
1

Abstract 1

The First IEEE Gigabit Networking (GBN) Workshop
defined a set of characteristics of “interesting” high-
speed applications. The GBN criteria ensure that the
application addresses a significant problem, and that it
actually requires a gigabit network. This paper presents
five challenges that augment the GBN criteria. These
challenges ask whether gigabit applications require new
research into different protocols, or can be supported by
existing protocols that merely run faster.

1: Introduction

At the First IEEE Gigabit Networking Workshop
(GBN), held in Toronto, prior to IEEE Infocom ’94, a
number of gigabit applications were presented [10]. The
GBN submission criteria for “gigabit applications” were
defined in the call-for-papers by a list of characteristics
that ensures that significant user bases exist, and that a
gigabit network was required.

During the past several years the networking research
community has been considering the problem of gigabit
protocols, especially how they differ from their slower
counterparts [9]. There are two primary issues - increased
speed or performance of existing protocols, and domains
where existing protocols may not suffice. This paper char-
acterizes the latter by a list of challenges developed to
complement the GBN criteria.

This paper first summarizes the GBN criteria and justi-
fies the need for additional challenges. The challenges are
then presented. Finally, as a challenge unanswered is not

1. This research was partially sponsored by the Advanced Research
Projects Agency through Ft. Huachuca Contract No. DABT63-91-C-
0001. The views and conclusions contained in this document are those of
the authors and should not be interpreted as representing the official poli-
cies, either expressed or implied, of the Department of the Army, the
Advanced Research Projects Agency, or the U.S. Government.

This paper is based on a presentation given at the First IEEE Gigabit Net-
working Workshop, May 1994, Toronto [10].

entirely useful, an application is presented that survives
these challenges. This is done to open the door to broader
consideration of some unconventional trade-offs that use
bandwidth as a resource2 rather than as a constraint.

1.1: The GBN Criteria - A Review

The GBN criteria were described in its call-for-papers
[10]. They are designed to ensure a significant user base,
and that a gigabit network is required. They are:

A.“Realistic consumer or business application
(current or future)”

B.“Minimum bandwidth per user of many Mbps”

C.“Minimum potential base of 1000s of
simultaneous users”

D.“Number of users x application bandwidth in
excess of 1 Tbps”

E.“Consumer video applications must be more
sophisticated than broadcast or simple video-on-
demand multicast”

Criteria A and C ensure that the application addresses a
significant user population. Although there are many inter-
esting applications in telemedicine, distributed simulation,
and parallel computation that require gigabits, they
address too small a user community. An exception would
be tele-stuff, of which telemedicine is one example, where
the general class of applications may have a substantial
user base as an aggregate.

Criteria B, C, and D ensure that gigabit bandwidth is
required, and is not a result of aggregation of users or
groups of independent applications.

The first four criteria ensure that the application
addresses substantial user communities and requires giga-
bit bandwidth. There are many applications that satisfy
these criteria but are considered “uninteresting,” because
they can already be implemented with existing protocols.

2. A resource that, like any other resource, is subject only to the arguably
external constraint of cost.

Defining High-Speed Protocols:
Five Challenges and an Example That Survives the Challenges

Joseph D. Touch

USC / Information Sciences Institute (touch@isi.edu)

2

Criterion E is an attempt by GBN to filter some of these
out.

The GBN criteria are conditions where gigibits are use-
ful, but not where they are necessary. Criterion E does not
sufficiently exclude classes of gigabit applications for
which solutions already exist. This is why this paper aug-
ments these criteria with further challenges.

1.2: The Killer Application and Killer Protocol

The goal of this discussion is to refine the GBN criteria
to exclude cases where existing protocols suffice. The
result is to define a set of criteria that require new proto-
cols to use gigabit networking for real applications.

The application that exhibits this goal is the World-
Wide Web (WWW) client server system [2]. It exhibits
gigabit requirements when real-time interactive con-
straints are added [13].

The WWW is emerging as a dominant (and thus realis-
tic) consumer and business application [2]. Although orig-
inally developed as an interface to Internet navigation of
file transfer client/server systems, its current use is evolv-
ing towards a distributed interactive application. As such,
the requirements on response time are narrowing. As users
begin to expect real-time interactive response, they
demand response times in the 100-200 ms range3.

