
ISI-TR-2006-626

A Recursive Network Architecture
Joseph D. Touch

USC/ISI
4676 Admiralty Way

Marina del Rey, CA 90266 USA
+1 (310) 448-9151

touch@isi.edu

Yu-Shun Wang
USC/ISI

4676 Admiralty Way
Marina del Rey, CA 90266 USA

+1 (310) 448-8742

yushunwa@isi.edu
Oct. 20, 2006

Venkata Pingali
USC/ISI

4676 Admiralty Way
Marina del Rey, CA 90266 USA

+1 (310) 448-8222

pingali@isi.edu

ABSTRACT1

The Recursive Network Architecture (RNA) explores
the relationship of layering to protocol and network
architecture. RNA examines the implications of using
a single, tunable protocol for different layers of the
protocol stack, reusing basic protocol operations
across different protocol layers to avoid
reimplementation. Its primary goal is to encourage
cleaner cross-layer interaction and to support dynamic
service composition, and to gain an understanding of
how layering affects architecture. This document
provides a preliminary description of RNA, its
rationale, and discusses its features and challenges.

1. INTRODUCTION
The Recursive Network Architecture (RNA) reuses a
single, flexible protocol for different layers of the
protocol stack. RNA allows basic protocol operations
to be reused in different protocol layers, avoiding
recapitulation of implementation as well as
encouraging cleaner cross-layer interaction. It allows
protocols and protocol stacks to adjust at runtime,
which allows more dynamic composition of services,
both within stacks and in the way networking
combines the stacks of individual hops into an overall
network architecture.

RNA helps us explore the impact of layering on
network architecture and avoid redesign of basic
protocol constructs used in a variety of protocol layers.
By providing a basic metaprotocol – a single protocol
to be instantiated at all layers of a stack – RNA
facilitates the composition of as-needed stacks at
runtime, based only on the capabilities required over
the regions desired. This extends the notion of a single
configurable protocol, as in XTP and TP++, to retain
the layering necessary to partition capabilities across

1 This material is based upon work supported by the National

Science Foundation under Grant No. <CNS-0626788>. Any
opinions, findings, and conclusions or recommendations expressed
in this material are those of the authors and do not necessarily
reflect the views of the National Science Foundation.

regions (links, subnets, nets, ASes) in a network
[7][10]. The resulting architecture makes it easier to
apply a wide range of capabilities throughout the stack,
to combine these layers dynamically, and to integrate
related capabilities like security and congestion control
– at different layers using a similar API.

2. Reasons for a new architecture
The current Internet architecture has been accused of
ossification, but it has demonstrated numerous
extensions over the years [19]. Various layers and
capabilities have been added, including shim layers
like SHIM6, HIP, security with IPsec and IKE, and
TLS [8][12][13][16][18]. Some facilities have been
added in new protocols, e.g., multiplexing in the SCTP
transport layer and BEEP session layer protocols, and
addressing in IPv6 [21][26].

Many of these extensions challenge the static nature of
the conventional protocol stack, introducing alternate
layers that must be selected at runtime. This
particularly plagues the choice between IPv4 and IPv6,
which is typically solved at the application layer rather
than in the interface between transport and network. It
also affects the choice between TCP, DCCP, and
SCTP, which suffice equally well for a number of
applications [14][20][26].

Adding new services to protocol layers often
recapitulates services available at existing layers. TCP
included state establishment and coordination from its
inception in 1981; the need for similar ‘connection’
services have crept into a number of other layers,
including tunnel protocols (MPLS, GRE), key
exchange and filtering protocols (GRE, IPsec/IKE),
sessions (BEEP), and other transport protocols (SCTP,
DCCP, RTP) [9][12][13][21] [22][25].

Virtualization has been added at a variety of layers,
including link (L2VPN), network (L3VPN, X-Bone,
RON, Detour), and application (DHTs)
[1][2][6][24][28]. Virtual layers, like shim layers noted
earlier, add layers to a formerly static protocol stack.

1

ISI-TR-2006-626

The distinction between virtual and real layers is a
somewhat artificial one, however.

