
ISI‐TR‐2001‐549 Nov. 2001

XBONE APPLICATION PROGRAMMERS INTERFACE

Xbone Overlay Language (XOL) Specification

Gregory G. Finn, Joseph D. Touch

Nov. 2001
ISI-TR-2001-549

Abstract

The Xbone system 2.0 release provides an API. This API is implemented by
the Overlay Manager (OM) and is the method by which the OM receives user
commands and returns responses. This corrects a difficulty encountered with
the previous command interface to the OM, which was both brittle, difficult
to extend and could only be accessed via a web GUI.

To allow for future expansion and because the description of an overlay or
system of overlays can be complex, a grammar for describing Xbone commands
and overlays has been developed. The OM contains a compiler that implements
this grammar. Commands sent to the API must obey this grammar. Responses
made by the OM via the API also obey this grammar. This report describes
the Xbone API grammar and the corresponding implementation interface
details.

1

ISI‐TR‐2001‐549 Nov. 2001

Overview

The XBone Overlay Manager (OM) listens to a well-known TCP command port. The
XBone API consists of grammar rules governing message exchange across that
port. When a connection to that API port is opened, the OM expects to
receive a program that specifies an action or set of actions. The OM
replies in kind over that same connection port. That port is then closed,
whereupon the OM listens for another connection.

A grammar defines the programming language used to communicate across the
XBone API. The grammar provides access to a set of commands implemented at
one or the other end of the API communication path. It is generally
convenient to think of the OM as the server in an API client/server message
exchange, although the OM can in some cases be a client.

The OM treats any message received over its API port as a program and
attempts to compile it. If compilation is successful, the OM attempts to
'execute' that program. The OM may respond likewise to the caller with
program text that either contains a compiler error or the result of program
execution. XBone API programs must also abide by the Xbone's current
implementation restrictions.

The API grammar rules are relatively simple and describe a set of legal
commands and their responses. However, one API command, "create_overlay",
is complex. This command accepts as its argument a program that describes
an overlay. The Xbone Overlay Language (XOL) is used to describe an overlay
or system of overlays.

The compiler that parses both API and XOL grammars is created using the Perl
RecDescent module, which is available at the CPAN library site. Both
RecDescent, the grammar and semantic action routines are included in the
XBone distribution. These files are not needed unless one modifies the
compiler.

While the grammar defines the program syntax, there are programs that are
syntactically legal but semantically incorrect. At parse time, many of
these inconsistences are detected and result in failed parse. In addition,
the Xbone as released only implements a subset of the features of the
langauge [see the Appendix].

2

ISI‐TR‐2001‐549 Nov. 2001

Grammar Conventions

RecDescent allows Perl regular expressions to be used in right-hand sides.
This simplifies the definition of strings. RecDescent also allows the
following suffixes to appear in the rules:

 (?) ----- Match one or zero times
 (s) ----- Match one or more times
 (s?) ---- Match zero or more times
 (N) ----- Match exactly N times, for N a positive integer
 (N..M) -- Match between N and M times
 (..N) --- Match between 1 and N times
 (N..) --- Match at least N times

Thus, if OVERLAY(1..) appears in the right-hand side of a rule, one or more
OVERLAY expressions may appear in sequence at that point. Several of those
suffix forms appear in the API language specification.

For more details on RecDescent itself, consult the Perl CPAN site.

Language variables here are entirely in upper case for ease of reading. All
keywords are entirely --> lower case <--. The keyword IPV4 is not
acceptable where ipv4 is called for in the grammar.

Although keywords are case sensitive, there are no case restrictions on
user-supplied strings. However, syntactic resrictions on domain system
(DNS) names, numeric addresses and similarly defined fields are enforced.

3

ISI‐TR‐2001‐549 Nov. 2001

Compiler Conventions

The API/XOL compiler returns undef if a syntactic error occurs. Otherwise,
it returns one of two values.

If the parse is successful a value is returned. This value will be either a
pointer to the hash data structure, which contains the compilation result,
or a semantic error string.

Thus, a completely successful parse results in a defined return value that
is a reference to a hash. The Perl language function ref() is used to make
this determination.

For those wishing to build a new front-end to the Xbone system rather than
using the GUI supplied by the distribution, the code fragment below
indicates how to use the API parser. The initial grammar rule for the API
language is named "API". The compiler invocation
$APIparser->API(program-string) begins parsing at the API rule.

 use XB_API_parser;
 my $APIparser = XB_API_parser->new();

 $parsed_cmd = $APIparser->API($commands);

 unless (!defined ($parsed_cmd) or ref (\$parsed_cmd) eq 'SCALAR')
 {
 # Compilation succeeded
 }

When creating a front-end, messages returned by the OM will be in the form
of API command response programs. Compiling these responses is an easy way
to ensure legality and extract needed information.

4

ISI‐TR‐2001‐549 Nov. 2001

Keywords

The following are used as keywords by the API/XOL language. Use of these
keywords except where indicated by the language could result in a failed
parse. In particular, beware of creating CRITERION name/value pairs that
use a keyword as a name.

3des
address_server
addresstype
any
authentication
create_overlay
create_overlay_reply
creator
des
destroyall_overlays
destroyall_overlays_reply
destroy_overlay
destroy_overlay_reply
discover_daemons
discover_daemons_reply
email
encryption
error-reply
hosts
interfaces
ipv4
ipv6
links
list_overlays
list_overlays_reply
manager
md5
monitor
name
name_server
node
none
overlay
overlay_status
overlay_status_reply
port
program
routers
security
services
sha1
system
tunnel
xbone
XboneEOC
xol

5

ISI‐TR‐2001‐549 Nov. 2001

Strings

In the XBone API/XOL language the syntax of an argument string, (see
ARGSTRING rule), allows use of unquoted, single or double-quoted strings.
This is useful for specifying personal names that include spaces, dashes or
apostrophes. For example: "G.G O'Hara-Pierce". The only characters not
allowed are parenthesis ().

Object names in the language, (see OBJECT_NAME rule), must be alphanumeric
strings, but also allow underbar "_", dash "-" and period "." as additional
characters.

Where the semantic nature of the string is more restrictive, as in Email or
DNS names, those restrictions are applied. If failure results, an error
message is generated during compilation and will be reported in the response
message.

