rep-
resents an unmodified SunOS system. All other parameters
remained unchanged.

The experimental procedure is designed to isolate a worst
case at the server. The client connections are established first
to put them at the end of the list of TCBs in the server kernel,
which will maximize the time needed to find them using
SunOS’s linear search. Tw o clients are used to neutralize the
simple caching behavior in the SunOS kernel, which consists
of keeping a single pointer to the most recently accessed
TCB. Two distinct clients are used to allow for bursts from
the two clients to interleave; two client programs on the same
endpoint send bursts in lock-step, which reduces the cost of
the TCB list scans.

The experiment shows that under worst case conditions,
TCB load can reduce throughput by as much as 50%, and that
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our TCP modifications improve performance under those
conditions.

While it is useful that our modifications perform well in the
worst case, it is important to asses the worth of the modifica-
tions under expected conditions. The previous experiment
constructed a worst case scenario; the following experiment
uses WebSTONE to test our modifications under more typical
HTTP load.

5.2. HTTP Load Experiments

WebSTONE is a standard benchmark used to measure web
server performance in terms of connection rate and per con-
nection throughput. To measure server performance, several
workstations make HTTP requests of a server and monitor the
response time and throughput. A central process collects and
combines the information from the individual web clients. We
modified the benchmark to measure the amount of memory
consumed by TCBs on the server machine. We used Web-
STONE version 2 for these experiments. The same worksta-
tions and network from Section 5.1 are used in these experi-
ments.

WebSTONE models a heavy load that simulates HTTP
traffic. Two workstations run multiple web clients which
continuously request files ranging from 9KB to 5MB from
the server. Each workstation runs 20 web clients. TCP modi-
fications are as described in Section 4.1 and HTTP modifica-
tions are as described in Section 4.2. Results are shown in
Table 2.

Both modifications show marked improvements in
throughput, connection rate and memory use. TCP modifica-
tions increase connection rate by 25% and HTTP modifica-
tions increase connection rate by 50%. Server memory
requirements are reduced regardless of the HTTP/TCP
demultiplexing implementation.

When clients request smaller files, unmodified systems fail
completely because they run out of memory; systems using
our modifications can support much higher connection rates
than unmodified systems. Table 3 reports data from a typical
WebSTONE run using 8 clients on 4 workstations connecting
to a dedicated server. All clients request only 500 byte files.

Throughput Conn. TCB
per Memory

second (Kbytes)
(Mb/sec)

System Type

Unmodified 20.97 49.09 722.7
TCP Mods. 26.40 62.02 23.1
HTTP Mods. 31.73 74.70 23.4

Table 2: Loading Under WebSTONE

Throughput Conn. TCB
per Memory

second (Kbytes)
(Mb/sec)

System Type

Unmodified fails fails fails
TCP Mods. 1.14 223.8 16.1
HTTP Mods. 1.14 222.4 16.1

Table 3: Loading Under WebSTONE With Small Files

The experiments support the hypothesis that the proposed
solutions reduce the memory load on servers. The worst-case
experiment shows that the system with a modified TCP per-
forms much better in the worst case, and that server band-
width loss can be considerable. The WebSTONE experi-
ments shows that both systems reduce memory usage, and
that this leads to performance gains. Finally modified sys-
tems are able to handle workloads that unmodified systems
cannot.

This is a challenging test environment because the TCB
load of the server workstations is spread across only two
clients rather than the hundreds that would share the load in a
real system. The clients suffer some performance degrada-
tion due to the accumulating TCBs, much as the server does
in the unmodified system.

5.3. Av oidance and Persistent Connections

The systems proposed are compatible with the per-connec-
tion schemes such as persistent connections. To show that
our systems improve the memory performance of those sys-
tems, we ran WebSTONE experiments using persistent con-
nections and our systems. The experiment used the same net-
work as the experiments described in Section 5.2; two work-
stations acted as clients, and one as a web server. Each client
used the same request pattern as the results in Table 2. Each
client issued 5 HTTP requests, waited until they all arrived,
and sent 5 more. Each connection served 10 requests in two
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5-request bursts.

Figure 5 shows how per-connection average client through-
put varies with increasing number of clients. Connection
throughputs are comparable to those in Table 2, with the dif-
ference due primarily to the longer life of these connections.
For example, congestion windows will open farther. Our

avoidance methods increase the per-connection
throughput as client load increases.