RNA addresses these shortcomings of the current
Internet architecture by providing a single, flexible
architecture based on the reuse of a metaprotocol over
different regions, and thus at different layers in the
protocol stack. RNA reuses component services, such
as three-way handshake, soft-state management,
feedback-based congestion control, virtualization, and
authentication at many protocol layers. It unifies the
basic properties of a variety of protocols and protocol
layers, and supports runtime protocol layer selection,
enabling new dynamic stacks.

3. The Recursive Network Architecture
RNA is based on the notion that protocol stacks have
design gaps, both between the layers (vertically), and
between stacks (horizontally, also hop-by-hop), as
shown in Figure 1. These gaps stem from the lack of
understanding of how one protocol can link to or stack
upon another (vertical), and how the forwarding
operation (horizontal) integrates with traversing layers
in a stack (vertical).

The interlayer (left) gaps affect next-layer resolution,
where upper layer protocols are typically bound tightly
to lower layer protocols, e.g., TCP being bound to
IPv4 or IPv6 by the socket layer above TCP. The
interstack gaps (right) affect next-hop resolution, in
which each stack is typically bound to a particular
network forwarding mechanism. RNA addresses these
gaps, to enable protocol layers to be more coordinated
within a stack and between different stacks throughout
a network architecture.

Figure 1 Gaps in one stack (L) or between (R)

RNA uses a single metaprotocol as a generic protocol
layer. This metaprotocol includes a number of basic
services, as well as hooks to configurable capabilities
(Figure 2). This distinguishes RNA from configurable
protocol systems such as Click and Netgraph; RNA
develops the generic protocol, rather than just the
software system in which it could be built. The
metaprotocol includes interlayer coordination, such as
might integrate identity management at various layers,
or couple flow control.

This metaprotocol provides the building block from
which protocol layers are formed. The architecture

based on this metaprotocol is based on three
fundamental observations about protocol design: that
services are relative to a layer, that recapitulation
(including virtualization support) should be avoided,
and that composition (esp. dynamic composition)
should be supported.

Next Layer
Resolution

Shared
State

Security

Identity
Mgt.

ID
Resolution

Next-hop
Resolution

Flow
Control

Figure 2 RNA metaprotocol

3.1 Observation 1: Services are Relative
There are a variety of services which can be
implemented at multiple layers in a conventional
protocol stack, including security, reliability, state
management, policy (filtering), and congestion control.
A number of earlier protocol systems were developed
to try to modularize these capabilities, so that a
particular instance of a protocol could have only the
most efficient subset enabled. The eXpress Transfer
Protocol (XTP) and TP++ were two such protocol
systems. These systems assumed that only a key subset
of desired capabilities should be enabled at any given
layer [7][10].

It is useful to note that all services are relative, local
only to the layer in which they are presented. Link
security operates only over a single link hop; network
layer security can protect the network layer, but is not
sufficient for application layer security. This hints that
we should revisit some aspects of the (in)famous End-
to-End (E2E) Argument, which is based on the
principle of non-composition [23]:

 E2E Principle: End-to-end services cannot
be provided solely by the composition of hop-
by-hop services.

As important as the principle is, there is a corollary
which is often overlooked [27]:

 E2E Corollary: Hop-by-hop services may
help performance, but they enhance, rather
than replace, corresponding end-to-end
services.

2

ISI-TR-2006-626

Networkers are familiar with the ISO 7-layer stack, in
which each layer is imbued with a particular function,
and provides particular capabilities (Figure 3). For
example, the data link layer is responsible for
formatting the data onto the next-lower layer
(physical), and the network layer is responsible for
multiplexing messages from the next-higher layer
(transport). RNA notes that many of these services
(including the two examples) occur at many layers in
the stack; data formatting is also done at the
presentation layer; multiplexing is also done at the
session layer.

Figure 3 ISO 7-layer reference model

RNA observes that hop-by-hop services are the
definition of layer-based services; all services within a
layer are local to the endpoints of that layer. The E2E
Corollary suggests that it might be useful to provide
almost any service at a particular layer, notably in
enhancing the performance of other layers.