6

ISI‐TR‐2001‐549 Nov. 2001

API Grammar

What follows is the specification of the API grammar. For an example of a
program that contains a 'create_overlay' command, see the Appendices.

 API: '(' 'xbone' ARGSTRING ARGSTRING COMMAND ')' 'XboneEOC' END_OF_FILE

 COMMAND: '(' 'create_overlay' CRITERION(s) CO_PROGRAM ')'
 | '(' 'create_overlay_reply' CRITERION(s) NODE(s) ')'
 | '(' 'list_overlays' CRITERION(s) ')'
 | '(' 'list_overlays_reply' CRITERION ARGSTRING(s?) ')'
 | '(' 'overlay_status' CRITERION(s) ')'
 | '(' 'overlay_status_reply' CRITERION(s) NODE(s?) ')'
 | '(' 'discover_daemons' CRITERION(s) ')'
 | '(' 'discover_daemons_reply' CRITERION(s) NODE(s?) ')'
 | '(' 'destroy_overlay' CRITERION(s) ')'
 | '(' 'destroy_overlay_reply' CRITERION(s) ')'
 | '(' 'destroyall_overlays' CRITERION(s) ')'
 | '(' 'destroyall_overlays_reply' CRITERION(s) ')'
 | '(' 'host_choices' CRITERION(s) NODE(s) ')'
 | '(' 'host_choices_reply' CRITERION(s) NODE(s) ')'
 | '(' 'error_reply' CRITERION(s) ')'

 NODE: '(' 'node' CRITERION(s) TUNNEL(s?) ')'

 TUNNEL: '(' 'tunnel' CRITERION(s) ')'

 CO_PROGRAM: '(' 'program' XOL_PROGRAM ')'

 CRITERION: '(' ARGSTRING ARGSTRING ')'

 ARGSTRING: /"[^"()]+"/ # Cannot contain embedded double quotes
 | /'[^'()]+'/ # Cannot contain embedded single quotes
 | /[^()\s]+/

 END_OF_FILE: /\Z/

7

ISI‐TR‐2001‐549 Nov. 2001

Semantic Details

Each command sent to the OM will contain a set of key/value pairs. There are
many such pairs and those used vary according to the COMMAND variant
employed. There are also repetitive elements in some reply messages.

Key/value pairs are specified using the CRITERION grammar rule. The rule
groups in parenthesis a key and value in left-to-right order. Thus, "(name
Fred)" assigns key=name and value=Fred.

Wherever a CRITERION(s) rule appears, one or more key/value pairs may be
specified. There is no order relationship associated with the CRITERION(s)
rule. However, the key fields should be unique. If they are not, only the
last one is used.

A detailed description of each API, COMMAND, NODE and TUNNEL rule follows.

8

ISI‐TR‐2001‐549 Nov. 2001

API Rule

API: (xbone ARGSTRING ARGSTRING COMMAND) XboneEOC

Every API command is sent as a single program in the API grammar. These
programs are framed at the transport layer by the start of transmission and
the terminating "XboneEOC" keyword.

The OM listens on its assigned API port for a TCP connection. It reads
until it sees "XboneEOC". The data read is then compiled and a response
message is returned back over the same connection, which the OM then closes.

Every API command is associated with an XBone version. When a command is
parsed, the result returned to the caller is normally a pointer to a
proplist. That proplist contains the following key/value pairs:

protocol --- The first ARGSTRING is the Xbone protocol release
 number. Format is "integer.alphanumeric".
 The proper release number is defined in the file
 xbone/XB_Defs.pm as XB_Defs::XBONE_PROTOCOL.

 release --- The second ARGSTRING in the API rule is the current
 Xbone system release number. The release number has
 format "integer.alphanumeric", (integer is unsigned).
 The proper release number is defined in the file
 xbone/XB_Defs.pm as XB_Defs::XBONE_RELEASE.

 command --- Value is a pointer to a proplist (hash) containing
 the COMMAND data in the API rule.

9

ISI‐TR‐2001‐549 Nov. 2001

COMMAND Rule

COMMAND: (create_overlay CRITERION(s) CO_PROGRAM)

The key/value pairs of the create_overlay command are:

 auth_type -------- value is a supported authentication method,
 currently only x509 is supported
 authentication --- value is the IPsec authentication type used for
 this overlay, currently either md5, sha1 or none
 command ---------- Specific command, here 'create_overlay'
 creator_name ----- value is the name of the overlay creator
 creator_email ---- value is the email address of the overlay creator
 dns -------------- value is yes if DNS is being used to name nodes
 in the overlay and no otherwise
 dynamic_routing -- value is 'yes' if dynamic routing is used and
 'no' otherwise
 encryption ------- value is the IPsec encryption type used for this
 overlay, currently either des, 3des or none
 hosts ------------ unsigned integer number of hosts in the overlay
 host_os ---------- value is name of OS used for hosts
 overlay_name ----- value is the name of the overlay network
 two_phase -------- value is 'yes' if two-phase invitation/commit is
 to be used and 'no' otherwise
 routers ---------- unsigned integer number of routers in the overlay
 router_os -------- value is name of OS used for routers
 search_radius ---- value is unsigned integer number of hops from
 OM to search outwards for discovery
 topology --------- if present, the topology to be used for this
 overlay. Currently, this must be either 'star',
 'linear' or 'ring'
 user_id ---------- typically the email address of the current user

10

ISI‐TR‐2001‐549 Nov. 2001

COMMAND: (create_overlay_reply CRITERION(s) NODE(s))

The key/value pairs of the create_overlay_reply command are:

 auth_type ------ value is a supported authentication method,
 currently only x509 is supported
 command -------- Specific command, here 'create_overlay_reply'
 creator_name --- value is the name of the overlay creator
 creator_email -- value is the email address of the overlay creator
 error ---------- value is present only when reporting an error
 if present may be only name/value pair other
 than command
 nodes ---------- value is a pointer to a list of NODE proplists
 overlay_ident -- value is an identifier uniquely assigned by OM
 overlay_name --- value is the name of the overlay network
 topology ------- if present it is topology type, 'star', 'ring',
 or 'linear'. Otherwise, topology is untyped.
 user_id -------- typically the email address of the current user

COMMAND: (list_overlays CRITERION(s))

The trailing key/value pairs of the list_overlays command are:

 auth_type ------ value is a supported authentication method,
 currently only x509 is supported
 command -------- Specific command, here 'list_overlays'
 user_id -------- typically the email address of the current user

COMMAND: (list_overlays_reply CRITERION(?) ARGSTRING(s?))