Whereas its minimum user bandwidth is not many
Mbps for conventional client/server operation, it can be
for interactive use. Consider a 100 ms transmission and
switching latency. That leaves around 50 ms for request
creation, server parsing, server retrieval, and server
response. Assuming that the other components consume a
minimal 10 ms, only about 40 ms remain for file transmis-
sion itself.

The typical WWW HTML (hypertext-only) document
is only around 6 Kilobytes, but small images can be
around 60 Kilobytes. Transmitting a 60 KB file in 40 ms
requires 12 Mbps. As the file sizes increase to 200 KB (for
larger still images), the bandwidth increases to 40 Mbps.
Whereas the minimum bandwidth to the user is not many
Mbps yet, as the demand for still images and short video
clips increases, so too file sizes increase. As other laten-
cies remain constant, the bandwidth requirements increase
as a result. And the expectation of interactive response
time is growing. This is an issue that “rides the technology
curve.”

3. The 100-200 ms number is well established in the human factors and
user interface community, although the specific value is debated.
E.g., Bailey, R., Human Performance Engineering, Prentice-Hall,
NJ, 1982, pp. 44. See also Jacobson, V., “Compressing TCP/IP
Headers,” RFC-1144, January 1990.

The minimum potential base of WWW is easily mil-
lions of simultaneous users, and the aggregate bandwidth
could be in excess of 1 Tbps as well, satisfying the other
GBN criteria.

1.3: Other considerations

Consider the case where a 300 ms satellite hop is in the
path. In this case, the response time of a direct request is
longer than the acceptable limit.

There are an average of 10-20 hypertext links per page
and 6 Kilobytes per file for Web pages (measured). If the
user spends 20 seconds reading each page, the entire con-
tents of every possible “next page” can be sent in 20 links
* 6 KB/link / 20 s = 50 Kbps. If the user scrolls through at
1 page per second, that increases to 1 Mbps.

These are modest bandwidth requirements, but they
increase where the Web pages have images, averaging 60
Kbytes per page, or where the pages have embedded
“IMG” icons, PostScript (100 Kbytes average), or execut-
able binaries (200 Kbytes average, at NCSA). Even higher
bandwidth is required for video clips (1 Mbyte), around
160 Mbps. When a user begins poking around video
archives, the interaction speed increases to 0.2 seconds,
resulting in a single-user bandwidth requirement of 800
Mbps.

Further, users currently pay for maximum bandwidth,
but not per-packet. This should continue (the PTTs use
this as an design criteria). Unused bandwidth is wasted -
there is not necessarily a need to charge for extra band-
width. Use of this bandwidth to reduce the user-perceived
latency is a win.

These WWW modifications are also useful in low
bandwidth environments, where the channel is idle in-
between requests. The common characteristic is that of
surplus bandwidth-delay product. In one case, the product
is “vertical” - the increase in BW results in a “tall” pipe
that can not be filled. In the other case, the product is “hor-
izontal” - idle periods form longitudinal gaps in the pipe
that are not filled. The solutions proposed here enable
interactive WWW applications that require surplus band-
width-delay product, regardless of which type.

2: Primary issues

There are two primary issues - that the protocol does
not run fast enough, and that the bandwidth-delay product
pipe is not full. Each has several ways of being dealt with,
ways that determine the additional challenges:

3

2.1: Protocol does not run fast enough

If the protocol does not run fast, it must be speeded up.
Basically, the data path is too slow, the control path is too
slow, or the latency is too large for feedback control.

Data path is not fast

If the data path is not fast, make it faster. Increase the
clock rate of the data, or parallelize the data path.

Control path is not fast

If the control path is not fast enough, reduce the amount
of control required. With a higher transmission rate, this
results in the same amount of control for a larger amount
of data [14]. Slowing the control down is accomplished by
making the data packets larger (e.g., NetBLT or UltraNet),
or transmitting multiple packets per control packet. Slower
control also requires more assumptions about the stability
of state in-between control messages, to ensure stability in
the absence of as many control messages [14].

End-to-end latency is too large

In this case, the data can be sent quickly and the control
computed quickly, but the end-to-end latency is causing
the interaction loop to be too large. One solution is to relo-
cate everything, i.e., to get rid of the need to communicate
in the first place. Caching is one way to relocate, and
another is to circulate the data [1] [4].