The notion of a protocol layer is more than just a
header format and processing rules. A layer exists
relative to the layers it is between in the protocol stack.
A layer is also local to a region, providing services
only over those regions.

A layer builds on the services provided by the layers
below, and provides them to layers above. Ethernet
delivers frames between Ethernet endpoints, and IP
delivers packets to IP endpoints – assuming a link
layer such as Ethernet coupled with a forwarding
mechanism at intermediate locations. Layers are also
specific to regions; IP encompasses the public Internet,
but a VPN encompasses that, plus private regions as
well. IP is local to a pair of end systems, whereas
HTTP is local to a pair of end applications.

RNA observes that the particular services of a protocol
are context dependent, relative to the layers below and
above, and that the services are local to its endpoints

(Figure 4). There is little other difference between
protocols, however. Protocols at the link, network,
transport, and session layers may all require shared
state to manage authentication and its associated
filtering, but the distinctions between WEP, IPsec/IKE,
TCP/MD5, and TLS are less significant. There are
places where a particular protocol mechanism is better
suited to its context – i.e., where stateless or soft-state
coordination is better than hard state, but that is based
on context more than layer per se.

Figure 4 Services are local to endpoints of a layer

As a result of the current fixed layer architecture, new
services are added either by wedging new layers
between existing ones or by adding layers of
virtualization (Figure 5, left and right respectively).
Neither fits well within the current, static notion of a
stack, and each begs the question of what services
need to be added to existing protocol layers, and
whether a new protocol is required to do so.

Figure 5 Add shim layers (L) or virtual layers (R)

As a result, in RNA, no service is specific to a
particular layer; the same protocol, with a variety of
services, suffices at any layer. That metaprotocol is
tuned (manually or automatically) to the context at
which it is deployed, and the same service may – and
should – be deployed at a number of layers in the
protocol stack.

Physical

Data link

Network

Transport

Session

App
Application

Presentation Trans

Net
Process

Program

Host

100bT

802.3
IPsec

IP

TCP

BEEP

XDR

HTTP

100bT

802.3

IP

Virt. IP

Virt. IP

TCP

BEEP

XDR

HTTP

3

ISI-TR-2006-626

3.2 Observation 2: Recapitulation is
Avoidable
Offering similar services at many protocol layers
invites recapitulation. There are many such examples,
e.g., of security being re-implemented at the link,
network, transport, session, and application layers,
sometimes based on the same algorithms (e.g., DES or
MD5). Some of these services include:

- handshake / state management

- security

- policy (admission control, filtering)

- multiplexing and demultiplexing

- retransmission

- reordering

- pacing / congestion control

- switching / forwarding

It is not always useful to implement all of these
services at every layer of a protocol stack; reordering
every layer could be very inefficient and unnecessary.
It may be useful to reorder packets coming into a
transport protocol to streamline processing, especially
where processing predicts the structure of headers in
sequence. Such prediction has been used to streamline
TCP, and can be useful when the security algorithm
involves chaining.

There is fundamentally little difference between the
layers of an overlay vs. the base layers of the protocol
that the stack natively supports. Virtualization layers
need additional state coordination, to establish and
maintain tunnels; they also require a
switching/forwarding mechanism so that more than
two tunnels can be joined at a node. A virtual protocol
further requires a way to distinguish messages of one
overlay from those of another; this involves labeling
and a way to associate labels with context.

RNA observes that these capabilities are all part of any
protocol at any layer, which is why it unifies them into
a single metaprotocol. Additional layers of the
metaprotocol can be invoked where desired, e.g., to
enable particular services over subregions of a
network, or to add services which have not been
enabled by others at lower layers. This allows RNA’s
stack to accommodate both shim layers and
virtualization layers without additional, separate
mechanisms.

3.3 Observation 3: Composition Requires
Coordination
The advent of component services at multiple layers
requires coordination. Capabilities such as filtering,
identity authentication, and congestion control require
explicit coordination between layers. Connection
latching and connection binding are examples of this.

