
NetFS: Networking through the File System

Joshua Train, Joseph D. Touch, Lars Eggert, Yu-Shun Wang
{train, touch, larse, yushunwa}@isi.edu

USC Information Sciences Institute◊

Abstract

NetFS provides a platform-independent file system interface to the network stack of operating systems. It
unifies and integrates different existing APIs that each control parts of the network stack. NetFS offers a
common, familiar interface that supports both existing functionality, as well as new capabilities for fine-
grained access control, user-based virtual views, and remote access. A subset of NetFS was implemented
using Perl and named pipes. The system is currently being implemented as FreeBSD 5.0 kernel extension.

1 Introduction
As operating systems and networks have evolved,
the interface to the networking components has
become increasingly complex. Most UNIX flavor
OS’s have separate commands to configure net-
work interfaces, set routes, and view current con-
nections, and require further cryptic configuration
via unfamiliar interfaces directly accessing OS
structures, namely ioctls sockopts, and sysctls.
Having this variety of network configuration inter-
faces is confusing and makes it difficult to manage
access control. NetFS replaces this complex con-
stellation of interfaces with a single API based on
a familiar file system paradigm which further pro-
vides fine-grained access control and process-
specific views.

User level configuration commands are confusing
because they lack a common API. ifconfig
configures interfaces, the route command adds
routes, and the netstat –r command shows
routes – with little in common. Using different
commands requires consulting a plethora of man
pages, and the variety of syntaxes and configura-
tion options can quickly overwhelm. The usage of
each command also varies between OSs. For ex-
ample, the LINUX ifconfig command has a
very different syntax than BSD or Solaris if-
config [3] [5] [8]. Many networks consist of
systems with a variety of OSs, thus the task of

configuring networks can be increasingly com-
plex.

The variety of methods, such as ioctls, sockopts,
and sysctls, used to communicate the configuration
information back to the kernel is complex both
because of the variety of parameters and their lack
of organization. Programmers often have difficulty
determining which method is required to configure
a particular parameter (Figure 1). In some cases,
multiple interfaces are required for complete ac-
cess to configuration control, e.g., TCP connec-
tions can require configuration via the top four
APIs shown. In other cases, there are competing
alternative methods, for example, routing table
entries can be configured by ioctls, the routing
socket in-band API, as well as by the command
line route and netstat commands.

◊ This material is based upon work supported by the National Science Foundation under Grant No. <NETFS: ANI-
0129689> . Any opinions, findings, and conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the National Science Foundation.

Figure 1 Intertwined network control

interfaces Socket API

sockopt

ioctl

sysctl

In-band API

route

communication
channels

Components APIs

touch
Text Box
ISI-TR-2003-579

touch
Note
Accepted set by touch

touch
Note
None set by touch

There is further no simple way to provide fine-
grained access control to network configuration.
Network configuration commands use system calls
that require the user process to be executing in
root mode. The ability of the user to configure the
network boils down to whether the user has root
access or not.

On systems where multiple processes must con-
figure the network (e.g., X-bone [9]), different
processes need to be granted different configura-
tion permissions, yet blindly giving root-level ac-
cess poses risks to the system’s integrity. One
process may need to configure the address of a
virtual interface, but should be prevented from
configuring other interfaces or making other net-
work configuration changes. Granting processes
root access for the sake of configuring one com-
ponent of the configuration is like giving away a
combination to a bank vault; the entire vault is
now open. It would be preferable to give com-
partmentalized, fine-grained access, akin to the
keys to a single safe-deposit box.

Previous attempts have tried to overcome these
challenges to network configuration, but have not
gained wide acceptance due to their complexity of
design and the addition of yet another unfamiliar
API. NetFS uses the file system as an interface to
network configuration, providing a familiar API
and capitalizing on the fine-grained access control
it already provides.

2 File System Interface
One of the key components of general purpose
OSs is an organized system with which to read and
write stored data, namely the file system. File ac-
cess methods have provided the canonical API; it
is thus useful to consider how they can be used for
more than storing static data, e.g., for network
configuration.