2.2: The pipe is not kept full

Assuming speed exists, a method is needed that keeps
the bandwidth-delay product pipe full to achieve high
throughput. If the bandwidth-delay product is not larger
than in a current WAN, current protocols already suffice.
That means a gigabit LAN is fine, but a MAN or LAN will
not work, because speed is not the issue - keeping the pipe
full is. There are two main problems - either the data pipe-
lining mechanism fails, or it runs out of pipeline data.

The pipe is empty because the window is small

In this case, there is a flaw in the implementation. There
is nothing about sliding-windows protocols that necessi-
tates a particular window size or window granularity, only
the implementation has these properties. Increase the num-
ber of bits for the window sequence or “count” over larger
window components [5] [6] [7].

Even with large windows, there is not enough stuff

Even if the windowing mechanism allows large
amounts of pipelining, there may not be enough data with
which to fill the pipe. A gigabit WAN has 30-100 Mbits in
the pipe - 4-12 Mbytes. That is more RAM than many sys-
tems have, and certainly larger than most messages an
application has to transmit.

One solution is to use multiplexing to share the channel
among user processes [8]. This is a parallel of process-
swapping in OS - when one process runs out of data to
send, another is activated. This works, provided that the
process activation is deterministic, i.e., that the other side
of the channel knows what the process activation order is
[11]. This is also tantamount to not having a gigabit appli-
cation protocol - each application does not use a gigabit
channel, so bandwidth needs to be aggregated over a set of
multiplexed applications.

The case where the application order is not predictable
is more interesting, as will be discussed later.

3: Five Challenges

There are five challenges for gigabit protocols. The
main question is probably:

Why are these challenges challenging?

They distinguish between incremental performance
increases and places where current kinds of protocols are
not useful, regardless of how well engineered.

The questions this paper addresses are:

Do gigabit networks NEED new protocols?

Are any new protocols really NEW?

One reason gigabit systems have low performance is
that applications “run out of stuff to fill the pipe with.”
Some believe this problem will disappear, but other inves-
tigations indicate it will not [11] [12]. The transient envi-
ronment has already been observed - when files were
much larger than the bandwidth-delay product. The cur-
rent ratios are not transient, but will continue. It is now
recognized that bandwidth needs to keep pace with pro-
cessing and storage evolution.

Challenge #1 - Increase the Clock Rate

One easy way to increase the speed of a protocol is to
increase the clock rate of the processor, interface, and
transmission lines. If the protocol is slow because you are
using CMOS processors, it might work fine in ECL tech-
nology.

There are a few issues here. First, fast protocols require
fast operating systems, fast interfaces, fast transmission
lines, fast memory, fast disks, and fast everything else. If
the problem is completely solved by speeding up the clock
rate of the system, then this is not a protocol issue. It is a
clock rate issue.

Also consider the fact that fast TCP code relies on pre-
compiled branch prediction (so-called “fast-path”), a very
old and well known optimization technique. Some of the
other protocol stack optimizations are just recognition that
general interfaces are slow, and specific interfaces can be
optimized, also a well-known tradeoff. None of these

4

change the protocol - they are implementation enhance-
ments.

There is a need to distinguish between protocol issues
and issues of overall speed. If the protocol itself is not
keeping up with the speeds of the rest of the system, then
protocol issues are indeed involved. Parallelization
addresses this case, but does not always help [14].

In general, data path parallelization works well, but
control path parallelization is, by definition, poor. Control
paths can not be factored efficiently without synchroniza-
tion between components, which adds overhead that
defeats the parallelization.

Data path parallelization is a way to speed the “clock
rate” of the data. Control parallelization works where
packets are unrelated - e.g., UDP, but not for TCP-like
protocols [14]. In the latter case, regardless of partitioning
(per packet, per function, etc.), the parallelism is limited to
about 5 processors per connection.

The real issue is that of “protocol relativity” [12]. A
protocol does not know the clock rate - only the number of
bits in transit between components. Protocol speedup is a
control and feedback issue, sensitive to the bandwidth-
delay product only.

Challenge #2 - Multiplex (Deterministic)

Multiplexing has been proposed as a solution to the “do
not have enough stuff to send” issue, as mentioned before
[8]. This is equivalent to not having a gigabit application -
the gigabits are shared among a set of applications on a
workstation. Using multiple hosts, users, or processes are
all ways of providing aggregate gigabits only.

