
P2P-XBone: A Virtual Network Support for Peer-to-Peer Systems
USC/ISI Technical Report ISI-TR-2005-607

Norihito Fujita 1 Joseph D. Touch 2 Venkata Pingali 2 Yu-Shun Wang 2

1 System Platforms Research Laboratories, NEC Corporation (Visiting Scholar of USC/ISI)
2 USC/Information Sciences Institute

September 27, 2005

Abstract– An architecture to deploy virtual
IP networks with P2P-like dynamic topology
management is described. Existing virtual IP
network deployment mechanisms do not allow for
dynamic topology adaptation and fault-tolerance
since provisioning of IP tunnels is performed only
once when a virtual network is deployed. We propose
a P2P-XBone, in which a P2P protocol such as DHT
drives the topology and the routing table of a virtual
IP network consistent with its neighbor node state.
We describe how to extend both the existing X-Bone
system and P2P protocols to achieve interworking
between them. The P2P-XBone not only provides
P2P’s characteristics such as self-organization,
fault-tolerance and content-based routing to virtual
IP networks but also provides higher forwarding
performance and simpler implementation to P2P
systems due to the availability of existing network
services. We also show several evaluation results
on the overhead of P2P-driven provisioning and on
forwarding performance.

I. INTRODUCTION

A Virtual Internet (VI) [1] is a kind of
overlay network in which an virtual IP network
infrastructure is created over an existing IP network.
The VI provides all of available IP network
capabilities, which can be used by any application
that rides on the VI. As a tool to deploy and
manage VIs, we are working on the X-Bone [2],
in which hosts and routers are logically emulated
in physical nodes and any virtual IP network
topology can be created in a manner of connecting
them by IP tunnels such as IP-in-IP and GRE.
Existing VI deployment systems including the X-
Bone provide static virtual topology and perform
provisioning of IP tunnels only once at deployment
of a VI. Therefore, the VI has no mechanism
for dynamic node addition/deletion as physical IP
networks do, which constrains the usability and
capability of a VI compared with more dynamic

application-level overlays. The features provided
by peer-to-peer (P2P) systems are attractive to
supplement what existing VIs are missing because
P2P natively supports self-organization and fault-
tolerance. P2P networks, unlike regular networks,
achieve these promising properties by modifying the
topology to reflect the routing changes. Existing
P2P protocols [3][4][5] and platforms [6][7] run
at the application layer and use UDP or TCP
to connect P2P nodes. Therefore, they only
change the application-level logical topology over
an existing IP network. In a VI, however,
since the IP-level topology has to be modified by
establishing/releasing IP tunnels (i.e., provisioning),
such dynamic topology management cannot be
applied in the same way as the exisiting P2P.

In this paper, we propose a P2P-XBone that
enables a VI to obtain the P2P’s attractive properties
by achieving P2P-driven dynamic provisioning. In
the P2P-XBone, the X-Bone system is extended
to have an interface for a user-level daemon
running a P2P protocol to control an underlying
VI. Also, the P2P protocol is extended to explicitly
request IP tunnel creation/release and routing table
configuration via a configuration interface. Driven
by the P2P protocol, IP tunnels are dynamically
created/released based on neighbor node changes in
the P2P protocol, and a routing table is configured
based on a routing rule to the neighbor nodes.
The P2P protocol provides a unique property of
routing-driven provisioning to a VI due to its ability
to control IP tunnels as well as a routing table,
while traditionally routing and provisioning have
been considered as being independent. We call
such a P2P-driven VI simply a P2P-VI. The P2P-
XBone not only provides P2P’s high resilience to
a VI but also enables a VI to achieve content-
based routing that is another promising property
of P2P. Although it is difficult for a normal VI to



support such data-based forwarding as existing P2P
systems do because they usually use such non-IP-
address-based IDs as URLs and hash values for
destination IDs, the P2P-XBone addresses the issue
by involving a kernel extension module that supports
string-based forwarding. In our implementation,
the DataRouter module [8] is used to support
the kernel-level application forwarding. Thus the
P2P-VI can be alternative P2P infrastructure that
is achieved at the virtual IP layer. Deploying
P2P systems at the virtual IP layer provides a
couple of advantages for themselves compared with
conventional application-level deployment. Firstly,
higher forwarding performance can be obtained
because forwarding is performed at the kernel level.
Next, the implementation of P2P applications can be
simplified because such fundamental mechanisms as
end-to-end reliability and security can be achieved
using such existing network services as TCP
and IPsec without re-implementing them in the
application layer.