Users are familiar with the file system API. One of
the most elementary tasks of computing is reading
and writing files; it is one of the first APIs taught,
and one of the most ubiquitous. File operations are
just data reads and writes based on object names;
this process can likewise be used for network con-
figuration.

Users are also familiar with the organizational
structure a file system provides. Directory hierar-
chies and aliases are powerful tools for organizing

files, and can be applied to configuration data as
well.

2.1 Uniform Interface
Networking has introduced a wide variety of dif-
ferent objects such as sockets, routes, and inter-
faces. These objects have few similarities, but the
file system can provide a common interface for
identification and access.

2.1.1 Order Through Subdivision
File systems allow users to subdivide different
objects by types and instances. The “documents”
directory usually holds documents, and a “pic-
tures” directory typically holds pictures. Although
pictures are very different than documents, they
are organized, handled, and accessed in the same
way.

As illustrated in Figure 2, NetFS uses this same
methodology to organize the different networking
components of the operating system.

/net

iface route ipfw proto

fxp0 lo

default alias1 alias2

ether ip

tcp udp

25 26

mask addr

10.0.0.1 default

1 0

addr mask

255.0.0.0

ipsec

10.3.0.0 255.255.0.0

Figure 2 NetFS directory structure

The /net directory contains directories that de-
scribe networking components such as iface,
route, socket, etc. Inside each of these general
category directories exist directories and files that
give each object further context. For example, the
/net/iface directory includes directories named l0
(loopback) and fxp0 (an Ethernet interface), which
are the names of typical interfaces on a FreeBSD
machine. The /net/route has directories named
with network addresses such as 10.0.0.0 use to
describe the network to which the route leads. The
directory tree is a series of context descriptors that
eventually leads to the object that it describes.

touch
Text Box
ISI-TR-2003-579

The directory structure provides a context by
which to locate an object, and the contents of that
directory consists of files and directories that de-
scribe that particular object. For example, the
/net/iface/xl0 directory may contain files such as:
media – the description of the interface’s physical
media, and status – indicating the current avail-
ability of the interface.

A folder may contain sub-directories, such as
shown for the address directory. Folders are used
to separate addresses by family, each requiring a
subdirectory in which to store multiple addresses.

The /net directory structure provides a uniform
organization and easily-browsed structure to the
set of network configuration parameters. All con-
figurable parameters of an interface are subfolders
or files under that interface’s directory in
/net/iface. Routes are in the /net/route directory.
Locating configuration parameters is thus less
mystical.

2.1.2 Unified Access Method
Not only does the file system provide organiza-
tional structure, but it also provides a standard
API: the VNODE interface [7]. This interface pro-
vides, among other things, a standard way the user
can create directories, read directory contents,
write files, and read files. Regardless of the infor-
mation system that is represented by the file sys-
tem, be it a hard drive, memory-mapped, or a
server across the network; because of this standard
interface, the user can access this information in
the same way. Looking beyond the scope of hard
drives and memory, this interface provides a stan-
dard way to map operations performed on files to
respective functions that are defined by the pro-
grammer. NetFS uses this methodology to use files
to tie into a series of functions that perform net-
working tasks.

Using the file system, network properties can be
determined by reading the corresponding file. The
subnet mask assigned to an interface can be shown
by typing1:

?] cat /net/iface/xl0/subnetmask

1 Throughout, input is shown after the “?]” prompt
(wrapped and indented as needed); output is shown
without a prompt, on the following line.

The output would be:

255.255.255.0

Similarly, the MTU of a route is shown by:

?] cat /net/route/127.0.0.1/MTU

1500

The subnet mask can be changed as follows:

?] echo “255.255.240.0” >>
/net/iface/xl0/subnetmask

One common network configuration task is to
view what objects are available. Through the file
system, this task is done by simply reading the
contents of a directory. NetFS’s ls /net/iface com-
mand is much simpler and more obvious than the
current ifconfig –a. directory. Similarly, routes can
be shown by ls /net/route.