In the deterministic multiplexer case, this avoids the
domain examined here [11]. In the nondeterministic case,
the problem has just moved down a level in the protocol
stack. In the original case, there was not enough data to
send, primarily because data was sent to be sufficient for
the current state of the other end of the channel, and not
any possible subsequent states. If there were enough for
subsequent states, that data would have been sent too, and
so on, increasing the amount of data available to send ad
infinitum. This is how sliding windows works - by predict-
ing subsequent states, in a linear manner.

If the subsequent state is not predictable, neither is the
subsequent data [12]. It does not matter whether it is the
application state, or the multiplexer state. Nondeterminis-
tic multiplexing moves the state prediction problem to the
multiplexer-synchronization level, i.e., lower in the proto-
col stack.

Challenge #3 - Use Large Payloads

Using large payloads is another way to shut off the pro-
tocol, and increase the effective speed of the control proto-

col [13]. Versions of TCP run at 1 Gbps by using 64Kbyte
packets, i.e., by this technique (e.g., UltraNet).

Using large payloads slows down the control protocol.
Header frequency determines the rate of the protocol. The
ratio of header to payload determines the stability of the
protocol [14].

Large payloads are also an attempt to amortize the cost
of context switches. Increased payload transfers between
the host and network reduce the effective overhead of the
transfer setup costs. This is an attempt to overcome an
existing problem in the host - if context switches are this
costly, making network I/O faster is the least of the wor-
ries.

Challenge #4 - Increase Window Size

As mentioned before, increasing the window size
increases the amount of information an implementation of
a sliding-windows protocol can pipeline. This helps fill the
pipe only if the application has sufficient data to supply. It
addresses an implementation deficiency only. The main
difficulties are backward compatibility and acquiring the
consensus of standards bodies [5] [6] [7].

The window size parameter is also an example of a
compile- or run-time parameter that is unfortunately
treated as a specification constant. There are several such
parameters - maximum protocol data unit, timeout values,
window granularity and range, etc. The constancy of these
parameters is a limitation of implementations only.

Challenge #5 - Relocate Everything

If the data can be copied or cached, i.e., if it is stable
enough that there is no need for separating it from the
application, then a copy can be put near the application via
a low-speed channel to avoid the need for high-speed
communication altogether. A protocol is not needed if
there is no communication, or more precisely, if there is
no feedback of state between two separated entities.

Another way to relocate data is to circulate it among the
nodes of a protocol [4]. Variants of this protocol rely on
predictive behavior of data reuse to govern caching [1].
These are useful techniques, but are protocol extrapola-
tions of previously known methods.

4: WWW interactive applications

Although it is useful to eliminate domains where giga-
bit protocols are not needed, it begs the question of where
they are.

One application that requires a gigabit protocol is an
interactive client/server system with real-time response.
Several years ago when the problem of latency and high
speed protocols was analyzed, the conditions were speci-

5

fied under which bandwidth and bandwidth-delay product
could be used to compensate for latency. The goal is to
reduce the perceived latency, to give the illusion of low
latency. This work began as “Mirage” (a model) and con-
tinues as “Parallel Communication” (a protocol based on
Mirage) [12].

Latency compensation is possible using source-based
anticipation (presending). The composition of two pre-
sending channels (back-to-back) is the more common
receiver-based anticipation, i.e., prefetching. This differs
because it is source-based.

There are several advantages of presending over
prefetching. Presending distributes the computational
effort between source and receiver. It also avoids unneces-
sary prefetch messages from the receiver, allowing better
use of asymmetric communications channels (e.g., satel-
lite, cable-TV, or high-speed digital telephone with dial-
up feedback).

This solution requires knowledge of the state space
evolution of the other end of the channel, where the state
evolution has moderately-constrained branching proper-
ties. The domain was described where source-anticipation
would help, specifically distributed hypermedia naviga-
tion [12] [13].

This describes the WWW, used as a real-time interac-
tive distributed system [2]. The WWW browsers are cur-
rently used as client/server interfaces, where response time
tolerance is high. Casual users have come to begin to
expect a level of real-time interaction that does not match
the client/server design of the system.

In addition, HTML (the document notation language of
the WWW) has come to be an effective high-level applica-
tion language. Systems use WWW to drive bulletin-board
services, interactive query systems, on-line forms systems,
etc. This further drives the expectation of interactive
response time from these WWW interactive applications
(WWWias).

5: Defining Characteristics

This section lists a set of characteristics that helps
define applications that are capable of using gigabit net-
works and keeping the “pipe” full of data sufficient to
reduce perceived latency.