The trailing key/value pair of the list_overlays_reply command is:

 command -------- Specific command, here 'list_overlays_reply'
 error ---------- value is present only when reporting an error
 if present may be only name/value pair other
 than command
 overlays ------- value is a pointer to a list of ARGSTRINGs
 that are the names of overlay networks

COMMAND: (overlay_status CRITERION(s))

The trailing key/value pairs of the overlay_status command are:

 auth_type ------ value is a supported authentication method,
 currently only x509 is supported
 command -------- Specific command, here 'overlay_status'
 search_radius -- value is unsigned integer number of hops from
 OM to search outwards for discovery
 user_id -------- typically the email address of the current user

11

ISI‐TR‐2001‐549 Nov. 2001

COMMAND: (overlay_status_reply CRITERION(s) NODE(s?))

The key/value pairs of the overlay_status_reply command are:

 auth_type ------ value is a supported authentication method,
 currently only x509 is supported
 command -------- Specific command, here 'overlay_status_reply'
 creator_name --- value is the name of the overlay creator
 creator_email -- value is the email address of the overlay creator
 ipsec_authentication -- value is the IPsec authentication type used for
 this overlay, currently either md5, sha1 or none
 ipsec_encryption -- value is the IPsec encryption type used for this
 overlay, currently either des, 3des or none
 error ---------- value is present only when reporting an error
 if present may be only name/value pair other
 than command
 nodes ---------- value is a pointer to a list of NODE proplists
 overlay_name --- value is the name of the overlay network
 user_id -------- typically the email address of the current user

COMMAND: (discover_daemons CRITERION(s))

The trailing key/value pairs of the discover_daemons command are:

 auth_type ------ value is a supported authentication method,
 currently only x509 is supported
 command -------- Specific command, here 'discover_daemons'
 creator_name --- value is the name of the overlay creator
 creator_email -- value is the email address of the overlay creator
 search_radius -- value is unsigned integer number of hops from
 OM to search outwards for discovery
 timeout -------- value is unsigned integer number of seconds to
 wait for replies from RDs
 user_id -------- typically the email address of the current user

COMMAND: (discover_daemons_reply CRITERION(s) NODE(s?))

The key/value pairs of the discover_daemons_reply command are:

 auth_type ------ value is a supported authentication method,
 currently only x509 is supported
 command -------- Specific command, here 'discover_daemons_reply'
 creator_name --- value is the name of the overlay creator
 creator_email -- value is the email address of the overlay creator
 error ---------- value is present only when reporting an error
 if present may be only name/value pair other
 than command
 nodes ---------- value is a pointer to a list of NODE proplists
 user_id -------- typically the email address of the current user

12

ISI‐TR‐2001‐549 Nov. 2001

COMMAND: (destroy_overlay CRITERION(s))

The trailing key/value pairs of the destroy_overlay command are:

 auth_type ----- value is a supported authentication method,
 currently only x509 is supported
 command ------- Specific command, here 'destroy_overlay'
 overlay_name -- value is the name of the overlay network
 user_id ------- typically the email address of the current user

COMMAND: (destroy_overlay_reply CRITERION(s))

The trailing key/value pair of the destroy_overlay_reply command is:

 command ------- Specific command, here 'destroy_overlay_reply'
 overlay_name -- value is the name of the overlay network
 error --------- value is present only when reporting an error
 if present may be only name/value pair other
 than command

COMMAND: (destroyall_overlays CRITERION(s))

The trailing key/value pairs of the destroyall_overlays command are:

 auth_type -- value is a supported authentication method,
 currently only x509 is supported
 command -------- Specific command, here 'destroyall_overlays'
 user_id ---- typically the email address of the current user

COMMAND: (destroyall_overlays_reply CRITERION(s))

The trailing key/value pair of the destroyall_overlays_reply command is:

 command -------- Specific command, here 'destroyall_overlays_reply'
 error ---------- value is present only when reporting an error
 if present may be only name/value pair other
 than command

COMMAND: (host_choice CRITERION(s) NODE(s))

The key/value pairs of the host_choice command are:

 command -------- Specific command, here 'host_choice'

13

ISI‐TR‐2001‐549 Nov. 2001

COMMAND: (host_choice_reply CRITERION(s) NODE(s))

The trailing key/value pair of the destroyall_overlays_reply command is:

 command -------- Specific command, here 'host_choice_reply'
 error ---------- value is present only when reporting an error
 if present may be only name/value pair other
 than command

COMMAND: (error_reply CRITERION(s))

The key/value pairs of the error_reply command are:

 command -------- Specific command, here 'error_reply'
 error ---------- Semantic or syntactic error string used to
 indicate why an API message did not parse.
 Generally, if an OM cannot parse an API
 message, it returns an error_reply back to
 API message sender over the same connection.

14

ISI‐TR‐2001‐549 Nov. 2001

CO_PROGRAM Rule

CO_PROGRAM: (program XOL_PROGRAM)

This trailing key/value pair of the create_overlay command defines
the XOL program used to describe the overlay that is to be created.

 program -------- Value is a reference to the XOL_PROGRAM hash.

15

ISI‐TR‐2001‐549 Nov. 2001

NODE Rule

NODE: (node CRITERION(s) TUNNEL(s?))

Each NODE describes the state of a particular node (host) in an overlay.
This state is reported as a set of key/value pairs. This data is followed
by a possibly empty set of TUNNEL specifications associated with this node.