For example:

?] ls /net/iface

xl0 fxp0 fxp1

Creating a new instance of an object, such as add-
ing a new route or virtual interface, is achieved by
creating the appropriate subdirectory. Consider the
following command, which is the first step in cre-
ating a route to the 192.168.0.0 network:

?] mkdir /net/route/192.168.0.0

The next step would be to create a file 16 in that
directory, and the contents of that file would indi-
cate the next-hop router address or the outgoing
interface (if a LAN).

An advantage to using a file system for configura-
tion and control of an OS networking stack is
portability. Programs that modify network parame-
ters require only a common hierarchical file sys-
tem, which is highly portable. The remainder of
the functionality, including OS-dependent opera-
tions, are implemented underneath, inside the
NetFS implementation on a specific OS.

There are two obvious considerations – choice of
the directory structure and consistency. First, the
file system does not impose an a-priori structure

touch
Text Box
ISI-TR-2003-579

2.3 File System Features to the network configuration parameters; NetFS
provides that structure as part of its API specifica-
tion. There is substantial leeway in determining a
useful API, and the examples shown here are not
final. It is expected that the interface will evolve
with experience. Note that using the file system
provides a unique opportunity to retain past APIs;
the alternate views are just aliases or symlinks of
the current API.

Along with providing a standard API and access
control, NetFS uses the file system’s existing sup-
port for aggregation and virtualization to provide
augmented network configuration capabilities.

2.3.1 Remote Networking Configuration
File systems can be remotely mounted, e.g., via
NFS [7]. By using remote access, NetFS seam-
lessly supports remote network configuration and
monitoring, again using the same file system API.
All operations, except those affecting the remote
mount, can be just as easily performed remotely.

Consistency checks are part of the NetFS system.
If the name passed to the mkdir command did not
make sense in the directory that it was being cre-
ated in, it would be rejected. For example, the fol-
lowing command would result in an error if there
were no interface called timbuktoo:

?] mkdir /net/iface/timbuktoo

error: no device “timbuktoo”

NetFS provides for a framework where all con-
figuration tasks can be performed in a standard
fashion. Configuring an interface or a route is
functionally equivalent. Each different component
may involve different features, but the method to
configure those features is the same.

2.2 Fine Grained Access Control
Current operating systems do not provide a con-
venient mechanism for partitioning the configura-
tion of different networking components. Typi-
cally a user must have root access to perform net-
work configuration tasks such as setting an IP
address or configuring a route. On systems such as
the X-Bone [9] and other multi-user systems, dif-
ferent users need to have specific configuration
permissions. However, current configuration
commands do not provide permission control.

By configuring networking components through
the file system, access control is as simple as set-
ting the permissions on files and directories. To
configure all interface cards, a user would be
given write permission in the entire /net/iface di-
rectory. Limiting a user to configuring a particular
network interface, e.g., xl0, involves giving write
access to only /net/iface/xl0.

Unix file systems provide separate owner, group,
and global permissions. This coarse control can be
further augmented with Access Control Lists
(ACLs), providing fine-grained access [10].

/remote

/subnet-a /machine1 /machine3

/net /net /net

Figure 3 Remote view of /net

Consider the directory structure shown in Figure
3. This directory structure is constructed by remote
mounting the /net directory local to each of the
remote machines to be configured, or even aggre-
gating them via a combination of mounts and sym-
links (e.g., subnet-a). Remote file system access
control replaces the need for separate login proce-
dures.

As with all remote configuration of networking
components, the remote administrator must be
careful not to lock himself out by changing the
network information that is used to provide the
remote mount capability. As with consistency con-
trol, this can be managed by the NetFS system on
the remote machine, such that entries used by the
mount protocol are locked to remote users.