Char. #1 - Requires Feedback

Non-interactive applications, i.e., those that pipeline
data to fill the bandwidth-delay product, can be accommo-
dated with existing transport protocols. These include
streaming data applications, such as digital audio or video,
as used in teleconferencing.

WWWia’s require feedback between the client and
server. Even though the servers are stateless, they keep
soft-state that helps govern source-based anticipation.

Although there are caching proxies for WWW servers,
they will not help for the first-use of documents. If the
response time is very large, even for some small percent of
the time, the interactive nature of the WWWias will be
defeated. Also, the WWW drives the interaction towards
first-use, because the clients themselves have caches.

Char. #2 - “Non-linear” Communication

The feedback needs to be non-deterministic. Otherwise
simple pipelining again works fine, as in the case of send-
ing a very large file or database in total [1] [4].

WWWia’s have a branching control structure with
recursion, as indicated by the URL links and the “history”
of the browser (user interface).

Large windows or packets help only during the trans-
mission of a branch item. The branching structure cannot
be accommodated by current sliding-windows protocols,
and inhibits use of large linear windows or large packets
[12].

The combination of feedback and nonlinear communi-
cation defines a rich control structure. It is this structure
that the source uses to guide its presending. Making the
data chunks larger reduces the richness of the control.
WWWia’s are reasonably rich, because the branching of
the control is reasonably large (7-10 links per page), even
though the data chunk is small (6 K for HTML text).

Char. #3 - “Well-Defined” App.-App. BW

This characteristic helps determine that the data can not
be moved, and that the distributed application has not been
broken in a particularly bad place (for high bandwidth)
with no other justification. The system should not require
dissection or detailed constraints to evidence the applica-
tion-application bandwidth. WWWia’s are well-defined -
the server is one side, the browser is the other.

6: An Example that Survives the Challenges

This section explains how WWWia survives the chal-
lenges (and exhibits the characteristics). Specifically, it
describes WWWia’s modified with server-based preload-
ing of the browser cache [13].

6.1: Survival

The WWWia’s survive the five challenges as follows:

#1-Increase the Clock Rate

Current WWW would just get each hypertext page
faster. It would still take a 100-400 ms latency hit each

6

time you clicked on an item, defeating its interactive
nature.

#2-Use Deterministic Multiplexing

This effectively reduces the per-user bandwidth,
increasing the user-perceived latency. As noted before, it
reduces the per-application bandwidth below gigabits.

#3-Use Large Payloads

Even if each WWW page is one packet, performance is
not helped in the case where propagation latency is larger
than 200 ms. In the case where propagation latency is
smaller, the bandwidth required for a direct response is
determined by the amount of time left (200 ms - prop.
latency), and the size of the response (4 Kilobytes, 60
Kilobytes, 200 Kilobytes, etc.).

#4-Speed TCP Code / Increase TCP Windows

Same as #3 - WWW files are too small to matter with
even existing TCP window size.

#5-Requires Feedback

WWW is an “interactive” system - more so as it
evolves.

6.2: Exhibits Characteristics

The WWWia’s also exhibit the three main characteris-
tics:

#1-Requires Feedback

WWWia’s require feedback - files from the server,
and “next request” from the browser.

#2-“Non-linear” Communication

WWWia’s have a branching set of possible next
requests from the browser. The stream of requests is non-
linear.n

The control is reasonably rich with respect to the packet
stream. The data chunks are large (30-60 K), but the con-
trol is much richer than “buffer empty/full” as in current
protocols - it specifies a unique file on the server.

#3- “Well-Defined” App.-App. Bandwidth

Server to browser, browser to server.

7: WWWia’s Architecture

The design for a WWWia architecture augments the
existing WWW client/server with a presending pump and
browser filter (Figures 1, 2) [13]. The pump and filter are
supported by either the existing transport protocols or their
more recent extensions [3], or by an augmented transport
protocol [12]. The pump and filter implement the Web-
equivalent of the Parallel Communication protocol [12].

FIGURE 1. Implementation of the WWW
intermediaries called the pump and filter.

FIGURE 2. Design of the Pump and Filter appears
to the server and client as if it were a Proxy Cache.

The pump acts as a proxy for the browser at the server.
It keeps soft state indicating the last request received from
the browser, and peeks into the data stream to find URLs
embedded in replies from the server. The pump then
makes requests for URLs on the same server to be for-
warded to the filter. The pump and filter together appear as
a proxy cache to the client and server (Figure 2). The pro-
tocol is outlined in Figures 3 and 4.