The remainder of this paper describes the
extensions both to existing P2P protocols and to
the existing X-Bone that are required for the P2P-
XBone. It also shows the overhead of the routing-
driven provisioning and improvement in forwarding
performance through simulation and experiments
for the implemented system.

II. P2P-XBONE

A. Overall architecture
The P2P-XBone is a system to deploy a VI that

works in a P2P manner (i.e., P2P-VI). The high-level
architecture is shown in Fig. 1. The P2P-XBone
is comprised of P2P Daemon (P2PD), Resource
Daemon (RD) and Overlay Manager (OM), where
RD and OM are extended from those of the existing
X-Bone. The RD runs on each node constituting
a VI (virtual node; VN) and is responsible for
configuring IP tunnels and routing tables on the VN.
In the P2P-XBone, the RD is extended to let these
configuration changes be triggered by the P2PD.
The details are described in Sec. II-B. The P2PD
is a daemon running a P2P protocol, which has
the functionality of sending control messages to the
RD to configure a VI corresponding to its neighbor
nodes and routing table entries. As many P2PDs
as the number of internally emulated VNs are run

on a physical node. The P2PD is not necessarily
developed from scratch but can easily be extended
from existing P2P software without losing those
original properties. How to extend DHT protocols
will be described in Sec. II-C.

While both RD and P2PD run on nodes
participating in a P2P-VI, Overlay Manager (OM)
works outside the nodes to provide functionalities
that are necessary to coordinate a P2P-VI. When
deploying a new P2P-VI, an administrator defines
it via API provided by OM or a Web-GUI to that
API. The OM maintains the defined P2P-VI with a
set of associated configuration parameters such as an
IP tunneling protocol and port number on which RD
listens for P2PD. When a new VN requests to join
the P2P-VI, the configuration parameters are sent to
the RD for the VN. While the OM in the existing
X-Bone manages all parameters on a VI including
virtual interfaces and routing entries on VNs in a
centralized manner, that in the P2P-XBone does
not have to maintain any node-specific configuration
parameters since the configuration of IP tunnels
and a routing table is performed completely in a
P2P fashion after a VN joins a P2P-VI. Also, the
OM contacts to each RD only when an associated
VN joins a P2P-VI. Therefore, scalability is not
degraded by the existence of the OM. The OM
also has the functionality of address server, which
manages IP address blocks available for VIs to
configure IP tunnels. It is necessary to uniquely
coordinate virtual IP addresses in a VI. The address
server dynamically assigns IP addresses to a new
tunnel and reclaims them for a released tunnel. It
can be located separately from the OM although
it coexists in the figure. The address server can
be a bottleneck of P2P-XBone especially in cases
where VNs frequently join and leave because virtual
IP addresses are requested/released corresponding
to IP tunnel creations/releases invoked by neighbor
node changes in a P2P protocol. However,
the load can easily be distributed using multiple
address servers. We show how many IP address
requests/releases occur in various cases in Sec. III.

B. Extensions to the X-Bone

The P2P-XBone adds three key features: (i)
individual join/departure of VNs, (ii) IP tunnel
creation/release and (iii) routing table configuration,
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Fig. 1. High-level architecture of the P2P-XBone.

based on requests from P2PD.