2.3.2 Virtualization
File systems also allow per-process customization.
Different parts of /net could look and behave dif-
ferently for different processes, much as “~/” is
interpreted local to a login. One user or process
would use the following command:

?] ls /net/iface

l0 xl0

touch
Text Box
ISI-TR-2003-579

Another user may see:

?] ls /net/iface

l0 em0

The root user would see the entire set of inter-
faces:

?] ls /net/iface

l0 xl0 em0

The file system not only virtualizes the hierarchy,
but it can be extended to virtualize functionality.
For example one user may see:

?] cat /net/route/default/gateway

192.168.1.1

Another user may see:

?] cat /net/route/default/gateway

10.10.10.1

In this example the /net/route/default/gateway files
is the same file but points to two completely dif-
ferent routing entries. This would be useful if the
first user could attach (open sockets on) only the
192.168.0.0/16 interfaces, thus his default route
would be 192.168.1.1. The other user sees a dif-
ferent default route because his context – the inter-
faces he can attach to, etc. – differs.

The ability to virtualize file system views and
functions provides yet another opportunity in cus-
tomizing the information that is presented to dif-
ferent users. Other virtual file systems such as
Procfs [2] use this feature to simplify how proc-
esses check their own state. /proc/current contains
information particular to the process that reads it.
Processes can monitor their state without needing
to know their process identifier.

These file systems virtualization abilities provide a
unique opportunity to further the process of virtu-
alizing network connections and configuration.

2.4 Costs of Using File System API
There is essentially no performance cost in ac-
complishing network configuration through a file

system. Previous virtual file systems such as
Procfs [2] claim no slow-down vs. using conven-
tional command-line APIs. Because network con-
figuration operations are not a high-performance
task anyway, this is somewhat moot.

Note that NetFS is not an exclusive API. Previous
APIs and commands can be supported, either un-
derneath or on top of NetFS. This supports gradual
migration to the new API, backward compatibility,
and incremental upgrades of commands and con-
trol programs.

3 Implementation Issues
As useful as a file system API has been shown to
be, it presents implementation challenges. Issues
such as directory organization, internal consis-
tency, and functional atomicity need to be ad-
dressed. Two implementation methods are exam-
ined: the first, using Perl and named pipes, has
been completed and exposed some of these issues;
the second, involving a loadable kernel module
(FreeBSD KLM) is under design. The KLM ap-
proach is more flexible and powerful, though it is
more complicated to implement.

3.1 Hierarchy
File systems offer the ability to organize informa-
tion hierarchically. This organization is necessary
to simplify the network interface, yet organizing
the components is not a trivial process and pre-
sents design challenges.

As noted earlier, a variety of hierarchies can be
considered, depending on the level of detail de-
sired. For example, in organizing network inter-
face devices, BSD machines use a 2-5 letter device
type identifier followed by a number identifying
the instance of card, e.g., xl0, xl1, fxp0, em0, em1,
etc. The hierarchy can be configured in a variety
of ways, two of which are shown in Figure 4 and
Figure 5.

/net/iface

/xl /fxp /em

/0 /0 /1 /0

Figure 4 Hierarchy by inteface class

touch
Text Box
ISI-TR-2003-579

Figure 5 Hierarchy by interface

Figure 4 allows permissions to be given based on
interface class, whereas Figure 5 requires per-
interface permissions. Conversely, Figure 5 pro-
vides less nested directories and appears less com-
plex. As noted earlier, both can be provided using
symbolic links or aliases; the number of different
hierarchies and specific hierarchies supported are
part of the specification of the NetFS API.

One of the NetFS’s primary goals is to simplify
the interface to the networking components, yet
“simplifying” can be context-dependent. Debug-
ging kernel network data structures would benefit
from direct access in NetFS, but that further com-
plicates the directory structure for users not doing
debugging. The primary hierarchy should be as
complete as possible, but should consider fre-
quency of access and utility in the organization.