The pump permits two kinds of HTML replies to be
sent to the browser - direct replies, and present replies.

WWW

SERVER

BROWSER

Existing WWW
Latent-WWW

WWW

SERVER

b-TCP

b-TCP

BROWSER

FILTER

PUMP

80

Server

80 Requests

X Updates

YPreloads

W

Redirected

Proxy Cache

Preloader

Preloads are dropped if not used.
Updates are dropped if not used.

“Pings” on update/preload channels disable effort (“liveness”).

Requests

Responses

ClientFilterResponsesPump

Server Proxy Cache

Responses

Encapsulated
Requests

Client

Responses

Encapsulated
Requests

Uses client-initiated encapsulation to redirect
requests through a proxy.

7

The present replies are tagged to be saved on the disk by
the filter. In a high bandwidth-delay product network,
these tags may not be necessary, because the present docu-
ments arrive just as they are needed at the browser. The
most disk space required is the larger of the bandwidth-
delay product and the bandwidth-(idle-time) product. If
there is some upper-bound on reasonable disk usage for
the filter to cache present data, that can be indicated to the
pump, to avoid wasted effort.

FIGURE 3. Pump operation.

The filter stores forwarded server replies to the disk. It
also intercepts URL requests from the browser. If the URL
is on the disk, the filter responds with the request and for-
wards the URL to the pump (not to be forwarded to the
server). If the URL is not on the disk, the request is sent to
the pump to be forwarded to the server (Figure 3).

Note that in either case, the URL is sent to the Pump.
This provides feedback to the Pump. In the case where the
file has not yet been sent, it indicates a corrective action to
the Pump. In the case where the Pump has already sent the
file to the disk, it indicates which file was used, and per-
mits the Pump to focus further preloading.

Server BrowserPUMP

URL
Resolve soft-state.

HTML Doc.
Look for URLs in any response.

Request URL from server.
Tag HTML response as “present”.

HTML Doc.+ “filter” tag
FILTER

Augment soft-state.

For each URL in response -

HTML Doc.+ “filter” tag
FILTER

HTML Doc.+ “filter” tag
FILTER

If URL already present,
do not forward to server.
Otherwise, forward to server.

T
im

e

FIGURE 4. Filter operation.

The branching-TCP extensions support the tags indi-
cated in the figures and provide application-layer signal-
ling of excess bandwidth that can be used for latency
reduction.

The pump manages the sending of all possible next
requests, and manages the possible states of the client. The
pump uses the server-side TCP signal of excess bandwidth
to initiate presending, and the branching window allows
the pump to send alternate streams of messages to the cli-
ent. As the pump emits these messages, the branching in
the server-side TCP increases.

The filter allows the browser to receive only those mes-
sages that correspond to a particular state. This client-side
TCP also indicates branch selections to the server-side
TCP, to perform state resolution.

8: Observations

Some measurements have been taken to indicate the
effectiveness of this mechanism. These measurements
were performed on existing Web servers, so reflect current
Web design, which revolves around formatted text (aver-
age page size of 6 KBytes). As available bandwidth
increases, servers are expected to more fully utilize
embedded icons, images, and video clips, increasing the
required bandwidth by a factor of 100.

Server & Pump BrowserFILTER

URL

If URL is already on disk,

HTML Doc.

HTML Doc.+ “filter” tag

PUMP
Send URL to server/pump
for state resolution.

send disk copy of HTML.

When “tagged” HTML arrives,
save it to the local disk.

HTML Doc.

When untagged HTML arrives,
send it on to the browser.

T
im

e

8

One observation is that current Web cannot be sup-
ported interactively by ISDN lines (14% hit rate within 0.1
seconds). By augmenting the protocol to support server
preloading of receiver caches, the same bandwidth can
support 0.1 second response 83% of the time (Figure 5).

FIGURE 5. Response time (probability of a 0.1
second response) as bandwidth increases.

The bandwidth required for source preloading of
receiver caches in the Web has also been measured. Spe-
cifically, number of links per page (Figure 6) and the
amount of bandwidth for general preloading (Figure 7)
were measured. The links per page is measured both in
general terms, as well as local to the server (where pre-
loading is possible). The bandwidth is a comparison of the
bytes per page vs. the total bytes required for the files
pointed to by the links on that page.

