
 ISI-TR-2005-611

The X-Bone API

Yi-Hua Edward Yang, Joe Touch, Gregory G. Finn
USC/ISI

4676 Admiralty Way
Marina del Rey, CA 90292-6695 U.S.A.

{yeyang, touch, finn } @isi.edu
Dec. 9, 2005

ABSTRACT1

This paper describes the Application Programming
Interface (X-Bone API) version 2.0 of the current X-
Bone Version 3.2 release. It covers both syntax and
semantics of the API. X-Bone is a Virtual Internet
system that dynamically deploys and manages Internet
overlays. The X-Bone API, written in XML
(Extensible Markup Language), is the method by
which the X-Bone system receives commands and
returns responses from/to users to determine these
overlays and their properties.

Keywords
Virtual network, Virtual Internet, overlay network,
application programming interface (API), extensible
markup language (XML).

1. Introduction
An X-Bone Virtual Internet system [5][6] is a
collection of Resource Daemons (RD) managed by one
or more Overlay Managers (OM). The X-Bone API
enables users to communicate with an OM, over an
assigned TCP port 265, to configure the RDs (over
another assigned TCP port 2165) in the X-Bone VI
system on the user’s behalf. A “user” here can be a
human at a web-based GUI or a text console, or an
external program that acts as one, exchanging API
messages with the OM. The API messages carry user
commands and OM replies for overlay creation,
destruction, monitoring, and resource discovery.

An overlay network in the X-Bone VI system consists
of a connected graph of virtual nodes interconnected
by a number of point-to-point virtual links. A virtual
node here is an abstraction; it may denote a simple

1 This material is based upon work supported by the National
Science Foundation under Grant No. <STI-XTEND: ANI-0230789>.
Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and do not
necessarily reflect the views of the National Science Foundation.

node of a single RD, or a meta node of a lower-layer,
recursed overlay network. A virtual link connects pairs
of virtual nodes with unique endpoint addresses within
the overlay network. Each virtual link incorporates two
layers of tunneling to emulate both link and network
layers for complete virtualization.

The role of the X-Bone API in the management of an
X-Bone VI system can be illustrated in Figure 1. The
user initiates the command-execute-reply process by
issuing commands as API messages to the OM over an
SSL-protected stream on TCP port 265 in a particular,
desired X-Bone VI system [3]. The OM translates the
API message into configuration instructions and
dispatches them to reachable RDs via a separate
protocol: xb-ctl. The RDs evaluate these instructions,
deciding whether to accept and perform them, decline
them, or ignore them, and send appropriate responses
back to the OM. The OM collects responses and packs
them into a reply message also defined by the X-Bone
API. The message is then sent back to the user.

Figure 1 Structure of an X-Bone Virtual Internet.

This report focuses on the design and structure of the
X-Bone API. Section 2 lists keywords and conventions
used throughout this document; Section 3 describes the
syntax and Section 4 explains the semantics of all the
elements in the API except the X-Bone Overlay

link

User/ GUI

X-Bone API

OM

RD RD

xb-ctl

router host

 1

 ISI-TR-2005-611

Language (XOL), whose syntax and semantics are
explained separately in Section 5. Section 6 descibes
network recursion support, with security issues in
Section 7 and future work in Section 8. This document
supersedes and obsoletes ISI-TR-2001-549 [2].

2. Reserved Tokens and Conventions
This section describes the fundamental properties of
the X-Bone API XML-based syntax. Before
proceeding to the complete language description in
Section 3, this section lists the reserved tokens and
conventions of other user tokens in the language.

2.1 Reserved Tokens
The element and attribute names are the reserved
tokens used by the API. Use of these tokens, except as
indicated by the language, must be avoided.

argstring node_def

create_overlay* overlay

credential overlay_status

destroyall_overlays* property

destroy_overlay* renames

discover_daemons* synonym

endpoint tag

define_prop tunnel

ident value

iface version

link vnode

list_overlays* xol_program

node

Table 1 Reserved Tokens

In Table 1, tokens with a star (*) have a corresponding
token with “_reply” appended, e.g.,
“create_overlay_reply”. These entries are
omitted for clarity and brevity.

Further, some of reserved tokens are part of the
conventional XML DTDs, and are not specific to the
X-Bone, but are listed there as well; shown in bold.

2.2 String Conventions
User-supplied strings in the API follow the CDATA
syntax restriction of XML. Strings are delimited by
double quotes, “…”. Some special characters (&, <, >,
', ") inside a CDATA string must be quoted in their
escaped form, as shown in Table 2.

Where the semantic nature of a string is more
restrictive, as in E-mail or DNS names, those particular
restrictions are applied as well. All strings and tokens
are verified for such restrictions.

Character Escaped Quotation

& &

< <

> >

' '

" "

Table 2 Escape characters

2.3 Presentation Conventions
2.3.1 Property Elements
For convenience and simplicity, in this document the
property elements are referred to by their tag
attributes. For example, the property element with
tag attribute “user_name” is referred to as the
“user_name property.”

2.3.2 Message Naming
Every message in the API is either a command
message (sent from user to OM) or a reply message
(sent from OM to user). The core of a message is one
of the 13 command-reply elements (Sec. 3.3). Every
API message must contain exactly one command-reply
element. The purpose of a message is specified by the
command-reply element it contains.