NetFS makes use of the features of the file system
to solve some of these issues. The root user will be
different than the view that a standard user has.
The different views that can be established for
every user can be solved by setting up policies as
to different groups need to see different informa-
tion.

3.2 Internal Consistency
As noted earlier, there are consistency checks that
are already part of the current network component
configuration interface. When an interface is
added, its corresponding default is also added;
when the interface is removed, the route is re-
moved as well. When these operations are trans-
lated into file system operations, they need similar
consistency checks.

Suppose a user has permissions to change an inter-
face address, but does not have permissions to cre-
ate a new route per se. The system could either
allow the address change and implicitly permit the
route, or prohibit the address change exactly be-
cause the route change is prohibited. It is to
NetFS’s credit that this example is easily consid-

ered and alternatives implemented, depending on
policy. In either case, the constancy checks occur
during the creation of files or directories, just as
the file system prevents the creation of files with
illegal names or removes hard links when primary
files disappear.

/net/iface

/xl0 /fxp0 /fxp1 /em0

Under current APIs these issues do not arise, be-
cause root access is required for any modification,
and thus any corollary operation would be permit-
ted. If the user were changing an interface address,
he had root access which further gave him the
ability to change a route. However, by having
permissions on the different components there is
now a choice of what operations to allow, and
these are the type of issues that arise when design-
ing NetFS.

These component interrelationships bring about
the need for new policies. The needs of one system
may differ from the needs of a different system;
therefore user defined policies are needed to de-
termine the desired method to handle conflicts like
these.

3.3 Atomicity
Discussions about file systems often bring about
with them concerns about the data integrity and
functional atomicity. NetFS uses existing file lock-
ing mechanisms and read-through properties to
ensure the integrity of the data represented. Other
issues of atomicity are relevant, however. Notably,
when internal consistency mechanisms require
new subordinate files and directories, the entire set
must appear as an atomic operation.

Further, locking must be considered. As with any
set of resources, unconstrained locking can result
in mutual starvation; this can be avoided with or-
dered locks. Additional timeout mechanisms can
be used to ensure that processes can not hold con-
figuration information and starve other processes
attempting to change that configuration.

Because there are multiple APIs to change net-
work configuration, the information represented
through the file system must accurately represent
the current kernel configuration. Because NetFS
files do not hold any static information in of them-
selves, but instead serve as windows to the under-
lying information represented in the kernel, syn-
chronization is ensured.

touch
Text Box
ISI-TR-2003-579

4 Implementation Experience
ifconfigThe implementation of NetFS is proceeding in two

stages. The first stage working prototype of NetFS
uses Perl and named pipes. The second stage uses
a loadable kernel module (KLM, on FreeBSD).
The initial development was performed on
FreeBSD 4.7 and the KLM is being developed for
FreeBSD 5.0

netstat

route

NetFS Named Pipes
4.1 Perl and Named Pipes Perl Engine

 Perl and named pipes provide a simple environ-
ment for prototyping NetFS. A series of Perl
scripts are run just after the OS boots, which script
built the /net directory based on the existing hard-
ware and running configuration, and starts daemon
processes behind named pipes as interfaces to the
OS data. Named pipes look and behave like files,
but are actually a communications channel to hid-
den, daemon-like processes. Both sides – the dae-
mon process and the user process accessing the
named pipe – interact using file system operations
(reads, writes, etc.). When the daemon process
opens a named pipe for reading it waits until a
writer arrives to provide data. Similarly, if a dae-
mon process opens a named pipe for writing it will
hold and wait until a user process has opened that
file for reading. Depending on whether the named
pipe is used for output or input, NetFS initiates
daemon processes waiting to provide that pipe
with the corresponding functionality.

Figure 6 Conversion between named pipes and
command-line operations

There are a few challenges and limits to this tech-
nique. Most implementations of named pipes pro-
hibit using the same named pipe descriptor for
both output and input. The interim solution, as
noted above, was to create a pair of corresponding
pipes, suffixed with _in and _out; although awk-
ward, this provides a sufficient solution.