The key/value pairs are:

authentication --- value is the IPsec authentication types that
 are supported by this node separated by
 whitespace. Examples: 'none' or 'none md5'

class ------------ function of this node in this overlay, value
 is either host or router

dns_name --------- value is the base DNS name of this node
 in principal, this is optional
 dynamic_routing -- value is either 'yes' or 'no'

encryption ------- value is the IPsec authentication types that
 are supported by this node separated by
 whitespace. Examples: 'none' or 'none des'

interfaces ------- unsigned number of interfaces (tunnels)
 currently used by or available to this node

ip_address ------- value is the base IPv4 or IPv6 numeric address
 for this node

 max_interfaces --- max. number of interfaces (tunnels) supported
 by this node

max_overlays ----- max. number of overlays supported by this node

os --------------- value is the operating system of this node

overlays --------- current number of overlays at this node

release ---------- release version of Xbone running on this node
 format is 'int.alphanumeric'

status ----------- value is the status of this node in this overlay,
 either in or out

tunnel_count ----- number of tunnels in use by this node

Not all key/value pairs are present in every NODE specification. Some
key/value interpretations depend upon the enclosing message type.

16

ISI‐TR‐2001‐549 Nov. 2001

TUNNEL Rule

TUNNEL: (tunnel CRITERION(s))

Each TUNNEL describes the state of a particular tunnel in an overlay.
This state is reported as a set of key/value pairs.

They key/value are:

 local_ip_address --- value is a numeric form IPv4 or IPv6 address
 remote_ip_address -- value is a numeric form IPv4 or IPv6 address
 status ------------- value is either up or down

17

ISI‐TR‐2001‐549 Nov. 2001

XOL

Xbone Overlay Language Specification

Overview

The goal of the language is to unburden the user from a requirement to
specify an overlay by laboriously listing each router, host, their
interfaces and the links between them. Users should be able to specify an
overlay with varying degree of precision as fits their needs. The Overlay
Managers (OMs) will then choose a specific overlay configuration that
matches the user requirements.

This is accomplished in the language by allowing overlays to be specified
with degrees of ambiguity. An example of a somewhat ambiguous specification
is to list the routers and their interconnecting links, but leave
unspecified which host was connected to which router. The language must
also allow the fully complete specification of an overlay.

The job of the OMs is to analyze the overlay program, generate a resource
requirements list and assemble a set of routers, hosts and interfaces to
fill that list. The OMs then transform the overlay program from a
potentially imprecise topology specification into a particular overlay
network.

This transformation progresses by pinning particular routers, hosts and
interfaces to their generic counterparts in the program. The user controls
the pinning undertaken by the OMs to the extent that ambiguity is present in
the initial overlay program.

Overlay Components

An overlay contains: interfaces, links, routers, hosts and a network list.
A host has one interface, while routers have one or more interfaces. Each
of these components may also be associated with certain user-specified
properties. Links are used to interconnect interfaces.

Interfaces, hosts, routers and links have identifications (names) that are
unique within the overlay. Each overlay also has a name and implicitly a
boundary. An overlay boundary may contain one or more interfaces that it
exports. Thus, an overlay is similar to a router in external appearance and
may itself be a component within another overlay. Components within an
overlay are never exported outside their overlay. Interior components are
logically invisible outside an overay.

The interior topology of an overlay is represented by a network list.
Similar to a graph, the hosts and routers of the overlay are its nodes,
while links are its edges. The degree of a node corresponds to the number
of interfaces associated with the overlay, router or host that it
represents.

18

ISI‐TR‐2001‐549 Nov. 2001

Links must always be pinned at one end to a specific interface of one router
or host. The other end of a link may be unspecified to varying degrees, in
which case it is said to float. For example, assume one end of a link is
pinned to the interface of a host. The other must ultimately connect to the
interface of some router, but the user could leave the pinning to the choice
of the OM by not specifying which router or interface.

Conceptually, hosts and routers may be thought of as atoms in a molecular
model. Hosts or routers have links with floating interfaces (bonding
points) emerging from them that can be pinned (bonded) to another
appropriate link and interface. The OM transforms an ambiguous overlay
specification to a specific overlay instance (molecule) by appropriately
bonding the floating interfaces to one another. If the OM has insufficient
routers, hosts or interfaces to match the requested overlay, it fails to
build the overlay network. If presented with more then the needed number of
components, those unneeded will be left out of the resulting network
instance.

Object Identifiers

XOL defines overlay systems. An overlay system is comprised of resources:
overlays, hosts, routers, links and interfaces. Within an individual
overlay hosts, routers, and links are uniquely named.

Interfaces are physically bound to a particular overlay, host or router and
are not referred to in isolation. Therefore, interface names need be unique
only in the context of their associated overlay, router or host.

If more than one overlay is defined in the system, each overlay name must be
unique.

Class Identifiers

Certain resources in XOL may also be denoted as a set. To determine to
which type of resource a set identification refers, a suffix is appended.

The resource class suffixes are:

 Class Suffix

 Router .R
 Host .H
 Interface .I

Thus, within the overlay the expression "*.H" refers to any host and "*.R"
to any router. The expression "*.I" refers to any interface of the overlay,
router or host with which it is contextually associated.

Links

Overlays, routers and hosts possess interfaces to which links are pinned
(attached). The interface at the end of the link may be described as
floating or pinned. A pinned interface is one that is associated with the
interface of a particular overlay, router or host.

19

ISI‐TR‐2001‐549 Nov. 2001

A link has the syntactic form:

<link> ::= <link_name> <lcl_end_association> <rem_end_association>

Links have both local and remote end-associations. A remote end-association
specifies the resource and resource interface to which a link end is or may
be attached.

The interface of the host or router is always pinned to the local end of a
link that emerges from it. The remote end of such a link may be either
pinned or floating. A link with a floating remote end-association has a set
of possible end-associations.

Floating link ends can be associated with some other matching floating link
end, thus creating a single fully-pinned link. A fully-pinned link
constitutes a one-to-one, symmetric association between two interfaces. A
fully-pinned link connects a router interface to another router interface, a
router interface to an overlay interface or a router interface to a host
interface.

The procedure that creates fully-pinned links progresses as the OM turns an
ambiguous overlay specification into a particular overlay instance.

End-Associations

An end-association consists of two fields. The leftmost field can name a
specific overlay, router or host resource. It can also float, specifying
one of those three resource classes. The rightmost field specifies either a
specific interface or floats, specifying an interface class.