For this reason and for simplicity, in this document an
API message is named by the type of command-reply
element it possesses. For example, an API message
containing the list_overlays_reply element is
called a “list_overlays_reply message.” Also, an API
message containing a command-carrying element is
called a “command message,” while a message
containing a reply-carrying element is called a “reply
message.”

2.3.3 Element Naming
Many elements have an ident attribute that uniquely
identifies them without their containing parents.
Specifically, the following XOL elements have this
kind of ident attribute:

• Node_def

• Iface

• Vnode

• Link

 2

 ISI-TR-2005-611

For simplicity, these elements are named by their
respective ident attribute values. For example, the
vnode element with “router_0” as its ident attribute
value is called the “router_0” vnode element.

3. X-Bone API Syntax
The X-Bone API syntax consists of grammar rules
governing message exchanges across a well-known,
privileged TCP port (265) used by X-Bone OMs,
where the stream is protected by SSL [3]. All messages
in the API adapt a unified XML structure, starting with
the sequence of XML Declaration, a Document Type
Declaration (DTD), and one xbone element, in that
order. The current X-Bone (release 3.2) implements X-
Bone API version 2.0 (api-2.0.dtd) [1].

The XML elements in X-Bone API can be divided
conceptually into four element categories: common-
purpose elements, command-reply elements, overlay-
description elements, and XOL elements. This section
steps through the syntax of the first 3 element
categories. Syntax of the XOL elements is described in
Section 5.1.

3.1 Document Type Definition
Below is the DTD of X-Bone API version 2.0 [1].
<?xml version="2.0" ?>

<!ELEMENT xbone (credential?, command)>
<!ATTLIST xbone
 version CDATA #REQUIRED
 release CDATA #REQUIRED>

<!ELEMENT credential (property+)>

<!ELEMENT command
 (create_overlay_reply |
 create_overlay |
 list_overlays_reply |
 list_overlays |
 overlay_status_reply |
 overlay_status |
 discover_daemons_reply |
 discover_daemons |
 destroy_overlay_reply |
 destroy_overlay |
 destroyall_overlays_reply |
 destroyall_overlays |
 error_reply)>

<!ELEMENT create_overlay
 (property+, xol_program)>
<!ELEMENT create_overlay_reply
 (property+, node*)>

<!ELEMENT list_overlays EMPTY>
<!ELEMENT list_overlays_reply
 (property?, argstring*)>

<!ELEMENT overlay_status (property+)>
<!ELEMENT overlay_status_reply
 (property+, node*)>

<!ELEMENT discover_daemons_reply
 (property+, node*)>
<!ELEMENT discover_daemons (property+)>

<!ELEMENT destroy_overlay (property+)>
<!ELEMENT destroy_overlay_reply
 (property+)>

<!ELEMENT destroyall_overlays EMPTY>
<!ELEMENT destroyall_overlays_reply
 (property+)>

<!ELEMENT error_reply (property+)>

<!ELEMENT argstring EMPTY>
<!ATTLIST argstring
 value CDATA #REQUIRED>

<!ELEMENT node (property+, tunnel*)>

<!ELEMENT tunnel (property+)>

<!ELEMENT xol_program
 (define_prop*,node_def+,vnode)>
<!ATTLIST xol_program
 version CDATA #REQUIRED>

<!ELEMENT define_prop (property)>
<!ATTLIST define_prop
 synonym CDATA #REQUIRED>

<!ELEMENT node_def
 (iface+, vnode*, link*,
 property*, application*)>
<!ATTLIST node_def
 ident CDATA #REQUIRED>

<!ELEMENT iface (renames|property*)>
<!ATTLIST iface
 ident CDATA #REQUIRED>

<!ELEMENT renames (endpoint, property*)>

<!ELEMENT vnode (property*)>
<!ATTLIST vnode
 ident CDATA #REQUIRED
 type CDATA #REQUIRED>

<!ELEMENT link
 (endpoint, endpoint,
 property*)>
<!ATTLIST link
 ident CDATA #REQUIRED>

<!ELEMENT property EMPTY>
<!ATTLIST property
 tag CDATA #REQUIRED
 value CDATA #IMPLIED>

<!ELEMENT endpoint EMPTY>
<!ATTLIST endpoint
 node CDATA #REQUIRED
 iface CDATA #REQUIRED>

<!ELEMENT application EMPTY>
<!ATTLIST application
 program CDATA #REQUIRED
 script CDATA #REQUIRED
 checksum CDATA #IMPLIED
 suid CDATA #IMPLIED
 nodes CDATA #IMPLIED
 ifaces CDATA #IMPLIED>

 3

 ISI-TR-2005-611

3.2 Common-Purpose Elements
The common-purpose elements (Table 3) are used to
form the basic structure of any message in the API.

Element name Attributes Sub-elements

xbone
version,
release

credential?,
command

credential (none) property+

command (none) (One of the elements
in Table 4.)

property tag, value EMPTY

Table 3 Common-purpose elements

The root of the API is the xbone element, which is
described by the version and release attributes.
The xbone element contains an optional credential
element and a single command element. The
credential element contains at least one property.
The command element contains one of the 13
command-reply elements (see the sub-section below).

The property element is used pervasively in almost
all other elements in the API to associate a tag with a
value, with both tag and value as its attributes. The
tag and value attribute pair can be either a command
parameter or a return value; it usually describes a
semantic aspect of the property’s parent element.

3.3 Command-Reply Elements
There are 13 different command-reply elements, each
of which may be the sole child of the enclosing
command element (see the sub-section above). There
are six command-carrying elements and six
corresponding reply-carrying elements plus one
error_reply element, shown in Table 4.