B.1 Dynamic join to/departure from a VI

While the existing X-Bone supports only whole-
scale deployment of a VI, a VN has to be able to
individually join and leave a P2P-VI in the P2P-
XBone. When a new VN joins a P2P-VI, the OM
sends an invite message to the RD with the VN.
This invite either is requested by the new VN itself
or is initiated by the administrator of the P2P-VI.
If the RD accepts the invite, a configure message
is sent to the RD with a set of initial parameters,
which include the base IP address corresponding
to a VN to which the new node should firstly
connect (a bootstrap node). In the P2P-XBone,
unlike application-level P2P, the new VN does not
get reachability to the bootstrap node at the initial
state. The RD therefore establishes an IP tunnel to
the bootstrap node using the procedure described in
Sec. II-B.2. After that, the RD launches P2PD for
the VN, where the virtual IP address assigned to the
bootstrap node in the earlier IP tunnel creation is
set to the P2PD as the bootstrap node address. The
launch of P2PD is performed using the application
deployment functionality [9] in the X-Bone.

Node departure procedures are much simpler than
node join. In the case of voluntary node departure,
a P2P node only releases all IP tunnels and deletes
routing table entries before departure. Even in the
case of silent departure due to node failure, P2PDs
on neighbor nodes can detect the node death through
the keep-alive mechanism of a P2P protocol and

unnecessary IP tunnels are automatically released.

B.2 IP tunnel configuration

In the P2P-XBone, IP tunnels are dynamically
created and released in a P2P fashion triggered by
requests from P2PD to RD. When P2PD triggers
a new IP tunnel creation, it includes the base IP
address of the other end in the request. While the
base IP address can be replaced with other contact
information for the other end as described in Sec. II-
C.1, we describe the simplest case. If an IP tunnel
is already established to the VN for the P2PD, the
RD just responds with the virtual IP address pair of
the IP tunnel to the P2PD to avoid duplicated tunnel
creation. If not, new IP tunnel creation is initiated.
Before actually configuring an IP tunnel, the RD
obtains a pair of virtual IP addresses (i.e., inner IP
addresses) for the IP tunnel from the address server.
This is a VI-specific behavior because a virtual IP
address has to be set to each virtual interface on
a VN. 1 Then it sends a tunnel creation request to
the RD at the peer node, where the base IP address
given by the P2PD is used. Note that this request is
sent over the base network. The RD that received
the request configures a virtual interface for the IP
tunnel and sends back an ACK message. When
the requesting RD receives the ACK message, it
configures a virtual interface on the local node as
well and then responds with the virtual IP address

1 In the X-Bone, an address block with /30 and /126 prefix
length is obtained for IPv4 and IPv6, respectively, to configure
a subnet for a virtual link.
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pair to the P2PD to indicate that the IP tunnel is
successfully established.

On the other hand, when RD is asked to tear
down a existing IP tunnel, it sends a tunnel release
request to the peer node and releases the IP tunnel by
unconfiguring the corresponding virtual interfaces
at both sides. The virtual IP address pair for the
released IP tunnel is returned to the address server.

B.3 Routing configuration
P2PD also works like a routing daemon for a

P2P-VI. It asks RD to set consistent routing table
entries for a VN when any change in routing entries
occurs in the user-level P2P daemon. By factoring
out forwarding functionality from P2PD, we not
only simplify the daemon but also improve the
performance. In addition, by changing the P2P
protocol running in the P2PD, the routing strategy
of the P2P-VI can be customized with modularity.
In P2P protocols, resource identifiers such as
URLs (or its hash values) that do not explicitly
identify the location of final destination are used
for routing, which brings late-binding property to
P2P systems. The P2P-XBone introduces the
late-binding property to a VI as well. Since
normal OSes do not support such data-based routing
functionality, we support it using kernel extension
at nodes participating in a VI. DataRouter [8] is an
experimental implementation that supports pattern-
match-based routing and forwarding at a kernel
level. It extends the Loose Source Route option
in IPv4 to encode a destination identifier such as
a URL and a hash value. Using IP options in the
Internet could be impractical because some ISPs
have a filtering policy to discard any IP option
packets. However, DataRouter packets over a P2P-
VI look like normal IP packets in a base network
since all P2P nodes are connected via IP tunnels.
Therefore, such filtering issues can be avoided.