FIGURE 6. Number of HREFs (hypertext links)
per page in the Web (Local only, and All).

Pe
rc

en
t

“h
it”

0

10

20

30

40

50

60

70

80

90

100

100 1K 10K 100K 1M 10M

14% hit
within 0.1 seconds

83% hit
within 0.1 seconds

with PRELOADING

Bandwidth Available
(bits per second)

0.1 seconds
0.1 seconds (WITH PRELOADING)

RESPONSE TIME

56 Kbps ISDN

R
E

SP
O

N
SI

V
E

N
E

SS

Percent of

N
um

be
r

of
 H

R
E

F

20 40 60 80 100

HTML pages

LOCAL HREFs

ALL HREFs

00

5

10

15

20

25

lin
ks

 p
er

 p
ag

e

FIGURE 7. Amount of additional bandwidth
required (relative to the current page).

8.1: Performance

The performance of this mechanism can be evaluated
relative to several metrics - channel utilization, effective
bandwidth, effective latency, and overall cost. The goal of
this mechanism is reduced latency, and it assumes an
acceptable increase in bandwidth used.

The channel utilization can be measured, where the
goal is a load of 100%. Conventional request/response
systems achieve loads near 50%, because the response
channel is idle in-between and during requests. The goal is
to keep the server-to-client channel busy 100% of the
time.

The bandwidth of the messages that are actually
received (effective bandwidth) can also be measured. This
will always be at least as large as the effective bandwidth
of a request/response system, because guessed messages
are not counted, and because a direct request always over-
rides this protocol.

Similarly, the effective latency is always reduced rela-
tive to a conventional protocol. Responses that are antici-
pated reduce the measured latency, and responses not
anticipated cost the same as in the conventional case.

The overall cost is difficult to measure without exter-
nally imposed network cost functions. The cost can be
expressed in terms of the bandwidth used, but it is of little
meaning due to the number of variables. The real result is
that a set of conditions must exist:

• bandwidth must be available in excess of that
required by the conventional protocol

• the expense of the excess bandwidth must be accept-
able, i.e.:

- external cost is perceived acceptable
- latency reduction is not feasible by any other

method, so any cost is acceptable

Amount of additional BW required (ratio to current page)

Pe
rc

en
t o

f
H

T
M

L
 p

ag
es

 w
ho

se

0

20

40

60

80

100

0.1 1 10 100 1000

ch
ild

re
n

ca
n

be
 p

re
se

nt
 in

 to
ta

l

9

8.2: Bandwidth requirements

Available bandwidth implies a high peak-rate alloca-
tion in guaranteed-bandwidth systems, or that the server
pump subjects itself to feedback from a rate- or burst-lim-
iting mechanism, and avoids preloading that violates the
rate or burstiness guarantees. Server preload messages
should be tagged as “droppable available-it-rate” traffic.
In this way, bandwidth in excess allocation can be used
when available, and shared among preloading sources.
“Droppable” ABR traffic assumes a mechanism that pro-
vides bandwidth and latency performance to un-tagged
traffic equivalent to the case where no droppable ABR
traffic exists, i.e., a preemptive packet scheduler.

8.3: Other requirements

The feasibility of this mechanism also implies the avail-
ability of sufficient cache storage at the receiver and
server capability. The amount of cache storage required is
one bandwidth-delay product, where delay is the time
between user requests, due to either round trip latency or
idle user activity. The server must also be able to supply
anticipatory information at the channel bandwidth; if the
server is already loaded, or if its internal bandwidth is the
bottleneck, performance will be compromised. Note that
in the case where cache space is limited, or where the
server is loaded or has insufficient bandwidth, the mecha-
nism degenerates to its existing performance with conven-
tional protocols.

This discussion also assumes the availability of suffi-
cient information (i.e., hypermedia links) to support
server-based preloading. There need not be a correlation
between users (ensemble) or a repeated history of a single
user’s actions (temporal); the requested item need only be
from among the links on a page, rather than overridden by
typing in an arbitrary URL. The URLs within links on a
page are information the server can use to optimize the
response latency; arbitrary URLs are (by nature) unpre-
dictable, and will require a conventional client/server
interaction (and its associated latency).