Except for the destroyall_overlays and
list_overlays elements, which need no parameter
to work, all other 11 command-reply elements contain
at least one property. In command-carrying elements, a
property represents a parameter sent along with the
user command; in reply-carrying elements, a property
represents a return value replied from the OM.

The create_overlay element contains as its last
child the xol_program element, which is the root of
XOL (Sec. 5.1) and describes the complete overlay
structure to create.

The create_overlay_reply, discover_daemons_reply,
and overlay_status_reply elements may also contain
one or more node elements describing the virtual
nodes replied from the OM. The list_overlays_reply
element uses an argstring element to return the list

of overlays from OM to user. Both node and
argstring elements are explained in the next sub-
section (Section 3.4).

Element name Sub-elements

create_overlay property+,
xol_program

create_overlay_reply property+, node*

destroy_overlay property+

destroy_overlay_reply property+

destroyall_overlays EMPTY

destroyall_overlays_reply property+

discover_daemons property+

discover_daemons_reply property+, node*

list_overlays EMPTY

list_overlays_reply property?, argstring*

overlay_status property+

overlay_status_reply property+, node*

error_reply property+

Table 4 Command-reply elements

3.4 Overlay-Description Elements
The three overlay-description elements (node,
tunnel, and argstring) are used by a number of
reply messages to describe the overlay and its nodes
and tunnels, and are described in Table 5.

Element name Attributes Sub-elements

argstring Value EMPTY

node (none) property+, tunnel*

tunnel (none) property+

Table 5 Overlay-description elements

The argstring element enlists a value attribute to
return a string of overlay names, each separated by a
comma.

The node elements describe the virtual nodes of a
returned overlay network. A virtual node can have any
number of tunnels, each represented by a tunnel
element. Detail configuration of the virtual nodes and
tunnels are carried by the properties enclosed in the
node and tunnel elements, respectively.

4. X- Bone API Semantics
This section explains the semantics of the first three
element categories of the API: common-purpose

 4

 ISI-TR-2005-611

elements, command-reply elements, and overlay-
description elements. Semantics of the XOL elements
are explained in Section 5.2, after the XOL syntax.

The semantics of the API reside in the name,
attributes, and sub-elements (including properties) of
the elements. Consequently, this section and Section
5.2 explains each element by describing what it is (the
name), what attributes (if any) it has, and the sub-
elements it may contain, in that order. The properties
of an element are listed at the end of each sub-section.

4.1 Common-Purpose Elements
Fundamentally, an X-Bone API message is either a
user command sent to the OM or an OM reply sent
back to the user. The common-purpose elements
describe the type and structure of the message and the
identity of the issuing/receiving user.

4.1.1 Property
The property element is one of the most useful
elements in the API; it is used by almost all other
elements to carry a parameter or a return value. By
enclosing multiple property elements, multiple
parameters or return values can be passed for the
parent of those property elements.
<!ELEMENT property EMPTY>
<!ATTLIST property tag CDATA #REQUIRED
 value CDATA #IMPLIED>

The tag and value attributes, which represent
respectively the name and the content of a parameter
or a return value, usually depend greatly upon the
particular context where the property appears. While
some property tag/value pairs are required, in general,
the X-Bone system has default behaviors for missing
optional property tags/values. Legal property tags and
values are listed at the end of a sub-section for the
semantics of each property-containing element.

4.1.2 Xbone
The xbone element is the root of the API and encloses
all other elements in the message.
<!ELEMENT xbone (credential?, command)>
<!ATTLIST xbone version CDATA #REQUIRED
 release CDATA #REQUIRED>

The version attribute contains the version number of
the API’s DTD being used. The release attribute
contains the current X-Bone system release number to
which this message applies to. Both version and
release values take the form of “number.number”. A
valid example is:
<xbone version=”2.0” release=”3.2”>

In a command message, the xbone element must
contain a credential sub-element, which identifies
the sender of the command, and a command sub-
element, which specifies the command itself. For a
reply message, however, the credential sub-element
is optional and generally not produced, while the
command sub-element contains the reply contents.

4.1.3 Credential
The credential element identifies the command
issuer to the X-Bone system. The credentials,
including user name, email, and authentication type,
should have been extracted from a trustworthy source,
such as the issuer’s PKI certificate (as is performed by
the X-Bone web GUI), and put securely into the
properties of the credential element.
<!ELEMENT credential (property+)>

The following property tag/value pairs are all required:

 The user_name property specifies the name of
the issuer (user invoking the command).

 The user_email property specifies the email
address of the issuer.

 The auth_type property specifies the type of
authentication used to validate the user.
Currently, only ‘x509’ is supported.

4.1.4 Command
The command element is a simple element that wraps
around one of the 13 command-reply elements (Sec.
4.2), including 6 command-carrying elements, 6 reply-
carrying elements, and an error_reply element.
<!ELEMENT command (
 create_overlay |
 create_overlay_reply |
 list_overlays |
 list_overlays_reply |
 overlay_status |
 overlay_status_reply |
 discover_daemons |
 discover_daemons_reply |
 destroy_overlay |
 destroy_overlay_reply |
 destroyall_overlays |
 destroyall_overlays_reply |
 error_reply)>

Beside these sub-elements, the command element has
neither attribute nor property associated to it.