In our implemented system, we used DataRouter
and Chord for an extended kernel module and a
P2P protocol, respectively. In this case, RD adds or
deletes a routing entry using the droute command
to set a routing entry to the DataRouter kernel as
follows,
droute (add|del) range minid maxid

nexthop
where minid and maxid corresponds to hash values

of both ends in a range of the Chord identifier
circle. The DataRouter can support the data routing
service to other DHT protocols such as Pastry [4]
and CAN [5] in a similar fashion.

C. Extensions to P2P protocols

P2PD can be extended from an existing P2P
protocol in a systematic fashion. As the first target
of P2P protocols, we describe how to extend DHT
protocols.

C.1 Extension principle

The basic extension principle is that P2PD sends
control messages to RD in response to four events
in the running DHT protocol: addition/deletion of
a neighbor node and addition/deletion of a routing
entry. The control messages request creation/release
of an IP tunnel and addition/deletion of a routing
table entry for the VN, respectively. The most
challenging and interesting part in achieving P2PD
is how to establish IP tunnels corresponding to
neighbor nodes in the DHT protocol. This is
not so easy because, in the P2P-XBone, the
nodes that configure the IP tunnel need to know
each other’s base IP addresses, while the only
information available in a regular DHT protocol is
the remote end’s P2P ID and virtual IP address.
Besides, the P2PD cannot directly communicate
with the neighbor node over the VI until an IP
tunnel is established to that neighbor, and there
is no centralized mechanism to map the P2P ID
to the base IP address. It would violate the
boundary between a VI and a base network (i.e.,
virtualization boundary) to simply add base IP
addresses to parameters treated in DHT. To achieve
strict virtualization, nothing within a VI should
know any parameters in the underlying network
including base IP addresses. We solve this issue by
introducing a message carried over the P2P-VI, in
which the contact information of a sender node is
included in an opaque manner, to ask the neighbor to
create an IP tunnel. Currently, the base IP address of
the sender is used as the contact information, while
other bits of information such as domain name and
URL could be used.

Figure 2 shows the sequence of establishing
an IP tunnel in the P2P-XBone. The neighbor
connection request is a message to request to
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Fig. 2. Sequence of establishing an IP tunnel to a neighbor node.

establish an IP tunnel to a potential neighbor node.
The potential neighbor node is either informed
of by existing neighbor nodes via a DHT’s self-
organization mechanism or is discovered by the
message itself. The receiver of this message is
designated with a hash value so that the message
can be delivered over the existing P2P-VI. Before
actually sending the neighbor connection request
message, the contact information of the node itself
is obtained via the API between P2PD and RD
(request contact info) to be included in the message
(Step (1)-(2) in Fig. 2). The information type
has to be agreed upon by the RD. The obtained
information (e.g., base IP address) is treated as
an opaque parameter by the P2PDs not to violate
the virtualization boundary. The P2PD that is
either corresponding or responsible to the hash value
terminates the message (Step (3)) and requests to the
RD to establish an IP tunnel to the source node (add
tunnel; Step (4)). The RD establishes an IP tunnel as
described in Sec. II-B.2 (Step (5)-(8)) and responds
with the virtual IP address pair of the established IP
tunnel (Step (9)). Finally, the P2PD that terminated
the neighbor connection request message sends a
reply message back to the source node over the
newly created IP tunnel (Step (10)). This procedure
does not necessarily have to be extended by adding
a new message to existing DHT messages. In some
DHT protocols that have a message to discover
appropriate neighbor nodes, it can be substituted
by extending the existing message. We show an
example of extending the find successor message in
Chord protocol in Sec. II-C.2.

Since it takes more time for the extended DHT
protocols to set a neighbor node than for existing
ones due to the extra IP tunnel creation procedure,

convergence performance of a P2P system would
be degraded especially when P2P nodes frequently
join and leave. We will show simulation results on
convergence time in Sec. III-A.

C.2 Extensions to Chord protocol

We implemented P2PD by extending Chord
protocol. The Chord implementation in i3 [6] was
used as a base code. We extended mainly the find
successor message. The pseudocode of the extended
functions are shown in Fig. 3.