9: Conclusions

This paper has discussed five challenges for gigabit
applications that indicate where existing protocols may
not work, and where new protocols are required. It has
shown a class of applications - interactive distributed mul-
timedia, namely interactive real-time WWW access - that
survive the challenges. It has also shown how source pre-
sending is a way to use excess bandwidth-delay product to
reduce the browser response time, and how this is one
example of a truly gigabit protocol.

9.1: Acknowledgments

This paper is the result of discussions with and feed-
back of James Sterbenz at GTE Labs, Jon Postel and Steve
Hotz at USC/ISI, Gillian Woodruff at Univ. of Toronto,
and Sujata Banerjee at University of Pittsburgh, as well as
the other participants of the IEEE Gigabit Networking
Workshop held in Toronto, May 1994.

10: References

[1] Banerjee, S., Li, V.O., Wang, C., “Distributed Database Sys-
tems in High-Speed Wide-Area Networks,” IEEE Journal
on Selected Areas in Communications, V. 11, N. 4, May
1993, pp. 617-630.

[2] Berners-Lee, T.J., Cailliau, R., Groff, J-F, Pollermann, B.,
“World-Wide Web: The Information Universe,” Electronic
Networking: Research, Applications and Policy, Meckler
Publishing, Connecticut, Spring 1992, pp. 52-58.

[3] Braden, R., “Extending TCP for Transactions -- Concepts,”
RFC-1379, USC/ISI, Nov. 1992.

[4] Herman, G., Gopal, G., Lee, K., and Weinrib, A., “The data-
cycle architecture for very high throughput database sys-
tems,” in Proc. ACM SIGMOD Conf., 1987, pp. 97-103.

[5] Jacobson, V., and Braden, R., “TCP Extensions for Long-
Delay Paths,” RFC-1072, LBL and USC/Information Sci-
ences Institute, Oct. 1988.

[6] Jacobson, V., Braden, R., and Zhang, L., “TCP Extensions
for High-Speed Paths,” RFC-1185, LBL and USC/Informa-
tion Sciences Institute, Oct. 1990.

[7] Jacobson, V., Braden, R., and Borman, D., “TCP Extensions
for High Performance,” RFC-1323, LBL, USC/Information
Sciences Institute, and Cray Research, May 1992.

[8] Kleinrock, L, “The Latency / Bandwidth Tradeoff in Giga-
bit Networks,” IEEE Communications Magazine, Vol. 30,
No. 4, April 1992, pp. 36-40.

[9] NSF Report 92-109, “Research Priorities in Networking and
Communications,” Oct. 1992.

[10] Sterbenz, J., et. al., Gigabit Networking Workshop ’94,
<http://info.gte.com/ieee-tcgn/conference/gbn94>.

[11] Touch, J.D., and Farber, D.,“Reducing Latency in Commu-
nication,” IEEE Communications Magazine, Vol. 31, No. 2,
Feb. 1993, pp. 8-9.

[12] Touch, J.D., “Parallel Communication,” Proc. IEEE Info-
com, Mar. 1993, pp. 505-512.

[13] Touch, J.D., and Farber, D., “An Experiment in Latency
Reduction,” Proc. IEEE Infocom, May. 1994, pp. 175-181.

[14] Touch, J.D., “Protocol Parallelization,” Protocols for High-
Speed Networks III, Elsevier, 1994, (to appear).

10

Rey, in 1992, and is currently a Project Leader in the High Per-
formance Computing and Communications Division there,
directing the ATOMIC-2 and PC-ATOMIC tasks. He is also a
Research Assistant Professor in the Department of Computer
Science, University of Southern California, where he teaches
Advanced Operating Systems. Since 1988 he has been address-
ing issues of latency and source-anticipative protocols. In 1994,
he received a U.S. patent for a device for latency reducing pro-
cessor-memory interface. He is also interested in issues of tele-
commuting and on-line city services, and response-time reducing
extensions to the World-Wide Web.

Dr. Touch is a member of the program committees of IEEE
Infocom '94 and ’95, Protocols for High Speed Networks '94, and
Physcomp '94. He is a member of Sigma Xi (S’84, M’93).

Joseph D. Touch (S’83-M’92)
received a B.S. (Hons.) degree in
biophysics and computer science
from the University of Scranton
in 1985, the M.S. degree from
Cornell University in 1988 and
the Ph.D. degree from the Univer-
sity of Pennsylvania in 1992.,
both in computer science.

He joined USC/Information
Sciences Institute, Marina del