4.2 Command-Reply Elements
The command-reply elements include both command-
carrying elements that carry user commands to OM
and reply-carrying elements that carry OM’s replies to
user. All command-reply elements appear inside the

 5

 ISI-TR-2005-611

command element, which in turn appears inside the
xbone element (root of the API).

From the semantic point of view, the command-reply
elements can be divided into five categories: overlay
creation (Secs. 4.2.1 & 4.2.2), overlay destruction
(Sec. 4.2.3 – 4.2.6), resource discovery (Sec. 4.2.7 &
4.2.8), overlay status query (Sec. 4.2.9 – 4.2.12), and
error reply (Sec. 4.2.13).

4.2.1 Create_overlay
The create_overlay element is used inside a
command message to specify the user’s intent to create
an overlay network.
<!ELEMENT create_overlay
 (property+, xol_program)>

The xol_program element is the root of the X-Bone
Overlay Language (sec. 5); it describes the complete
overlay network structure the OM is asked to create.

The following properties define certain environmental
information to be applied to the xol_program
element:

 The “address_server” property value must be a
host address. This property is optional; the
default is to use the address server configured
into the X-Bone.

 The “address_server_port” property value must
be a port number. This property is optional; the
default is to use the port number configured into
the X-Bone.

 The “creator_email” property value should
contain a properly formatted e-mail address. This
property is required.

 The “creator_name” property value is an
unrestricted CDATA string. This property is
required.

 The “manager” property value must be a host
name. This property is optional. The default is to
use the manager configured into the X-Bone.

 The “manager_port” property value must be a
port number. This property is optional. The
default uses the port configured into the X-Bone.

 The “overlay_name” property has value as a
CDATA string. This string should follow DNS
naming conventions. This property is required.

 The “topology” property value may be one of the
following: “ring”, “linear”, “star” or “custom”.
This value specifies the desired topology in
which to create the overlay. The detail of a
“custom” topology is further specified by the

structure and contents of the xol_program
element. This property pair is required.

 The “custom_hostlist” property is a list of white
space-separated host addresses of RDs on which
to create the overlay network.

 The “ldap”, “attrvals”, and “scope” properties
are used to configure an LDAP query message to
find the RDs to participate in the overlay
creation from an LDAP server.

4.2.2 Create_overlay_reply
The OM replies a create_overlay_reply message to the
user after overseeing RDs on overlay creation.
<!ELEMENT create_overlay_reply
 (property+, node*)>

The node elements, explained in Sec. 4.3.1, represent
and describe the nodes chosen to participate in the
overlay.

 The “overlay_name” property value is the name
of the overlay as passed to the OM by the
original create_overlay command.

 The “dns” property value contains the base DNS
name of the node. This property element is not
present if DNS naming was not requested for the
overlay created.

 The “routing” property indicates whether a static
routing table is used or a dynamic routing
daemon is enabled for the overlay network.

 The “IPsec_encryption” property value shows
the encryption method used by the nodes in the
overlay.

 The “IPsec_authentication” property value show
the authentication method used by the nodes in
the overlay.

4.2.3 Destroy_overlay
A destroy_overlay message indicates the user’s intent
to destroy a previously created overlay.
<!ELEMENT destroy_overlay (property+)>

 The “overlay_name” property specifies the
name of the overlay to destroy. The name
should match one that passed to the OM by a
previous create_overlay command. This
property is required.

4.2.4 Destroy_overlay_reply
The OM replies a destroy_overlay_reply message to
the user if RDs successfully destroy the user-specified

 6

 ISI-TR-2005-611

overlay. Otherwise, an error_reply message (4.2.13) is
replied.
<!ELEMENT destroy_overlay_reply
 (property+)>

 The “overlay_name” property specifies the name
of the overlay as passed to the OM by the
original destroy_overlay command.

4.2.5 Destroyall_overlays
A destroyall_overlays message tells the OM to destroy
all overlays it manages.
<!ELEMENT destroyall_overlays EMPTY>

4.2.6 Destroyall_overlays_reply
The OM replies a destroyall_overlays_reply message
to the user if RDs successfully destroy all the overlays
it manages. Otherwise, an error_reply message is
replied to the user.
<!ELEMENT destroyall_overlays_reply
 (property+)>

 The “message” property carries the message the
OM returns to the user after the destruction of
the overlays.

4.2.7 Discover_daemons
A discover_daemons message asks the OM to return
all available RDs managed by it.
<!ELEMENT discover_daemons (property+)>

 The “creator_email” property should contain a
properly formatted e-mail address. This property
is required.

 The “creator_name” property is an unrestricted
CDATA string. This property is required.

 The “search_radius” property must be a positive
integer. This property is optional. The default is
to use the hop-count configured into the X-Bone.

 The “timeout” property must be a positive
integer. This is a required property.

 The “custom_hostlist” property value is a list of
white space-separated IP addresses specifying
the hosts from which to discover RDs.

 The “ldap”, “attrvals”, and “scope” properties
configure an LDAP query message to discovery
daemons from an LDAP server.

4.2.8 Discover_daemons_reply
The OM replies a discover_daemons_reply message if
some resource daemons are successfully found by a

previous discover_daemons command. Otherwise, an
error_reply message is replied.
<!ELEMENT discover_daemons_reply
 (property+, node*)>

The node sub-elements describe the states of the
resource daemon returned from a previous
discover_daemons command.

 The “creator_email” property should contain a
properly formatted e-mail address.

 The “creator_name” property is an unrestricted
CDATA string.