//n: ID of which to find the successor
//n′: ID of the node which is responsible for n

//xb: base IP address of the source node
//xv1, xv2: local and remote virtual IP addresses of
established IP tunnel

find successor(n)
xb = request contact info();
send find successor(xb, n);

receive find successor(xb, n)
if (chord is local(n)) // check if responsible for n

(xv1, xv2) = add tunnel(xb);
send find successor reply(n′, xv1, xv2);

else
send find successor(xb, n);

Fig. 3. Pseudocode of extended Chord functions.

The find successor() function is run periodically
to fix the finger table (i.e., neighbor node list in
Chord). It first calls the request contact info()
function to obtain the base IP address of the physical
node on which the P2PD is running and sends the
find successor message to the closest predecessor
node to n in the existing neighbors with the obtained
base IP address. The receive find successor is a
function that is called when a node receives the find
successor message. If the node is the immediate
successor to n, it terminates the message and calls
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the add tunnel() to request IP tunnel creation. These
extensions could be implemented with a small
amount of extra code: about 1000 lines of C
programs including the APIs with RD.

D. Crossing virtualization boundary

There are some mechanisms, such as jails [10],
vserver [11] and VMware [12], to isolate VN
resources from the outer world. In P2P-VI,
these mechanisms can be used for VNs to get
stronger resource separation. In the architecture
described above, we assumed that P2PD and RD
can communicate directly with each other. However,
these mechanisms would sometimes restrict such
a direct communication across the VN boundary.
We address this problem by introducing an Upcall
Daemon (Upcalld) that relays control messages
from applications in a VN to RD out of the VN
through a logical internal network shared between a
VN and a base node2. The module map is shown
in Fig. 4. The internal network is created by the
netgraph module [13] in FreeBSD, which is the
similar scheme as used to connect virtual images
in the clonable stack [14]. In this approach, P2PD
sends control messages to the Upcalld, and the
messages are transparently forwarded to RD at the
undelying level.

E. QoS consideration

The existing X-Bone supports QoS control for
VIs, which includes limiting bandwidth, adding
delay, etc. for each IP tunnel. In the P2P-XBone,
the same QoS control mechasnisms can be used.
Such QoS-related parameters are configured to the
OM by an administrator when a P2P-VI is defined,

2 It may be an immediately outer VN when VNs are
recursively stacked.

and are sent to RD with other kinds of initial
parameters when a VN joins the P2P-VI. This QoS
configuration is applied to every IP tunnel since
IP tunnel creation is performed in a P2P fashion
and individual configuration for each IP tunnel is
impossible.

In DHT protocols, meanwhile, some approaches
to improve QoS in overlays have been proposed.
While there are various approaches including
data placement algorithms and transport-layer
modifications [15], in terms of enhancing topology
and routing, proximity neighbor selection (PNS)
and proximity route selection (PRS) [16] can be
applied commonly to most DHT protocols only
with the small changes in DHT algorithms and the
addition of a QoS measurement mechanism. In PNS
and PRS, neighbor/route selections are performed
based on the results in measuring QoS parameters
such as latency and bandwidth to multiple candidate
nodes. In application-level overlays, that is available
because all existing nodes are assumed to be IP
reachable with each other. When applying PNS
and PRS to the P2P-XBone, the QoS measurement
to other nodes would be restricted in PNS while
PRS can be applied as it is. This is because,
in the P2P-XBone, an IP tunnel is necessary to
perform the measurement over a VI. However, it
is not efficient to create IP tunnels to all candidate
nodes only for the measurement. In the P2P-
XBone, RD provides an API for network commands
like ping and pathchar although this API has not
been implemented yet. The P2PD asks the QoS
measurement through the API. The RD executes
a corresponding network system call or command
based on the type of the API and returns the
results to the P2PD. Note that the measurement is
performed on the underlying network. In the API,
the base IP address or other contact information
of the other end in the measurement has to be
given similarly to the case of IP tunnel creation.
The information of the other end is delivered in an
opaque manner as described in Sec. II-C.1.