Connection binding allows authentication from a
higher layer to be used at a lower layer. This permits
TLS identities, as might be derived from credit card
information on web transactions, to be bound to IPsec
associations [8][12][34]. Without network-layer
protection, a TCP connection can be attacked and shut-
down remotely, e.g., by sending RST messages [29].
Protecting the transport layer requires either transport
or network layer authentication, so that only the valid
endpoints of a connection can send packets affecting
the signaling of the connection. However, the network
layer security may not be configured with a single
user’s identity, e.g., on a shared host.

Connection latching is closely related to connection
binding; latching ensures that data at one layer of a
protocol is exchanged over a connection at that layer
only when another layer is also connected [35]. This
ensures, that traffic between a customer and website
can proceed – at all layers of the stack – only when the
appropriate layer indicates permission, e.g., when the
user’s credit card has been authenticated.

It is currently very difficult to combine connection
binding and connection latching with existing
protocols. TCP has one model of connection
establishment, IPsec another (via IKE), and TLS yet
another (at the application layer). Because these
protocols use different mechanisms for state
establishment and filtering, it is not always possible to
merge their capabilities in a meaningful way without
awkward external mechanisms. I.e., it is very difficult
to establish an IPsec association via IKE with another
endpoint that affects only a single TCP connection
because IPsec filters on IP address and port numbers,
but not on SYN cookies. There is no way to ensure
that a particular TCP establishment (via a particular
SYN) uses a particular IPsec Security Association
(SA).

Further, DOS protection requires congestion detection
and avoidance at all layers of the stack in order to
reduce the effects of an attack. Every layer needs to be
able to detect an overload, either of state, computation,
or network resources, and to be able to shed that load,
often at the previous layer. However, because each
layer uses its own mechanisms for security, policy

4

ISI-TR-2006-626

Next-hop
Resolution

Next Layer
Resolution

LAYER(DATA, SRC, DST)
 Process DATA, SRC, DST into MSG
 WHILE (Here <> DST)
 IF (exists(lower layer))
 Select a lower layer
 Resolve SRC/DST to lower layer S’,D’
 LAYER(MSG, S’, D’)
 ELSE
 FAIL /* can’t find destination */
 ENDIF
 ENDWHILE
 /* message arrives here */
 RETURN {up the current stack}

filtering, and load monitoring, it is difficult to integrate
these mechanisms.

RNA observes that a single metaprotocol can support
this coordination much more easily, since it uses a
single API. The metaprotocol supports DOS
offloading, filtering, and connection associations, so
these features can be applied at any or all layers in the
stack.

3.4 Features of RNA
RNA relies on the principle of a basic metaprotocol as
a building block from which to instantiate layers and
stacks. Each layer of the stack is an instance of the
metaprotocol, tuned to the properties of the layers
below it. Figure 6 shows four metaprotocol layers
above a physical layer (shown unchanged here); in this
case, mp-1 might employ retransmission if the physical
layer were wireless, and might not if it were SONET.
As a result, mp-2 might employ its own level of
retransmission if any of the intermediate mp-1 hops
had retransmission, to further limit the end-to-end
retransmission delays. The layers of the metaprotocol
are thus context dependent, but based on the same
protocol; using the same mp-1 over a different
physical layer results in a different mp-1’ (Figure 7).

Figure 6 RNA metaprotocol stack

Figure 7 RNA metaprotocol context-sensitivity

This metaprotocol, shown in Figure 8, is based on a
template developed for the X-Bone’s Virtual Internet
Architecture called the MultiDomain Communications
Model (MDCM) (Figure 8) [33].

Figure 8 MDCM template

MDCM was developed to explain both next-hop and
next-layer resolution, where either can be chosen at
run-time. When a packet arrives at a protocol layer in a
node, the steps shown in Figure 8 are followed. A
packet is either at its destination address, or some other
protocol – the next layer down, or the next hop – will
hopefully get it closer to that destination. The line in
italics, “Select a lower layer”, is where both of these
resolutions occur.