4.2.9 List_overlays
A list_overlays message asks the OM to list all the
overlays managed by it.
<!ELEMENT list_overlays EMPTY>

4.2.10 List_overlays_reply
The OM replies a list_overlays_reply message if a list
of overlay names was generated from a previous
list_overlays command. Otherwise, an error_reply
message is replied.
<!ELEMENT list_overlays_reply
 (property?, argstring*)>

The argstring sub-element contains the list of
overlay names returned to the user. The property
sub-element, although listed in the DTD, is not used by
the current X-Bone release (Version 3.2).

4.2.11 Overlay_status
An overlay_status message queries the OM for the
status of an overlay.
<!ELEMENT overlay_status (property+)>

 The “overlay_name” property is the name of the
overlay as passed to the RD by a previous
create_overlay command. This property
required.

 The “search_radius” key value must be a
positive integer. This property is optional. The
default is to use the hop-count configured into
the X-Bone.

 The “timeout” key value must be a positive
integer. This property is optional. The default
behavior is to use the timeout configured into the
X-Bone.

4.2.12 Overlay_status_reply
The OM replies an overlay_status_reply message to
the user if it successfully collects status information

 7

 ISI-TR-2005-611

about the specified overlay. Otherwise, an error_reply
message is replied.
<!ELEMENT overlay_status_reply
 (property+, node*)>

The child node elements describe the states of the
virtual nodes in the overlay specified in a previous
overlay_status command message.

 The “creator_email” property contains a properly
formatted e-mail address of the user who created
the named overlay.

 The “creator_name” property contains the name
of the user who created the named overlay.

 The “IPsec_encryption” key value contains the
encryption method used by the named overlay.

 The “IPsec_authentication” key value contains
the authentication method used by the named
overlay.

 The “dns” property value contains the base DNS
name of the node. This property element is not
present if DNS naming was not requested for the
overlay created.

 The “routing” property indicates whether a static
routing table is used or a dynamic routing
daemon is enabled for the overlay network.

 The “overlay_name” property is the name of the
overlay network whose status is being replied.
This value matches the “overlay_name” property
originally used to create the overlay network.

4.2.13 Error_reply
This element is used by the X-Bone system to indicate
an error that has occurred. An error_reply message is
generated by the OM in reply to any command
message in case of errors.
<!ELEMENT error_reply (property+)>

 The “command” property contains the
command-carrying element name which caused
the error.

 The “error” property contains the error text.

4.3 Overlay-Description Elements
The three overlay-description elements (node,
tunnel, argstring) are used only in reply messages
to describe overlays. They are always sent from the
OM to the user, but never from the user to the OM.
Specifically, the node and tunnel elements are used
by reply messages of overlay creation, daemon
discovery, and (overlay) status query; the argstring

element is used only by the list_overlays_reply
message.

4.3.1 Node
The node element is used in two contexts. When used
inside a create_overlay_reply or overlay_status_reply
message, the node element describes the state of a
virtual node in an overlay network. When used inside a
discover_daemons_reply message, the node element
describes an RD in the X-Bone system.
<!ELEMENT node (property+, tunnel*)>

The following properties are common to all types of
node elements:

 The “class” property has value either “simple” or
“meta”. A node of “simple” class is either a
single host or a single router; a node of “meta”
class is an overlay network built from other
virtual nodes.

 The “hostname” property value specifies the
hostname of the returned virtual node or RD.

 The “os” and “os_version” properties describe
the OS running the virtual node or the RD.

As a child element of create_overlay_reply (sec.
4.2.2) or overlay_status_reply (sec. 4.2.12), the
node element can have the following properties:

 The “ip” property value is the string
representation of the IPv4 or IPv6 numeric
address of the node. An IPv4 address is
represented as four-field dotted decimal:
“128.9.160.30”. An IPv6 address is represented
as colon-separated hexadecimal fields:
“2001:470:1f00:1019:207:e9ff:fe09:44ac”.

 The “status” property value can be either “up” or
“down”, and describes the status of the node for
an overlay. A node with a “down” status either
could not be reached or did not respond in time.

 The “type” property has value either “host” or
“router”, depending whether the virtual node is a
host or a router.

 The “vname” property value specifies the ident
attribute of the vnode element (sec. 5.2.4) that
created the virtual node when constructing the
overlay network.

As a child element of discover_daemons_reply,
the node element can have the following properties:

 The “app_addr” and “app_addr6” property
values are IPv4 and IPv6 addresses, respectively,
visible to applications outside the overlay.

 8

 ISI-TR-2005-611

 The “ctl_addr” and “ctl_addr6” property values
are IPv4 and IPv6 addresses, respectively, that
are used by OM (meta node) for sending and
receiving control messages.

 The “dns” property value contains the base DNS
name of the node. This property element is not
present if DNS naming was not requested for the
overlay in which the node resides.

 The “ipproto” property specifies the IP protocol
the discovered daemon operates on.

 The “IPsec” property value can be either “yes”
or “no”, depending on whether IPsec is used to
communicate with the node.

 The “kernel” property describes the kernel
version of the operating system.

 The “node_type” property has value either
“meta”, “router”, or “host”. A “meta” node
represents an OM. A “host” node is an RD with
one active interface, while a “router” node is an
RD with more than one active interface.

 The “overlays” property value indicates the
number of overlays in which this node is
currently participating.

 The “routing” property has value either “yes
(dynamic)” or “no (static)”.

 The “tunnel” property value counts the number
of active tunnels (interfaces) of the node.