F. Security consideration

The P2P-XBone basically provides the same
security functionalities as the existing X-Bone does.
That is to say, authentication and encryption are
performed using SSL for communication between
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OM and RDs and using IPsec (transport mode)
over IP-in-IP tunnels for virtual links between VNs,
respectively. Each RD and OM have its own
access control list (ACL), which is used for resource
access permissions and restrictions based on user’s
names as well as for authentication. Such resources
include number of overlays, number of tunnels,
queue limits, bandwidth limits, etc. When a VN
joins a P2P-VI, it is authenticated based on the
corresponding ACL and is authorized to join if the
resource availability meets conditions required for
the P2P-VI.

While the same security mechanisms as in the
existing X-Bone are available in the P2P-XBone, the
P2P-based IP tunnel creation makes a difference in
a way to allocate the keys for IPsec channels. In
the existing X-Bone, IPsec keys are allocated for
each IPsec channel (one channel for each direction)
comprising a VI in a centralized manner by the
OM when the VI is deployed. In the P2P-XBone,
however, since IPsec channels are dynamically
established in a P2P fashion, such a simultaneous
key allocation is not available. Therefore, the keys
are calculated by a node initiating an IPsec channel
and are shared at both ends via an SSL channel
between RDs.

III. PERFORMANCE EVALUATION

A. Convergence time of a DHT protocol
Convergence time in Chord protocol was

compared between the original version and the
one extended for P2PD by simulation. In this
simulation, we let 100 nodes join a P2P system at
the beginning of the simulation and then measured
the rate of available paths in the P2P network
against time by continuously generating data
transfers between any two nodes. We also tested
a couple values of stabilization period in Chord
protocol, which is a period of the find successor()
function called. In the P2P-XBone, it takes more
time for the P2PD to receive the ack message (find
successor reply) for the find successor message
because two extra functions (request baseaddr()
and create tunnel()) are involved as shown in
Fig. 3. These overheads were emulated by idling
for average time taken for these functions that
was observed in real experiments. The simulation
results in Fig. 5 show that the P2P-XBone makes
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Fig. 5. Convergence time in Chord.

convergence time longer than the existing Chord
in cases of short stabilization period such as 1
sec. However, as stabilization period is longer,
convergence performance gets closer. This is
because, in the case of a long stabilization period,
such extra procedures as IP tunnel creation can be
completed before the next stabilization routine is
called. In our simulation, 5sec was long enough
to get almost the same convergence time even
in cases where there were more participating
nodes. Of course, since longer stabilization period
makes convergence time longer, an appropriate
stabilization period should be determined based on
system requirements. These results suggest that the
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P2P-XBone is better suited to a P2P system that is
comprised of relatively stable nodes and is used as
an infrastructure rather than to a P2P system that is
comprised of fickle end nodes and requires quick
convergence.

B. Address server load

As described in Sec. II-B.2, in the P2P-XBone,
RD needs to request and release a pair of virtual
IP addresses when establishing and tearing down an
IP tunnel, respectively. We measured how many
address requests/releases occur for various number
of nodes and for various join/departure frequencies
of P2P nodes to figure out how many address
servers are necessary for load-balancing. In this
simulation, the same extended Chord protocol as
in the previous simulation was used for P2PD. In
Fig. 6 (i), the number of nodes was varied with
fixed join/departure frequency (one node join or
departure per second). In this simulation, three
values of stabilization period were tested. The
results show that more address requests/releases
occur as more nodes participate in a P2P-VI. This
reflects the fact that the number of fingers in a node
is proportional to logn, where n is the total number
of participating nodes. In terms of stabilization
period, larger values reduce the number of address
requests/releases because the creation and release of
IP tunnels are triggered by the stabilization routine.
These results suggest that there is a tradeoff between
convergence time of a P2P-VI and the required
number of address servers. Next, the results in
which the join/departure frequency is varied with
the fixed average number of nodes (1000 nodes) are
shown in Fig. 6 (ii). These results show that setting
stabilization period to a short value such as 1sec can
generate huge number of address requests/releases
under churn in which 1-10 percent of nodes are
turned over per second. Under too much churn, it
is observed that the number of messages peaks out
without ever increasing. This is because node joins
and departures are too frequent for stabilization
routine to detect all of them.