For example:

 .R:.I --- some interface of some router

 tom:*.I --- some interface of tom, tom specifying a
 particular router host or overlay

 tom:tom0 --- the tom0 interface of tom, tom specifying a
 particular router host or overlay

A field is considered pinned if it names a specific resource (an overlay,
router, host or interface). A pinned end-association contains two pinned
fields.

A floating remote end-association contains at least one regular expression
pattern (PERL regular expression) that can match one or more specific
resources. For example, the end-association *.H:*.I would match any host
within the overlay and any of their interfaces.

Implicit Link Restrictions

When the leftost field of an end-association floats, the rightmost fieldmust
match any interface. Thus, specifying any interface of a specificoverlay,
router or host is legal, as in tom:*.I, but the specification *.R:ed0 is
illegal.

20

ISI‐TR‐2001‐549 Nov. 2001

If the local end-association of a link specifies a host, the remote end-
association, whether floating or pinned, must specify a router or router
class end-association.

A particular link name may appear in only one netlist rule in an particular
overlay topology specification.

Intra-Overlay Resolution Phase

A consistent network definition requires that all intra-overlay host and
router end-associations specified by the topology become fully pinned during
the overlay resolution phase carried out by this overlay's controlling OM.

An additional property of intra-overlay resolution is that multiple logical
routers and hosts may be overloaded into fewer physical hosts or routers.
It is the responsibility of the controlling OM to ensure that sufficient
virtual interfaces are available in the physical host when such overloading
occurs.

Intra-Overlay Resolution Phase

Any floating overlay class end-associations become pinned during the inter-
overlay resolution phase carried out between the OMs controlling the
concerned overlays.

21

ISI‐TR‐2001‐549 Nov. 2001

XOL Syntax

The Xbone Overlay language, is specified in an extended BNF that is accepted
by the RecDescent compiler-generator package, which is provided as part of
the Xbone distribution. The output of the API compilation is a loadable
PERL data structure that captures the overlay specification.

A short discussion of the extended BNF conventions allowed by RecDescent is
presented, followed by a keyword list and the grammar itself. Compile-time
semantics are then discussed.

Finally, a detailed description of the compiled data structure is presented.
This will be of interest primarily to those maintaining or extending the
XBONE system.

 XOL_PROGRAM: '(' 'xol' OVERLAY(1..) ')'

 OVERLAY: '(' 'overlay' NET_PART(s) ')'

 NET_PART: NET_NAME
 | NET_ADDRESSTYPE
 | NET_SECURITY
 | NET_SERVICES
 | NET_TOPO
 | INTERFACES

 NET_NAME: '(' 'name' ARGSTRING ')'

 NET_ADDRESSTYPE: '(' 'addresstype' ADDRESSTYPE ')'

 NET_SECURITY: '(' 'security' SEC_CLAUSE(s) ')'

 SEC_CLAUSE: NET_CREATOR
 | NET_ENCR
 | NET_AUTH
 | NET_EMAIL
 | CRITERION

 NET_CREATOR: '(' 'creator' ARGSTRING ')'

 NET_EMAIL: '(' 'email' ARGSTRING ')'

 NET_ENCR: '(' 'encryption' ENCR_ALG ')'

 NET_AUTH: '(' 'authentication' AUTH_ALG ')'

 NET_SERVICES: '(' 'services' NET_SERVICE(2..) ')'

 NET_SERVICE: NET_MGR
 | NET_ADDRSVR
 | NET_DOMAINSVR
 | NET_MONITOR
 | NET_APPLICATIONS

 NET_MGR: '(' 'manager' NETADDR PORTSPEC(?) ')'

 NET_ADDRSVR: '(' 'address_server' NETADDR PORTSPEC(?) ')'

22

ISI‐TR‐2001‐549 Nov. 2001

 NET_DOMAINSVR: '(' 'name_server' NETADDR PORTSPEC(?) ')'

 NET_MONITOR: '(' 'monitor' ARGSTRING ARGSTRING(s?) ')'

 NET_APPLICATIONS: '(' 'applications' NET_APPLICATION(s) ')'

 NET_APPLICATION: '(' 'application' ARGSTRING ARGSTRING(s?) ')'

 PORTSPEC: 'port' ARGSTRING

 NET_TOPO: '(' 'topology' CANON_SPEC(s) ')'

 CANON_SPEC: '(' 'routers' RTR_SPEC(s) ')'
 | '(' 'links' LNK_SPEC(s) ')'
 | '(' 'hosts' HST_SPEC(s) ')'
 | '(' 'netlist' TOPO_TRIPLE(s) ')'

 TOPO_TRIPLE: '(' OBJECT_NAME LCL_ASSOC REM_ASSOC ')'

 RTR_SPEC: '(' OBJECT_NAME INTERFACES NODE_CRITERION(s?) ')'

 HST_SPEC: '(' OBJECT_NAME INTERFACES NODE_CRITERION(s?) ')'

 LNK_SPEC: '(' OBJECT_NAME NODE_CRITERION(s?) ')'

 INTERFACES: '(' 'interfaces' INTERFACE(s) ')'

 INTERFACE: '(' OBJECT_NAME NODE_CRITERION(s?) ')'

 LCL_ASSOC: OBJECT_NAME ':' OBJECT_NAME

 REM_ASSOC: OBJECT_SPEC ':' IFACE_SPEC

 HOST_SPEC: OBJECT_NAME
 | HOST_CLASS

 OBJECT_SPEC: OBJECT_NAME
 | OBJECT_CLASS

 IFACE_SPEC: OBJECT_NAME
 | IFACE_CLASS

 CRITERION: '(' ARGSTRING ARGSTRING ')'

 NETADDR: IPV4_ADDR
 | IPV6_ADDR
 | DNS_NAME

 DNS_NAME: ARGSTRING ... (must conform to DNS name syntax)

 ADDRESSTYPE: 'ipv4'

 ENCR_ALG: 'des'
 | '3des'
 | 'none'

 AUTH_ALG: 'md5'
 | 'sha1'
 | 'none'

 IPV4_ADDR: /[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}/

23

ISI‐TR‐2001‐549 Nov. 2001

 IPV6_ADDR: ARGSTRING ... (must conform to IPv6 syntax)

 ARGSTRING: /"[^"()]+"/
 | /'[^'()]+'/
 | /[^()\s]+/

 OBJECT_NAME: /[\._A-Za-z0-9-]+/
 | /"[\._A-Za-z0-9-]+"/
 | /'[\._A-Za-z0-9-]+'/

 HOST_CLASS: /*\.H/

 ROUTER_CLASS: /*\.R/

 OVERLAY_CLASS: /*\.O/

 IFACE_CLASS: /*\.I/

24

ISI‐TR‐2001‐549 Nov. 2001

Example Overlay Specifications

An overlay program can specify its topology directly. In the following
example of a small line network, each link and interface assignment to link
is explicitly or implicitly defined.