Creating new objects such as routes or interfaces
creating a new directory proved to be a more diffi-
cult task. Named pipes sit beneath file-like de-
scriptors, not directory-like descriptors; it is infea-
sible to have a directory-like named pipe to inter-
cept vnode creation and create entire
subdirectories instead, as desired.

Instead, a separate, true daemon process polled the
/net directory structure and effected needed consis-
tency corrections. Virtualization proved to be be-
yond the capabilities of the named pipe version.

For example if a user opened the named pipe
/net/iface/xl0/ip/address_out by typing:

The primary reason for these difficulties was that
NetFS is creating a new file system with custom
semantics; named pipes affect only unidirectional
file semantics. Instead, it would have been more
useful to completely remap vnode operations, to
provide completely custom, bidirectional (read and
write on the same node) semantics. As a result,
after a proof-of-concept named pipe NetFS im-
plementation was completed, development focused
on a KLM to provide new vnode operations.

?] cat /net/iface/xl0/ip/address_out

NetFS would run ifconfig xl0, parse the
outputted data, and print the IP address to the
named pipe and the user would see:

192.168.1.1

This NetFS implementation redirects information
between the named pipes and the underlying net-
work configuration commands. Operations on
named pipes are translated to command-line op-
erations, and vice versa (Figure 6).

4.2 Loadable Kernel Module (KLM)
The current goal of the NetFS project is to develop
loadable kernel modules for a variety of operating
systems. Kernel modules provide the most power-
ful way of implementing the NetFS vnode seman-
tics. Other virtual file systems such as Procfs and
Kernfs have been developed as loadable kernel

touch
Text Box
ISI-TR-2003-579

modules [2] [4]. There are several advantages to
this approach:

• Direct access to kernel data dtructures and
functions. NetFS will not have to run other
applications (such as ifconfig, net-
stat, routed) or use external APIs
(sysctl, ioctl, sockopt) to obtain and set in-
formation.

• All vnode operations can be supported and
customized. The current virtual file system
(VFS) provides 32 vnode operations that
can be modified; named pipes were lim-
ited to file open, read, and write only.

• Policy implementation can be integrated
with the ACLs [10].

Developing a KLM has a higher learning curve
than writing Perl scripts as named pipes. Work has
begun on developing the NetFS KLM for
FreeBSD 5.0 and features will be added incremen-
tally. Support for other OSs take longer using this
technique, but the additional capabilities warrant
the cost.

5

6

Future Work
NetFS is focused on network configuration of pa-
rameters of hosts and routers. Future work ex-
pands NetFS to accommodate all network opera-
tions. For example, NetFS will implement socket
similar to that of Plan9, i.e., the /net/tcp directory
[6]. Additionally, other OSs targeted include
Linux and MacOS X.

Because NetFS is an interface to the OS network-
ing structures, it will need continual maintenance,
as do most KLMs. As new features are added to
the network, these will also need to be added to
NetFS. VPN configuration, and support for truly
virtual networks, such as X-Bone, are readily sup-
ported (and provided one motivation for) NetFS.

Related Work
NetFS is a combination of ideas from several
sources. It closely follows the functional model of
Procfs and Kernfs. It adopts the socket directory
structure of Plan9 and further focuses them to-
wards the networking components of UNIX like
machines. It has the same security goals as Jail and
TrustedBSD.

6.1 Procfs and Kernfs
The process file system, procfs (/proc), was devel-
oped as part of Eighth Edition UNIX as a mecha-
nism to support process debugging [4]. The file
system paradigm provided protection that allowed
users to debug their own programs without requir-
ing complicated controlled access to kernel data
structures. By mapping processes onto the file sys-
tem model, “the most obvious security loopholes
are plugged by the file system itself.” [4]

These systems first noted that file interface is more
familiar than kernel data structures, and simpler to
code to. Even in its early early versions, ps(1) ran
four times faster when coded to read the /proc files
than conventionally (reading kernel data structures
directly). The early version of procfs provided the
process’s memory space as a memory-mapped file,
where the debugger could read or write the process
space as file operations. Additional control func-
tions used the ioctl system call interface to stop,
start, or trace a running program. Later variants
proposed incorporating these into procfs directly,
eliminating process ioctls altogether. This has
been implemented in FreeBSD’s variant of procfs
as a ctl file, one of a number of files under a direc-
tory for each process. Commands to
start/stop/debug the running process are issued by
writing text commands to the ctl file.