In our preliminary implementation, the address
server could transact 67 msgs/sec for UDP, 56
msgs/sec for TCP and 4.2 msgs/sec for SSL. The
number of address servers required for a P2P-VI
should be determined considering a tradeoff with
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Fig. 7. Forwarding performance.

convergence performance while only one server
works well as long as node joins and departures are
not so frequent.

C. Forwarding performance

We implemented DataRouter on FreeBSD 5.3
and measured its forwarding performance on a
dual-processor 2.4GHz Xeon PC with 1Mbyte
main memory. An IXIA hardware-based packet
generator was connected to 64-bit/66MHz PCI
gigabit Ethernet card on the PC, and the number
of packets that are forwarded is counted on the
generator for various packet sizes. Throughout
the experiments, only IPv4 protocol was used.
The results are shown in Fig. 7. DataRouter
forwarding based on range matching of hash values
was compared with application-layer forwarding
(UDP and TCP) and normal IP forwarding for
reference. In this measurement, conditions for
both IP and DataRouter forwarding are different
from those in our previous measurement [8] in that
IP tunnels are used to connect nodes. Therefore,
decapsulation and encapsulation of an outer IP
header are performed before and after forwarding
for an inner packet, respectively. In fact, using an IP
tunnel makes almost half as fast forwarding speed
as non-IP-tunneling because IP forwarding routine
is performed twice for each packet. DataRouter still
provides much better performance than application-
layer forwarding despite its halved performance.
Although our preliminary implementation provides
70 percent as much as normal IP forwarding does,
the gap may possibly be reduced by optimizing the
implementation. In IP and DataRouter forwarding
performance, they keep almost constant forwarding
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rate as long as packet size is not large enough
to saturate link capacity, while IP packets with
more than 600 bytes and DataRouter packets with
more than 1000 bytes make throughput peak out at
850-950 Mbps. Unlikely kernel-level forwarding,
UDP forwarding performance gets slightly worse
as packet size is larger. This is because the time
required for recv/send on a socket depends on data
size (i.e., packet size). TCP provides much less
performance than the other kinds of protocols since
a TCP connection was assumed to be closed for each
data transfer, where the performance is limited to the
rate of establishing new connections.

Through these results, it was shown that kernel-
level data forwarding using IP option such as
DataRouter is effective even when IP tunnels are
used between nodes. We plan not only to optimize
the implementation of DataRouter but also to extend
it to support IPv6, which allows more unconstrained
use of IP option field.

IV. DISCUSSION ON ROUTING-DRIVEN

PROVISIONING

The P2PD integrates provisioning and routing
to provide a unique topology management strategy
to a VI. In traditional networks, provisioning and
routing are considered as being independent. In
other words, provisioning is performed first, and
then routing is performed over the pre-provisioned
topology. In that sense, existing routing protocols
can be regarded as a mechanism to pick one link
from multiple candidates to reach a next hop.
However, P2PD does not assume a fixed set of
links but dynamically creates/releases links based on

the changes of appropriate neighbor nodes, which
are selected out of the whole set of nodes in the
network. This integrated work between provisioning
and routing brings some promising properties such
as load-balancing, resilience, robustness, scalability,
etc. to a network system as application-level P2P
does. What is taken care here is that provisioning
and routing are performed at different layers, i.e.,
provisioning is performed under a layer where
routing is performed. Therefore, an interworking
mechanism between modules at different layers is
needed to achieve the routing-driven provisioning.
We showed how they can interwork through the
dialogue between P2PD and RD in a VI’s operation
in Sec. II. If P2PD could be generalized as an
alternative routing protocol, it would provide the
unique topology management and routing strategy
to other kinds of networks than virtual IP networks,
such as a layer-2 network over optical pathes.