Note that MDCM is based on a structured, abstract
template; packets are always formatted based on their
source/destination addresses, protocol layers and hops
are examined in turn, and the process continues at the
next hop or next layer via a form of recursion (shown
as “LAYER(MSG, S’, D’)”). Some of the services –
such as ‘Select a lower layer’ (from among those
extant) or ‘resolve SRC/DST into lower layer S’,D’ are
instantiated by plug-in functions. Configured various
ways, MDCM instantiates the layer/hop behaviors of
ARP, IP forwarding, DNS, and BGP.

physical

RNA mp-1

RNA mp-2

RNA mp-3

RNA mp-4

RNA’s metaprotocol is based on this kind of structure,
additionally including some of the following steps.
Note that the specific order, organization, and structure
of the metaprotocol is part of the RNA research, but it
will include:

1. Establish / refresh state

2. Encrypt / decrypt message

3. Apply filtering

4. Proceed based on flow control

5. On input, proceed based on reordering

6. Multiplex/demultiplex as indicated (includes
switching/forwarding)

wireless

RNA mp-1

RNA mp-2

RNA mp-3

RNA mp-4

optical

RNA mp-1’

RNA mp-4

RNA mp-3

RNA mp-2

5

ISI-TR-2006-626

These are the protocol operations which, in the
MDCM template, are denoted by “Process DATA”,
and otherwise ignored in that model. RNA thus
extends MDCM to address not only resolution
functions between the layers and stacks, but also the
other mechanisms common to all protocols at all
layers.

RNA takes advantage of this metaprotocol to
encourage reuse of common mechanisms, including
hard (handshake-based) and soft (refresh-based) state
maintenance, security, filtering, etc. This unified
approach makes it easier to integrate related functions
at different layers, such as coupled authentication (i.e.,
Channel Binding), coupled connections and filtering
(i.e., Connection Latching), and coordinated
reordering, retransmission, and flow control.

4. Challenges
RNA explores the impact of the structure of a network
stack and protocols therein on network architecture.
There are a number of open issues in RNA which
make it exciting, exploratory research. These include
the design of the metaprotocol itself, the system that
manages the stack, ways to integrate interaction
between layers in the stack, and the extent to which
context and performance plays a role in how the
metaprotocol operates.

4.1 Metaprotocol Design
RNA relies on a single metaprotocol to provide the
capabilities currently dispersed in different layers of
the protocol stack. The composition and sequence of
the component services are key to developing a
flexible module that can be used in a variety of
contexts.

The services will be chosen from among the list
provided in Section 3.2, where some well-known
examples include:

- state management: hard state from TCP; soft
state from RSVP

- congestion control: feedback-based from TCP
and its extensions

- security association: key exchange from IKE

Due to the limited scope of the project, simplified
versions of these protocols will be incorporated or
code reused from existing implementations where
possible. In addition, the sequencing and priorities of
the component services will reflect current best-
practices for protocol design, e.g., to filter early, to act
only on authenticated fields (when authentication is
available), etc.

4.2 Stack Management
Part of deploying the same metaprotocol at different
layers, as well as over different regions of a network
assumes a stack management system. Individual
messages need to be labeled with the chain of
applicable metaprotocol instances, and nodes need to
be able to install and remove metaprotocol instances.
For this purpose, existing modular protocol processing
systems, such as Click or Netgraph will be employed
[15][17]. Coordination between stacks will be done
either by using a predefined list of protocol chains – as
is implicitly the case for existing, ‘well-known’
protocols in the Internet (e.g., DNS, SNMP, DHCP),
or by using a negotiation phase that an instance of the
metaprotocol can itself provide.

4.3 Interlayer Coordination
A major challenge for existing protocol stacks is the
coordination of services between protocol layers, such
as would support Connection Latching and Channel
Binding [34][35]. Connections initiated at one layer
often depend on services at other layers, including
filtering, authentication, and state establishment.
Although RNA’s reuse of a single metaprotocol
module facilitates this coordination, the APIs the
module provides for such interaction are critical to this
capability. Important aspects of these APIs are the
order, locking, and nesting of transactions across the
layers, which is another key area of research for RNA.

4.4 Context and Performance Sensitivity
It would be impractical to expect every instance of the
RNA metaprotocol to operate identically. Different
instances need to be tuned to the context in which they
are deployed, i.e., to use soft state, hard state, or no
shared state as desired. This tuning is expected to be
part of protocol deployment, i.e., when new physical
layers are added, or additional processing capabilities
available at a node and protocol layer, the adjacent
layers would adjust accordingly.