In more recent open-source operating systems
(e.g., FreeBSD and Linux), procfs and variants
such as kernfs have entirely replaced the inspec-
tion of kernel data structures for common com-
mands such as ps(1), vmstat(1), and kill(1). In
Linux, procfs is largely read-only, excepting only
kernel variables, which are exclusively accessed
using this interface. NetFS applies the procfs
model to the network API. Diverse components of
this API, including the routing table, configuration
of interfaces, IP security keys, and firewall rules,
are presented as a unified file system interface
(/net). Commands and configuration are file sys-
tem operations, further extending file system pro-
tection to the configuration of individual network
components.

6.2 Plan 9
Plan 9 is a portable operating system that exam-
ined a number of new design paradigms [6]. Nota-
bly for NetFS, Plan 9 implements reliable protocol
connections as files in a /net directory. Individual
connections are represented as directories with two

touch
Text Box
ISI-TR-2003-579

files – one for control, one for data. A separate
clone file, per protocol class, provides a method to
create new connections. Opening this clone file
results in the allocation of a free port; reading that
file returns the port thus allocated.

Plan 9 focuses on a file system representation of
user-level communication operations, i.e., the
socket API. It primarily provides programmers the
simpler file system model; a secondary goal is to
enable portability of tools across different proto-
cols. Additionally, the use of text strings for con-
trol avoids byte-order issues, and provides remote
access (e.g., gateways) using existing remote file
access. Operations that do not map directly to file
semantics, such as TCP listen, are mapped to the
side effect of file accesses. Even with these side
effects, Plan 9’s file system interface is typically
more comprehensible than conventional socket
incantations (e.g., socket/bind/listen/connect).

NetFS includes a version of Plan 9 socket API,
though it is not its primary focus. NetFS is di-
rected at managing network configuration rather
than individual connections. Individual connec-
tions are already afforded levels of mutual exclu-
sion and fine-grained (per port) protection by ex-
isting implementations. Unification of the network
configuration API does not necessarily require
reimplementation of the socket API, though it is a
component of NetFS, mostly for completeness.

6.3 Jail
The Jail system addresses the goals of limiting the
behavior of processes that require root access. Jail
supports a constrained environment for server
processes sharing a single machine, e.g., at an ISP.
It provides a transitive environment that follows
children spawned from a parent process, by creat-
ing a new process environment by modifying key
system calls. Access to network interfaces, drivers,
file systems, and kernel data structures are all ac-
cessed by modified code.

Although the footprint of Jail is very small (400
lines of code), Jail necessarily affects a large num-
ber of system calls (affecting 50 files), and thus
may be difficult to port to different OSs, especially
those whose process models differ substantially
from FreeBSDs. NetFS, by contrast, implements a
file system, which is a more commonly added fea-
ture. NetFS further focuses on network configura-
tion, whereas Jail focuses on the entire process

environment, including relative file system mount
points.

Jail provides relative network parameters, similar
to those of NetFS. Its networking model is more
primitive than FreeBSD, however, as it provides
only a single IP address per partition, where NetFS
provides any subset of the /net directory. Jail in-
tercepts network commands that would result in
system-wide views, such as binds to
INADDR_ANY and commands that list all the
interfaces of a machine (ifconfig –a, netstat –a).
Because such commands are implemented as file
system operations in NetFS, it is easier to confine
them to subsets of the network devices.