The description specifies each resource needed for the overlay: hosts,
routers, their virtual interfaces and virtual links that could interconnect
them. Links are explicitly connected at their local end to the interface of
a specific router or host. Their remote ends may be connected to the
interface of some other router, host or overlay.

The resource names are merely reference placeholders. They bear no
particular relationship to any actual hostnames. They could equally well be
integers. The programmer is free to use names suggestively as an aid to
correct overlay specification.

This program also illustrates that the specification allows the programmer
to attach properties, that are known to the OM, to any resource. Here, for
example, the operating system of each host is "freebsd", for routers
"linux", and no links have properties attached to them.

Only three links are needed to specify this overlay in isolation. An
additional link is provided from router able to the overlay's exterior
interface TL0, which allows the overlay to be seen externally. Such links
and interfaces are needed when multiple overlays are being specified by the
program.

25

ISI‐TR‐2001‐549 Nov. 2001

(xol
 (overlay
 (name "TESTLINE")
 (security
 (creator "GGFranklin") (email 'ggf@isi.edu')
 (encryption none)
)
 (services
 (manager 128.9.160.237 port 123)
 (name_server cnn)
 (monitor magic_fingers.exe -ping -10)
 (address_server "moo.isi.edu")
 (name_server moo.isi.edu)
)
 (interfaces (TL0))
 (topology
 (hosts
 (dick
 (interfaces (dick0))
 (os "freebsd")
)
 (tom
 (interfaces (tom0))
 (os "freebsd")
)
)
 (links
 (link0)
 (link1)
 (link2)
 (link3)
)
 (routers
 (able
 (interfaces (able0) (able1) (able2))
 (os "linux")
)
 (baker
 (interfaces (baker0) (baker1))
 (os "linux")
)
)
 (netlist
 (link0 tom:tom0 able:able0)
 (link1 able:able1 baker:baker0)
 (link2 baker:baker1 dick:dick0)
 (link3 able:able2 TESTLINE:TL0)
)
)
)
)

[end of program example]

26

ISI‐TR‐2001‐549 Nov. 2001

The previous overlay fully pinned (completely specified) the remote ends of
all its links. That is not grammatically necessary. The remote end of
links can connect to resource classes, rather than to specific elements in a
class. However, see the Appendix below for implementation restrictions
imposed by limitations of the current Xbone release.

In the program below, hosts tom and dick can connect to any available router
interface, indicated in the netlist via "*.R:*.I." Correspondingly, each
router has one link and port that can connect to any host interface.
Finally, router able can connect via its able2 interface to any exterior
interface of the TESTLINE overlay.

One restriction is that if the remote end host, router or overlay is class
specified, so must be the interface. The remote specification "*.R:bob1" is
illegal.

27

ISI‐TR‐2001‐549 Nov. 2001

(xol
 (overlay
 (name "TESTLINE")
 (security
 (creator "GGFranklin") (email 'ggf@isi.edu')
 (encryption none)
)
 (services
 (manager 128.9.160.237 port 123)
 (name_server cnn)
 (monitor magic_fingers.exe -ping -10)
 (address_server "moo.isi.edu")
 (name_server moo.isi.edu)
)
 (interfaces (TL0))
 (topology
 (hosts
 (dick
 (interfaces (dick0))
 (os "freebsd")
)
 (tom
 (interfaces (tom0))
 (os "freebsd")
)
)
 (links
 (link0)
 (link1)
 (link2)
 (link3)
 (link4)
 (link5)
)
 (routers
 (able
 (interfaces (able0) (able1) (able2))
 (os "linux")
)
 (baker
 (interfaces (baker0) (baker1))
 (os "linux")
)
)
 (netlist
 (link0 tom:tom0 *.R:*.I)
 (link1 dick:dick0 *.R:*.I)
 (link2 able:able0 *.H:*.I)
 (link3 baker:baker0 *.H:*.I)
 (link4 baker:baker1 able:able1)
 (link5 able:able2 TESTLINE:*.I)
)
)
)
)

[end of program example]

28

ISI‐TR‐2001‐549 Nov. 2001

Security Convention

The single AUTH_ALG and ENCR_ALG is applied across the entire network to all
its links in both the forward and backward directions. If AUTH_ALG or
ENCR_ALG is "none", no authentication or encryption algorithm respectively
is applied to the links of the network.

29

ISI‐TR‐2001‐549 Nov. 2001

Variable Constraints

A DNS_NAME is an ASCII string that is compatible with the Domain Name System
(DNS) specification of a fully-specified host name.

A NETADDR is an ASCII numeric string that expresses an IPv4 address in
dotted decimal format or in DNS_NAME form. The string passed is checked
first for whether or not it has legal numeric address syntax. If it does
not it is assumed to be a DNS name. DNS names are also checked for
syntactic legality.

A PORTSPEC is a 16-bit non-negative integer. There are system restrictions
as to which actual numbers may be used. Contact your network system
administrator.

A MONPROG is the name of a program known to the OM. This program monitors
the health of the overlay network created by the OM. Interaction model
between the program and the OM is yet to be defined.

The MONPROG_PARAMS is a sequence of staticly defined argument strings used
when the MONPROG is started.

30

ISI‐TR‐2001‐549 Nov. 2001

Compiled Overlay Data Structure

The compiled output of an XOL program is a loadable PERL data structure. In
what follows, the major linguistic rules are named along with their
corresponding compiled data structures.

Although it is not generally made clear in PERL documentation, lists and
hashes contain only scalar objects. When the child object to be contained
is non-scalar (either a list or hash), the parent contains a referenceto the
child object. Thus, in a list of lists the parent contains a list of scalar
references to lists.