Figure 6 shows that in addition to a modest increase in per-
connection throughput, our systems provide significant reduc-
tion in the memory used for TCB blocks at servers. That fig-
ure plots the number of TCBs in use by the server versus the
client load.

It appears from Figure 6 that a simple persistent connection
system is showing improved memory performance with
increasing client load, but this is not the case. Figure 7 shows
that the connection rate decreases with increasing client load
in the unmodified system, due to the additional overhead.
The memory usage follows the connection rate in the unmod-
ified system. Because Figure 6 includes active TCBs as well
as TCBs, our systems show a linear increase in
used TCBs.

6. Conclusions

We hav e described how TCP interacts with certain applica-
tion protocols to load servers with TCBs, and
shown examples of this behavior. This interaction is a direct
result of the the simplifying assumption that an endpoint’s
role in closing the connection is independent of its role in
establishing the connection.

We hav e proposed negotiating which endpoint holds the
state during connection establishment, and pro-

posed a negotiation protocol. This system extends TCP func-
tionality to allocate TCBs to the proper end of
the connection without interfering with the semantics of the
application protocols or leaving known vulnerabilities in
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TCP. Howev er, because our proposal involves significant
changes to the TCP stack we expect some resistance to its
adoption.

We hav e also implemented and tested a simpler TCP solu-
tion and an HTTP solution to show shift the
load from client to server. We hav e presented experimental
evidence that loading can affect server perfor-
mance under SunOS 4.1.3. Under these conditions, through-
put can be reduced by as much as 50%.

Using WebSTONE, we have shown that HTTP clients and
servers using one of our systems exhibit higher throughputs
under SunOS 4.1.3. Clients and servers using our system can
support higher connection rates than unmodified systems, in
certain configurations.

We hav e shown that our systems combined with persistent
HTTP connections use less memory than an otherwise
unmodified SunOS 4.1.3 system using persistent connections
for a given client load. Our systems interoperate with persis-
tent connections.

Although there are other systems that address the through-
put problems we discuss here[11,12], our systems attack the
memory loading problem directly. This can reduce the cost
of deploying a server, which can be especially important to an
embedded or battery powered server.

Table 4 compares the three systems proposed here.

We believe that TCP should eventually be modified to sup-
port negotiation. The coming upgrade from IP
version 4 to version 6 represents an opportunity to revisit
TCP implementation and design as well. This would be an
opportune time to include state negotiation.

We hav e also proposed two effective, practical systems for
reducing TW load at servers until the more ambitious pro-
posal can be implemented. Adopting one of them would also
reduce loading at servers.
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TCP With TCP With CLIENT_CLOSE
Client HTTP

Negotiation <RST> Extension

Yes Yes YesReduces Loading

Yes Yes YesCompatible With Current Protocols

No Yes YesChanges Are Effective If Only The Client Is Modified

Yes No YesAllows System To Prevent Assassination

No No YesNo Changes To Transpor t Protocol

Yes Yes NoNo Changes To Application Protocols

Yes No NoAdds No Packet Exchanges To Modified Protocol

Yes No NoAllocation Is A Requirement of Connection
Establishment

Table 4: Summary of Proposed Systems
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Prud’hommeaux, Håkon Wium Lie, and Chris Lilley, “Network Perfor-
mance Effects of HTTP/1.1, CSS1, and PNG,” Proceedings of the SIG-
COMM Symposium on Applications, Technologies, Architectures, and
Protocols for Computer Communication, pp. 155-166, Cannes, France
(14-18 September 1997).

14. Van Jacobson, Robert Braden, and D. Borman, “TCP Extensions for
High Performance,” RFC-1323 (May 1992).

15. R. AIT Assassination Hazards in TCP,” RFC-1337,
USC/Information Sciences Institute (May 1992).

16. James Gettys, Personal Communication (December 1997).

17. Roy T. Fielding and Gail Kaiser, “Collaborative Work: The Apache
Server Project,” IEEE Internet Computing, vol. 1, no. 4, pp. 88-90,
IEEE (July/August 1997).

18. Gene Trent and Mark Sake, “WebSTONE: The First Generation in
HTTP Server Benchmarking,” white paper, Silicon Graphics Interna-
tional (February 1995).