 The “xol_ver” property value is the XOL version
the node currently uses. The format is
“integer.alphanumeric”. This property is only
meaningful for meta nodes.

4.3.2 Tunnel
A tunnel element describes the status of a tunnel of
the containing node element. It can only appear inside
a node element.
<!ELEMENT tunnel (property+)>

 The “local_ip_address” property value is a
numeric form IPv4 or IPv6 address of the local
end of this tunnel of this node.

 The “remote_ip_address” property value is a
numeric form IPv4 or IPv6 address of the remote
end of this tunnel of this node.

 The “status” property describes the status of the
tunnel for the containing node. Its value can be
either “up” or “down”.

4.3.3 Argstring
The argstring element only appears as a sub-
element of the list_overlays_reply element. It is
an empty element described by the value attribute.
<!ELEMENT argstring EMPTY>
<!ATTLIST argstring
 value CDATA #REQUIRED>

The value attribute is a string of overlay names
separated by a comma and optional white spaces. This
string represents the list of overlays replied for a
previous list_overlays command. Valid examples of
the attribute are “test_ring” and “neta, netb, netc”.

5. X- Bone Overlay Language
The X-Bone Overlay Language (XOL) is a self-
contained overlay-description language inside the X-
Bone API. It can describe an entire multi-level,
recursive overlay structure. The XOL elements are
used exclusively in a create_overlay element to
describe the structure and properties of the overlay
network.

5.1 XOL Elements Syntax
The XOL elements (Table 6) make up the X-Bone
Overlay Language which defines an overlay network.

Element name Attributes Sub-elements

xol_program version define_prop*,
node_def+, vnode

define_prop synonym property

node_def ident
iface+, vnode*, link*,
property*,
application*

iface ident renames | property*

vnode ident, type property*

link ident endpoint, endpoint,
property*

endpoint iface, node EMPTY

renames (none) endpoint, property*

application

program,
script,
checksum,
suid, nodes,
ifaces

EMPTY

Table 6 XOL elements

The XOL is a self-containing language: an XOL
element only contains other XOL elements (or the
property element, which is used throughout the API);

 9

 ISI-TR-2005-611

also, other than root xol_program, XOL elements are
never used outside XOL.

5.2 XOL Elements Semantics
5.2.1 Xol_program
The xol_program element is the root of XOL. It
contains elements for property synonyms and node
definitions, plus a closing vnode element (sec. 5.2.6)
representing the entire overlay.
<!ELEMENT xol_program
 (define_prop*, node_def+,
 vnode)>

5.2.2 Define_prop
A define_prop element introduces a synonym for a
single property element. This allows the XOL
programmer to define a commonly used property
key/value pair, assign a synonym to it, and then use
that synonym word in subsequent property elements to
imply the key/value pair.
<!ELEMENT define_prop (property)>

<!ATTLIST define_prop
 synonym CDATA #REQUIRED>

Below is an example of the define_prop element:
 <define_prop synonym="1Gps">

 <property tag="speed"
 value="1000000000"/>

 </define_prop>

The synonym can then be used in a subsequent
property element like this:
 <property tag="1Gps"/>

5.2.3 Node_def
A node_def element defines the type for a virtual
node. It does not create any instance of virtual node
per se, but provides a template for virtual node
instantiation by a later vnode element.
<!ELEMENT node_def
 (iface+, vnode*, link*,
 property*, application*) >
<!ATTLIST node_def ident CDATA #REQUIRED>

The ident attribute of a node_def element uniquely
identifies it within the enclosing xol_program. This
attribute value is used by the later vnode element (sec.
5.2.4) which instantiates a virtual node of type defined
by this node_def.

When the node_def element defines a type for a
simple node, it cannot contain any vnode or link sub-
elements. A node_def element defines a type for a

meta node by including multiple vnode and link as
child elements.

The node_def element for a virtual host often has
only one iface sub-element; the node_def for a virtual
router must have multiple iface sub-elements.

 The “address_type” property value may be one
of “IPv4” or “IPv6”. All virtual nodes in an
overlay network should use the same address
type. This property is required.

 The “dns” property value may be either “yes” or
“no”. When set to “yes”, this property enables
the “name_server” and “name_server_port”
properties. All virtual nodes in an overlay
network should have the same dns value. This
property is required.

 The “dynamic_routing” property value must be
either “yes” or “no”. This property is required.

 The “IPsec_encryption” property value must be
an encryption method supported by the X-Bone.
Currently, only “des”, “3des”, and “none” are
supported. This property is optional. The default
is “none”.

 The “IPsec_authentication” property value must
be an authentication method supported by the X-
Bone. Currently, only “sha1”, “md5”, and
“none” are supported. This property is optional.
The default is “none”.

 The “name_server” property value must be a
host name. This property is optional, and may
appear only if the “dns” property has value
“yes”. The default is to use the name server
configured into the X-Bone.

 The “name_server_port” property value must be
a port number. This property is optional, and
may appear only if the “dns” property has value
“yes”. The default is to use the name server port
number configured into the X-Bone.

 The “os” property specifies the desired operating
system running the virtual node. It affects only
simple nodes, and is ignored by meta nodes.
Currently, only “FreeBSD” and “Linux” are
recognized. This property is optional. The
default is “FreeBSD”.

5.2.4 Iface
The iface element defines an interface for the
enclosing node_def element. An interface is an
exported contact point of a virtual node. The iface
element describes an interface in the same way as the
node_def element describes a virtual node.