In the following description it should be understood that both lists
andhashes that contain compound objects actually contain references to
thoseobjects. Thus, it will be said that "x contains a list of
hashes",rather than the more cumbersome "x contains a list of references to
hashes",

In the following description the only values discussed are those returned
when no syntactic or semantic error has been detected. Any such error
aborts the compilation.

SYSTEM: '(' 'system' OVERLAY_SYSTEM ')' OVERLAY(1..) END_OF_FILE

 Returns a reference to a hash that contains the compiled representation
 for the entire system of overlays. The defined keys are: system and overlays.

 The value of system is the OVERLAY_SYSTEM hash. The value of overlays
 is a list of one or more component OVERLAY hashes.

OVERLAY_SYSTEM: '(' 'system' '(' NAME SYSTEM_VERSION ')' ')'

 Returns a reference to a hash. The defined keys are: system and version.
 Their values are the string representation of the XBONE overlay system program
 and its release version, respectively.

OVERLAY: '(' 'overlay' NET_PART(s) ')'

 This is a hash that captures the structure of an individual overlay.
 A reference to a hash is returned. The defined keys are: net_name,
 net_addresstype, net_security, net_services, net_interfaces and net_topology.
 Only one of each of these is allowed in each overlay specification.

 The net_name value is a string name for the network. The net_addresstype is
 optionally specified. If not specified, the value "ipv4" is provided. The
 net_security value is a NET_SECURITY hash (see below). The net_services
 value is a NET_SERVICES hash (see below). The net_interfaces value is
 an INTERFACES hash (see below). The net_topology value is a
 NET_TOPOLOGY hash (see below).

31

ISI‐TR‐2001‐549 Nov. 2001

NET_SECURITY: '(' 'security' SEC_CLAUSE(s) ')'
 Returns a reference to a hash. The defined keys are: creator, email,
 encryption and authentication. The creator and email keys have values that
 are the network creator's personal name and their email address, respectively.
 Both encryption and authentication are optional. If present, they are the
 names of an encryption or authentication algorithm, respectively. These
 algorithms must be known to the XBONE system. If not present or needed, the
 value "none" is provided.

NET_SERVICES: '(' 'services' NET_SERVICE(2..) ')'
 Returns a reference to a hash. The defined keys are: net_manager,
 net_domainsvr, net_addrsvr, net_applications and net_monitor. The values for
 net_manager, net_domainsvr and net_applications are lists of NET_MGR
 NET_DOMAINSVR and NET_APPLICATION hashes. The value for net_addrsvr and
 net_monitor are NET_ADDRSVR and NET_MONITOR hashes.

NET_MGR: '(' 'manager' NETADDR PORTSPEC(?) ')'
 Returns a reference to a hash. The defined keys are: manager, and
 optionally, port. The manager value is the NETADDR passed and the port value
 if present is that of the PORTSPEC.

 Each XBONE overlay network must have one or more overlay manager servers
 (OMs). This OM resides at the specified address and port number.

NET_ADDRSVR: '(' 'address_server' NETADDR PORTSPEC(?) ')'
 Returns a reference to a hash. The defined keys are: address_server, and
 optionally, port. The address_server value is the NETADDR passed and the port
 value if present is that of the PORTSPEC.

 Each XBONE overlay network must have one or more network address servers.
 This address server resides at the specified address and port number.

NET_DOMAINSVR: '(' 'name_server' NETADDR PORTSPEC(?) ')'
 Returns a reference to a hash. The defined keys are: name_server, and
 optionally, port. The name_server value is the NETADDR passed and the port
 value if present is that of the PORTSPEC.

 Each XBONE overlay network can have one or more Domain Name System (DNS)
 servers. This DNS server resides at the specified address and port number.

NET_MONITOR: '(' 'monitor' MONPROG MONPROG_PARAM(s?) ')'
 Returns a reference to a hash. The defined keys are: monitor and params.
 The monitor value is a string that names a monitoring program known to the
 XBONE system.

 The params value is a list of zero or more strings.

 Currently, there is no monitoring program known to the XBONE system.

NET_APPLICATIONS: '(' 'applications' NET_APPLICATION(?) ')'
 Returns a reference to a hash. The defined key is: applications.
 Its value is a reference to a list of one or more NET_APPLICATION objects.

32

ISI‐TR‐2001‐549 Nov. 2001

NET_APPLICATION: '(' 'application' ARGSTRING ARGSTRING(s?) ')'
 Returns a reference to a hash. The defined keys are: program and params.
 The first ARGSTRING is taken to be the program, the remainder for the params.
 The program value is a string that names an application program known to the'
 XBONE system. Two programs are currently known: "URL" and "Dummynet".

 The params value is a list of zero or more strings.

 The "URL" program has one argument in its params list. That argument is a
 string taken to be a URL specification of the application program to be run.

 The "Dummynet" program has up to six arguments in its params list. They are
 strings of the form "name=value". The value's are defined by the DUMMYNET
 software and documented elsewhere.

 "Delay=value"
 "Bandwidth=value"
 "Bandwidth_unit=value"
 "Queue=value"
 "Queue_unit=value"
 "Loss_rate=value"

INTERFACES: '(' 'interfaces' INTERFACE(s) ')'
 Returns a reference to a hash. The keys are the interface names defined.
 The value is a reference to a hash of key/value pairs that are associated
 with this interface name.

 The interface names defined here represent the external interfaces to the
 overlay being defined.

NET_TOPO: '(' 'topology' CANON_SPEC(s) ')'
 Returns a reference to a hash. This creates the hash that contains
 the canonical representation of the topology of the overlay. This hash
 contains four keys: routers, hosts, links and netlist.

 The routers key value is a reference to a hash of internal router names.
 In the routers hash, each key is the unique name of a router. The value
 associated with each such key is itself the hash of CRITERION
 (key, value) pairs specified in the accompanying RTR_SPEC (see below).

 The hosts key value is a reference to a hash of internal host names. In
 the hosts hash, each key is the unique name of a host. The value
 associated with each such key is itself the hash of CRITERION
 (key, value) pairs specified in the accompanying HST_SPEC (see below).