Finally, Jail assumes mutually exclusive partitions.
Once a process enters a partition (a jail), it cannot
leave; furthermore, jails do not overlap. NetFS
supports recursive environments (subsets of exist-
ing subsets of resources), as well as overlapping
environments (e.g., gateway processes) because
these models are already supported in the file sys-
tem by its existing protection mechanisms.

6.4 Trusted BSD
The Trusted BSD project is a project that improves
the kernel and user interface security structure to
better support fine grained access control [10]. It
augments existing kernel code to better accommo-
date fine-grained privileges, rather than just a sin-
gle root privilege level.

Although NetFS does not focus on modifying ex-
isting kernel structures, it can capitalize on Trusted
BSD features. ACLs added to various kernel data
structures translate directly onto file system ac-
cess, where NetFS operates.

7 Conclusion
NetFS is a valuable tool for network users of all
levels. It does not require users to change from
previous configuration methods and offers a new
way to configure network parameters.

By representing the network configuration infor-
mation through the file system, the task of config-
uring the network is simplified. The file system
provides opportunities to use a single API for all
aspects, including network interfaces, routes, etc.
Access control is achieved through simple file sys-
tem operations. Because the interface is unified,

touch
Text Box
ISI-TR-2003-579

network configuration tasks are much easier and
the learning curve is greatly reduced. Furthermore,
NetFS can be used across different platforms,
making it easier to port configuration programs
across OSs.

Remote mount abilities provide the user with pow-
erful remote administration facilities. Per process
virtualization features provide unique op-
portunities to virtualize the network configuration
tasks, thus making it even simpler to configure the
network.

An initial prototype of the system based on Perl
and named pipes exists for FreeBSD 4.7 and can
be obtained by contacting the authors, and a KLM
version is being developed for FreeBSD 5.0.

References

[1] Case, J., Fedor, M., Schoffstall, M., Davin, J., “A
Simple Network Management Protocol
(SNMP)”, RFC-1157, 1990 .

[2] Faulkner, R, Gomes, R., “The Process File System
and Process Model in UNIX System V,” Proc.
Winter Usenix, 1991, pp. 243-251.

[3] FreeBSD man pages, e.g.,
http://www.freebsd.org/

[4] Killian, T. J., “Processes as Files,” Proc. Summer
Usenix Conf, 1984, pp. 203-207.

[5] Linux man pages, e.g.,
http://www.linuxcentral.com/linux/man-pages

[6] Presotto, D., Winterbottom, P., “The Organization
of Networks in Plan 9,” Proc. Winter Usenix
Conf., 1993, pp. 271-280.

[7] Sandberg R., Goldberg D., Kleiman D., Walsh D.,
Lyon B., “Design and Implementation of the Sun
Network File System,” Proceedings of the
USENIX Conference, June 1985, pp. 119-130.

[8] Solaris 9 man pages. e.g., http://docs.sun.com
[9] Touch, J., “Dynamic Internet Overlay Deploy-

ment and Management Using the X-Bone,”
Computer Networks (1Q2001). Previously in
Proc. ICNP 2000, pp. 59-68.

[10] Watson, R., “TrustedBSD, Adding Trusted Oper-
ating System Features to FreeBSD,” Proc.
Usenix Technical Conference, June 2001.

http://www.freebsd.org/
http://www.linuxcentral.com/linux/man-pages
http://docs.sun.com/
touch
Text Box
ISI-TR-2003-579

	Introduction
	File System Interface
	Uniform Interface
	Order Through Subdivision
	Unified Access Method

	Fine Grained Access Control
	File System Features
	Remote Networking Configuration
	Virtualization

	Costs of Using File System API

	Implementation Issues
	Hierarchy
	Internal Consistency
	Atomicity

	Implementation Experience
	Perl and Named Pipes
	Loadable Kernel Module (KLM)

	Future Work
	Related Work
	Procfs and Kernfs
	Plan 9
	Jail
	Trusted BSD

	Conclusion