 10

 ISI-TR-2005-611

<!ELEMENT iface (property* | renames)>
<!ATTLIST iface ident CDATA #REQUIRED>

The ident attribute of an iface element gives the
interface a name by which it is uniquely identified
within the enclosing node_def element. Optional
information associated with an iface may reside in
its property elements, although currently (X-Bone
release 3.2) no property is defined for the iface
element.

When an iface contains a single renames element
(sec. 5.2.9), it acts as an exported alias to the interface
described by the renames element. In this case, the
iface element must be enclosed inside a node_def
element that defines the type for a meta node.

5.2.5 Vnode
A vnode element declares an instance of a virtual
node within an overlay network.
<!ELEMENT vnode (property*)>
<!ATTLIST vnode ident CDATA #REQUIRED
 type CDATA #REQUIRED>

The ident attribute of a vnode element gives it a
name by which it can be uniquely identified within the
enclosing node_def element.

The type attribute of a vnode must match the ident
attribute of a previously defined node_def, which is
used as a template for this virtual node instantiation.

Any property of the node_def element can be used
inside the vnode element. The properties of a vnode
element add to and override any property implied by
the template node_def element.

5.2.6 Closing vnode element
The last vnode of an xol_program element
instantiate a virtual node that represents the entire
overlay network.

The ident attribute of the closing vnode is used for
naming the overlay network. If DNS is enabled, the
ident attribute also becomes part of the DNS name
associated with the overlay network.

The type attribute specifies the node_def element
used as a template for the entire overlay network. This
node_def element must define a meta node and
contain more than one vnode and link sub-elements.

5.2.7 Link
A link element represents a tunnel that connects two
virtual nodes.
<!ELEMENT link (endpoint, endpoint,
 property*)>
<!ATTLIST link ident CDATA #REQUIRED>

The ident attribute of a link element gives it a name
by which it can be uniquely identified within the
enclosing node_def element.

The two endpoint elements (sec. 5.2.8) inside the
link element specify the endpoints of the tunnel
represented by this link element.

5.2.8 Endpoint
An endpoint element defines one end of a tunnel.
Each endpoint element corresponds to an interface
on a virtual node, and can be associated to at most one
tunnel (i.e., be used in at most one link element).
<!ELEMENT endpoint EMPTY>
<!ATTLIST endpoint node CDATA #REQUIRED
 iface CDATA #REQUIRED>

An endpoint is uniquely identified by its node and
iface attributes. Its node attribute must match the
ident of some previously defined vnode; its iface
attribute must refer to the ident of an iface within
the node_def that defines the type of that vnode.

5.2.9 Renames
The renames element indicates an internal network
endpoint to be an ‘exported’ interface.
<!ELEMENT renames (endpoint, property*
)>

When a node_def element defines a type of virtual
network, the iface elements defined within the
node_def correspond to the exported interfaces by
which this network may be connected to other
networks. These interfaces are mapped onto interfaces
on the network’s constituent virtual nodes. Each
renames element establishes one such mapping.

For example,
<iface ident="exp_0">
 <renames>
 <endpoint node="router_0”
 iface="if_3"/>
 </renames>
</iface>

In this example, the iface element identifies that
“exp_0” is an exported interface mapped to the
interface “if_3” of virtual node “router_0”. Note that
both the “exp_0” iface and “router_0” vnode
elements belong to the same node_def element; while
the “if_3” iface element belongs to the node_def
that defines the “router_0” vnode element (the
node_def specified by the type attribute of the
“router_0” vnode contains the “if_3” iface).

Any property specified in the renames element is
applied to the parent iface element in addition to

 11

 ISI-TR-2005-611

those already defined for the underlying endpoint
element.

5.2.10 Application
An application element specifies what to run once
a virtual node defined by the containing node_def is
instantiated. More than one application may be
associated with a given node_def.
<!ELEMENT application EMPTY>
<!ATTLIST application
 program CDATA #REQUIRED
 script CDATA #REQUIRED
 checksum CDATA #IMPLIED
 suid CDATA #IMPLIED
 nodes CDATA #IMPLIED
 ifaces CDATA #IMPLIED>

The program attribute names the program to be run as
the application. The script attribute contains the
script to be passed to the program when it is started.
The checksum attribute is optional and is a
hexadecimal string of the checksum of the script. The
suid attribute specifies the uid the application script
will use.

The nodes attribute specifies the types of nodes, hosts
or routers that the application will execute upon. The
ifaces attribute specifies whether the application
script will use all interfaces on a given router or just
one.

6. Advanced Features
The X-Bone API version 2.0 includes support on
overlay recursion 2 . In an X-Bone Virtual Internet
system, overlays recurse by emulating a virtual
network as a virtual router in the base network. There
are two types of recursions in the X-Bone Virtual
Internet: control recursion and network recursion.

• Control recursion allows a compact symbolic
representation to be expanded during deployment
in order to divide-and-conquer a large, flat
network management.

• Network recursion is true stacking of a VI on top
another VI, where the packets on the upper layer
have additional header encapsulation. The hops
and nodes inside the recursed (lower) network are
not visible in the recursive upper layer. To the
upper layer, the recursed network looks exactly
like a single-node router.