When the routing-driven provisioning is
generalized to any networks, how provisioning
is performed at the underlying layer has to be taken
into account. Provisioning can be classified into
two ways based on whether the path that a virtual
link goes through at the underlying layer is fixed:
(i) tunnel-based provisioning and (ii) path-based
provisioning. The former includes PPP and IP
tunnels, in which configuration is performed only at
both ends of a link. The latter one includes MPLS
and optical links, in which link configuration has
to be performed at intermediate switches as well as
at both ends. While the P2P-XBone architecture
described above can be applied to the former case in
a relatively straightforward way, it is necessary for
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RD to interwork with such a signaling mechanism
as RSVP-TE [17] to support provisioning of
switched paths. In either case, P2PD should not be
aware of the difference in provisioning style at the
underlying layer but should be able to configure a
network with common APIs.

V. RELATED WORK

IP-tunnel-based overlay has been widely used to
deploy virtual experimental networks as well as
conventional VPNs over the existing IP network.
Although the M-Bone, A-Bone [18] and 6-
Bone [19] are well-known as globally-deployed
testbeds, they involve static and manual deployment.
Virtual Internet (VI) is generalization of such IP-
level virtual networks. Recursion (i.e., stackable
virtual networks) and revisitation (multiple virtual
nodes in a single base node) are VI’s key
features. The X-Bone [2] is a system to enable
automated deployment of VIs. We also have
extended it to be a global infrastructure as GX-
Bone [20], in which an LDAP-based registry for
globally-distributed VI resources is introduced. In
VPN’s point of view, UMU-PBNM [21] addresses
automated VPN deployment, though it focuses on
standardized XML-based configuration and PKI-
based authentication rather than resource discovery
and node-specific script generation that the X-
Bone focuses on. However, such virtual network
deployment systems as X-Bone and UMU-PBNM
creates/deletes VIs and VPNs simultaneously and
support neither individual node join/departure nor
self-organization.

On the other hand, DHT has been used for
various purposes such as distributed database and
augmented routing. There have been a couple of
approaches which apply the promising properties
of DHT to lower layer networks such as Layer 2
and 3. P6P [22] provides a scheme to resolve
an IPv6 site to which a IPv6 packet is forwarded
at an edge router in a core existing (e.g.,IPv4)
network using a DHT lookup mechanism. Although
IPv6 packets are encapsulated with IP or UDP in
the core network, tunnels are established directly
between concerned edge routers with no P2P routing
involved. Therefore, a DHT protocol is used only
for resolving base addresses for tunneling but not for
organizing a virtual network. In PeerNet [23], the

authors propose an augmented routing scheme in a
wireless ad-hoc network, in which a location-aware
ID is assigned to each node to enable DHT-like
routing. PeerNet assumes only physical links but not
tunnels for connecting nodes and does not involve
dynamic provisioning as the P2P-XBone does.

VI. CONCLUSION AND FUTURE WORK

We described the P2P-XBone to enable
deployment of a P2P system, which was
conventionally deployed at the application layer, at
the virtual IP layer. In P2P-XBone, configuration of
IP tunnels for a virtual node is driven by neighbor
state changes in a P2P protocol (i.e., routing-
driven provisioning). Also, the kernel module
for data-based forwarding such as DataRouter is
introduced, and routing entries consistent with
those in a P2P protocol are configured to the
kernel. The P2P-XBone not only provides P2P’s
promising characteristics such as self-organization,
fault-tolerance and content-based routing to a VI but
also provides higher forwarding performance and
simpler implementation to a P2P system due to the
availability of existing network services. Although
the P2P-XBone has the overhead to control a VI, our
evaluation results for Chord protocol showed that it
provides almost the same convergence property in a
scalable manner as long as stabilization period is not
set too short. Therefore, the P2P-VI is promising as
an alternative of P2P infrastructure with relatively
stable nodes.

The proposed system was implemented on
FreeBSD 5.3. We plan to distribute the source code
for experimental use in other P2P researchers. We
also plan to enhance the system, which includes
more generalization of APIs between RD and P2PD
to support any kinds of P2P protocols and the
support of recursive P2P-VIs (i.e., stackable P2P-
VI).
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