It would be useful for the metaprotocol to ultimately
self-tune, to adapt as needed, enabling or disabling
services on-the-fly based on the capabilities of
adjacent layers. By disabling services not needed, a
layer could increase its performance. Different layers
could also coordinate their services, e.g., bidding for
use of a fixed (application-specified) latency budget,
where reordering could be deployed where it is most
useful, subject to an overall reordering latency impact.

5. Related work
RNA is related to previous work on modular protocol
systems, though it advocates for the use of a single

6

ISI-TR-2006-626

instance – the metaprotocol – rather than just
supporting a template where protocols can be
instantiated. Other, template-based protocol systems
have also been considered, but tend to focus on a
single protocol layer, whereas RNA relies on the use
of the metaprotocol at different layers in a stack to
operate over different regions of a network, just as
existing stacks do. RNA attempts to incorporate the
kind of context-sensitivity that other research has
shown useful in deploying existing Internet protocols
in nonstandard environments. Finally, RNA is inspired
by configurable, integrated protocols, but again intends
a solution that can be used recursively throughout the
protocol stack rather than at a single layer.

5.1 Modular Protocol Systems
The Click modular router, x-Kernel, and Netgraph
systems all support modular design of network
protocols. Click focuses on router functions, and
operates on a variety of platforms [15]. The x-Kernel
focuses on the integration of modular messaging into
the operating system [11]. Netgraph is a more
incremental approach, supporting dynamically
loadable and inter-connectable packet processing
functions as a configurable kernel service [17]. RNA
differs from these services in that our metaprotocol is
an instance of a protocol, not a template from which
others might develop a protocol. RNA will use one of
these services – likely Netgraph or Click – as the
platform for developing both the metaprotocol module
and the dynamic stack management system.

Flexible Protocol Stacks similarly provides an
environment in which protocols can be implemented,
providing a rich set of services from which an instance
can be developed [32]. RNA similarly relies on a set of
common services; we will examine leveraging their
work in this area.

5.2 Template-based Protocol Models
RNA’s metaprotocol is based on an extension of the
X-Bone’s MultiDomain Communication Model
(MDCM) [28][30][33]. MDCM focused on the
interaction between the layers of protocols in a stack
and on the impact of next-hop and ID resolution on the
dynamic structure of a stack, but ignores the basic
operation of a protocol. RNA completes the MDCM
design, adding the rest of the services of a protocol,
such as state management, security, filtering, etc.,
rendering MDCM’s template into a functional protocol
instance.

USC/ISI’s Role-Based Architecture (RBA) proposes a
heap-style header in a single-layer architecture, in
which individual protocol modules (‘roles’) can be

implemented in a variety of ways and addressed
explicitly [5]. RBA removes the concept of layering,
and replaces it with a rule-based association between
Role-specific headers, allowing them to be reordered
as desired. RNA relies on the conventional concept of
layering, but uses the replication of a single protocol
throughout different layers in different network
regions. RNA could incorporate RBA’s more flexible
header structure and processing sequence in its
metaprotocol, and might also be able to order its layers
in ways that map to roles, but this is orthogonal to the
goals of the RNA project.

5.3 Context-Sensitive Extensions
A number of protocols have incorporated context-
based extensions for enhanced performance. The
generic concept of adding such features, typically at
intermediate nodes using shim protocol layers, are
known as Performance Enhancing Proxies (PEPs) [4].
PEPs can be deployed over subsets of a network to
introduce limited retransmission or deploy a tunnel
with forward error correction, such as to correct
increased error over mobile wireless networks. Similar
extensions have been developed for existing protocols,
such as wireless-aware TCP [3].

RNA integrates these capabilities within the layers of
the protocol stack, so these capabilities can be
deployed as needed less obtrusively. In particular,
RNA allows TCP-like retransmission to be supported
over a link layer because the metaprotocol supports
retransmission that can be enabled as needed. This
avoids the need to create intermediate overlay layers,
such as PEPs, or even some overlay management
systems (Detour, RON, X-Bone, DynaBone) support
[1][24][28][31]. It also avoids the need to redefine
host-to-host semantics (i.e., that loss probably means
congestion) in TCP to accommodate the characteristics
of only a portion of a network (i.e., the wireless mobile
part).