The X-Bone API allows network overlay recursion
through the use of XOL. In XOL, each vnode element

2 The current X-Bone release 3.2 has not fully
implemented these recursion capabilities.

is type-defined by a node_def element, which itself
may contain other vnode (virtual node) and tunnel
(virtual link) elements as its components. In such
cases, the node_def element effectively describes the
vnode element it defines as a virtual network. Network
overlay recursion occurs when this virtual-networked
vnode element is used as a component inside a
node_def element that defines another (higher-layer)
virtual-networked vnode element.

Figure 2 illustrate the language structure of XOL that
enables network recursion. This kind of recursive
language structure is analogous to the struct-type
recursion in C programming language, where a
struct definition can have declarations of other
struct instances inside it.

defined byvnode node_def

contains

tunnel

vnode

contains

tunnel

defined byvnode node_def

N
et

w
or

k
R

ec
ur

si
on

Figure 2 Network overlay recursion in XOL.

7. Security Issues
The contents of the credential element in each
message is neither encrypted nor authenticated within
the X-Bone API. Since the correctness of the user
credential depends on the ends of the communication
(user and OM), it is neither sufficient nor necessary to
offer protection inside the API. To authenticate the
user or to encrypt the API message, an out-of-band
security mechanism is needed.

The current X-Bone release uses SSL connection
between the user and the OM and verifies host identity
using the SSL certificate. Any message sent from the
host is assumed trustworthy. While this security-
binding mechanism seems rather weak, for example, a
user on a verified host can easily send an API message
with fraudulent credential information to the OM,
discussions on improvements to such mechanism is out
of the scope of this paper.

 12

 ISI-TR-2005-611

8. Future Work 9. References
Work is in progress to add peer-to-peer support to X-
Bone (P2P-XBone) in order to deploy virtual IP
networks with P2P’s characteristics such as self-
organization and late-binding [7]. Compared to
existing application-layer P2P networks, P2P-XBone
constructs peer-to-peer network at the network layer
and allows end-to-end applications work with existing
network and transport protocols. This also gives
applications running on P2P-XBone higher forwarding
performance and simpler implementation.

[1] X-Bone API version 2.0 DTD:
www.isi.edu/xbone/software/xbone/api-2.0.dtd

[2] Finn, G.G., Touch, J.D, “X-Bone Application
Programmers Interface : X-Bone Overlay
Language (XOL) Specification,” ISI-TR-2001-
549, Nov. 2001.

[3] Hickman, K., “The SSL Protocol,” Netscape
Communications Corp., Feb. 1995.

[4] Touch, J., Y. Wang, L. Eggert, G. Finn, “A
Virtual Internet Architecture,” Technical Report
ISI-TR-2003-570, USC/ISI, CA, 2003.

P2P-XBone adds a few extensions to the X-Bone API
in order to enable P2P-style topology management:

[5] Touch, J., S. Hotz, “The X-Bone,” Third Global
Internet Mini-Conference, Globecom '98. Sydney,
Australia, November 1998, pp. 59-68

• The join_overlay and leave_overlay command
elements are added to instruct the OM to
add/remove a single RD to/from an existing
overlay network. The join_overlay_reply and
leave_overlay_reply reply elements are then sent
from the OM to the user, who sits at the RD that
wishes to join or leave the overlay.

[6] Touch, J., “Dynamic Internet Overlay Deployment
and Management Using the X-Bone,” Computer
Networks, July 2001, pp. 117-135.

[7] Fujita, N., Touch, J., Pingali V., Wang, Y., “P2P-
XBone: A Virtual Network Support for Peer-to-
Peer Systems,” Technical Report ISI-TR-2005-
607, USC/ISI, September 2005.

• Two node_def element properties, “p2p_port”
and “p2p_bootstrap”, are added specifically for
the operation of the peer-to-peer protocol.

 13

	1. Introduction
	2. Reserved Tokens and Conventions
	2.1 Reserved Tokens
	2.2 String Conventions
	2.3 Presentation Conventions
	2.3.1 Property Elements
	2.3.2 Message Naming
	2.3.3 Element Naming

	3. X-Bone API Syntax
	3.1 Document Type Definition
	3.2 Common-Purpose Elements
	3.3 Command-Reply Elements
	3.4 Overlay-Description Elements

	4. X- Bone API Semantics
	4.1 Common-Purpose Elements
	4.1.1 Property
	4.1.2 Xbone
	4.1.3 Credential
	4.1.4 Command

	4.2 Command-Reply Elements
	4.2.1 Create_overlay
	4.2.2 Create_overlay_reply
	4.2.3 Destroy_overlay
	4.2.4 Destroy_overlay_reply
	4.2.5 Destroyall_overlays
	4.2.6 Destroyall_overlays_reply
	4.2.7 Discover_daemons
	4.2.8 Discover_daemons_reply
	4.2.9 List_overlays
	4.2.10 List_overlays_reply
	4.2.11 Overlay_status
	4.2.12 Overlay_status_reply
	4.2.13 Error_reply

	4.3 Overlay-Description Elements
	4.3.1 Node
	4.3.2 Tunnel
	4.3.3 Argstring

	5. X- Bone Overlay Language
	5.1 XOL Elements Syntax
	5.2 XOL Elements Semantics
	5.2.1 Xol_program
	5.2.2 Define_prop
	5.2.3 Node_def
	5.2.4 Iface
	5.2.5 Vnode
	5.2.6 Closing vnode element
	5.2.7 Link
	5.2.8 Endpoint
	5.2.9 Renames
	5.2.10 Application

	6. Advanced Features
	7. Security Issues
	8. Future Work
	9. References