 NOTE: The internal names for each router, host and the enclosing
 overlay name form a single set of unique names. In other
 words, a router's internal name cannot be the same as that
 of a host or that of the enclosing overlay.

 The links key value is a reference to a hash of internal link names.
 In the links hash, each key is the unique name of a link. The value
 associated with each such key is itself the hash of CRITERION
 (key, value) pairs specified in the accompanying LNK_SPEC (see below).

 The netlist key value is a reference to a list of TOPO_TRIPLE three-element
 lists (see below).

33

ISI‐TR‐2001‐549 Nov. 2001

TOPO_TRIPLE: '(' OBJECT_NAME LCL_ASSOC REM_ASSOC ')'
 Returns a reference to a hahlist. The defined keys are: link, lcl_object,
 lcl_iface, rem_object and rem_iface.

 Every host and router must have a named link associated with each of its
 named virtual interfaces. This information is captured by naming a link
 and pinning one end of it in the netlist rule specification. Thus, the
 OBJECT_NAME names a link, while the LCL_ASSOC specifies both a router or
 host and one of the virtual interfaces, as in "bob:bob1", where bob is the
 internal name of a router or host and bob1 the name of one of its
 interfaces.

 The REM_ASSOC or remote end of a named link can either be completely
 pinned by specifying another overlay, host or router and one of their
 interfaces. However, to provide the freedom to specify a family of
 possible topologies for an overlay, the REM_ASSOC can also specify a
 class of possible hosts, routers and interfaces, as in "*.R:*.I".

 The link value in the TOPO_TRIPLE hash is the name of a link
 that must be defined in the CANONICAL_TOPO links hash. The LCL_ASSOC
 is split into the lcl_object and lcl_iface (key, value) pairs, where the
 value is the router or host internal name and internal interface name.
 The REM_ASSOC is split into the rem_object and rem_iface (key, value) pairs,
 where the value is the overlay, router or host internal name and internal
 interface name, or a class specifier.

RTR_SPEC: '(' OBJECT_NAME INTERFACES CRITERION(s?) ')'

HST_SPEC: '(' OBJECT_NAME INTERFACES CRITERION(s?) ')'

LNK_SPEC: '(' OBJECT_NAME CRITERION(s?) ')'
 Returns a reference to a two-element list. The first element is the internal
 reference name given to a router, host or link. The second element is a
 reference to a hash that contains the (key,value) pairs specified as this
 links properties. If no properties are specified, the second element will
 point to an empty hash.

CRITERION: '(' ARGSTRING ARGSTRING ')'
 Returns a reference to a hash. The defined keys are: type and value,
 take on the values of the first and second ARGSTRING respectively.

34

ISI‐TR‐2001‐549 Nov. 2001

Appendix

Xbone Release 2.0 Implementation Constraints

The XOL grammar provides a number of features that the current release of
the Xbone does not support. These are listed below.

Lack of Two-Phase Implementation

The "host_choice" and "host_choice_reply" messages exist to allow two-phase
commitment. The OM sends a "host_choice" message out its API to the overlay
builder. The builder then picks those hosts that are to participate and
returns a "host_choice_reply" response to the OM, which then builds the
overlay.

The overlay builder can leave the choice of hosts entirely to the OM. The
'two_phase' option field of the "create_overlay" command controls this. If
the value of 'two_phase' is 'yes', the two-phase commit message exchange
occurs. Otherwise, the value must be 'no'.

In this 2.alpha release, two-phase commitment is not supported. The
"host_choice" and "host_choice_reply" messages are not currently
implemented. Thus, the 'two_phase' option field of the "create_overlay"
message must be 'no'.

Overlay Specification

The Xbone GUI currently 'writes' the XOL programs needed to create overlays
for star, ring and line topologies only. Other topologies are not
supported.

The XOL programs that the GUI creates must be non-ambiguous. That is, they
must fully pin (completely specify) the remote ends of all links. The OM
does not currently support any floating (wildcard specification) of remote
links.

OMs currently support only single-network overlays. Thus, in the
XOL_PROGRAM rule, only one OVERLAY specification is suported. The
INTERFACES part of the OVERLAY specification must be present, but is unused.

Address Specification

While the grammar supports both IPv6 and IPv4 addressed, at this time only
IPv4 addresses are supported.

MONPROG Specification

The MONPROG feature of the grammar is not supported.

35

ISI‐TR‐2001‐549 Nov. 2001

36

Example: Complete API/XOL Program

This is the textual representation of a 'create_overlay' API command. The
create_overlay command contains an XOL program specification for an overlay.

(xbone 1.5 2.0
 (create_overlay
 (auth_type x509) (creator_name 'Yu-Shun Wang')
 (creator_email yushunwa@isi.edu) (two_phase no)
 (dns yes) (hosts 2) (host_os kame) (authentication sha1)
 (encryption 3des) (dynamic_routing no)
 (overlay_name test-1.xbone.net) (routers 2)
 (router_os kame) (search_radius 5) (topology linear)
 (user_id yushunwa@isi.edu)
 (program
 (xol
 (overlay
 (name test-1.xbone.net)
 (addresstype ipv4)
 (security
 (creator_name 'Yu-Shun Wang')
 (creator_email yushunwa@isi.edu)
 (authentication sha1)
 (encryption 3des)
)
 (services
 (manager www.xbone.net)
 (name_server rum.isi.edu)
)
 (interfaces (test-1.xbone.net0))
 (topology
 (hosts
 (_hst_0_ (interfaces (_hst_0_0)) (os kame))
 (_hst_1_ (interfaces (_hst_1_0)) (os kame))
)
 (routers
 (_rtr_0_ (interfaces (_rtr_0_0)(_rtr_0_1)) (os kame))
 (_rtr_1_ (interfaces (_rtr_1_0)(_rtr_1_1)) (os kame))
)
 (links
 (link0)
 (link1)
 (link2)
)
 (netlist
 (link0 _rtr_0_:_rtr_0_1 _rtr_1_:_rtr_1_1)
 (link1 _hst_0_:_hst_0_0 _rtr_0_:_rtr_0_0)
 (link2 _hst_1_:_hst_1_0 _rtr_1_:_rtr_1_0)
)
)
)
)
)
)
)
XboneEOC