5.4 Configurable Protocols
RNA is based on the concept of the generic, inclusive
protocol, such as the eXpress Transfer Protocol (XTP)
and TP++ [7][10]. These protocols included a large set
of services, such that enabling or disabling particular
services could instantiate different protocols, like
connectionless messaging, transaction messaging, and
reliable streams. Both protocols considered the current
view that services should be specific to a particular
layer of a protocol stack, and intended to be configured
to provide only those services that were necessary at
their transport layer.

7

ISI-TR-2006-626

The Stream Control Transport Protocol (SCTP) is a
more recent protocol designed in a similar spirit [26].
SCTP was originally developed to support transaction-
based messaging services, in particular as would be
needed to support telephone signaling (SS7 in
particular) over the Internet. It included a number of
features considered necessary for telephony, including
support for backup addresses for fault tolerance, which
is evolving into support for multipath communication.
SCTP borrows heavily from TCP’s connection
management and congestion control protocols, and
adds a layer of multiplexing that allows a single
connection to support multiple, concurrent transfers.

RNA is designed to apply the concepts of these
generic, configurable protocols recursively throughout
a networking stack. By including numerous services at
every protocol layer as an option, it is hoped that RNA
will encourage the use of these services at the layers
where they are most useful. This distinguishes RNA
from SCTP, where all such services are supported
within the transport layer alone. Unlike XTP and
TP++, RNA assumes that services can be reused at
multiple layers in the stack and thus operate over
different regions of a network; this avoids the need to
determine which layer is solely responsible for a
particular service. Whether to enable it at any
particular layer can be a comparatively local (subject
to performance and interaction) decision.

6. Summary and Future Work
This paper presented an overview of RNA, the
Recursive Network Architecture. RNA applies a single
protocol across different layers and regions, to explore
the relationship between layer environment and scope
on network architecture. This work is just
commencing; the next step involves a preliminary
implementation to determine how protocol reuse at
multiple layers impacts our notion of layer capability
and differentiation.

7. REFERENCES
[1] Andersen, D., Balakrishnan, H., Kaashoek, M.,

Morris, R., “Resilient Overlay Networks,” Proc.
18th ACM SOSP, Banff, Canada, Oct. 2001.

[2] Andersson, L., and Rosen, E., Editors,
“Framework for Layer 2 Virtual Private Networks
(L2VPNs),” (work in progress), June, 2004.

[3] Balakrishnan, H., Seshan, S., Amir, E., and Katz,
R., “Improving TCP/IP Performance over
Wireless Networks,” ACM Conference on Mobile
Computing and Networks, Oakland, CA,
November 1995.

[4] Border, I., Kojo. M., Griner, J., Montenegro, G.,
and Shelby Z., “Performance Enhancing Proxies
Intended to Mitigate Link-Related
Degradations,” RFC 3135, June 2001.

[5] Braden, R., Faber, T., and Handley, M., “From
Protocol Stack to Protocol Heap - Role-Based
Architecture,” Proceedings of the First Workshop
on Hot Topics in Networking (Hotnets-I), ACM
SIGCOMM, Princeton, NJ., October 2002.

[6] Callon, R., and Suzuki, M., “A Framework for
Layer 3 Provider-Provisioned Virtual Private
Networks (PPVPNs),” RFC 4110, July, 2005.

[7] Chesson, G., Eich, B., Schryver, V., Cherenson,
A, and Whaley, A., “XTP Protocol Definition
Revision 3.0,” Tech. Rept. Protocol Engines, Inc.,
1900 State Street, Suite D, Santa Barbara, CA
93101, Jan., 1988.

[8] Dierks, T., and Allen, C., “The TLS Protocol
Version 1.0,” RFC 2246, January 1999.

[9] Farinacci, D., Li, T., Hanks, S., Meyer, D., and
Traina, P., “Generic Routing Encapsulation
(GRE),” RFC 2784, March 2000.

[10] Feldmeier, D.C. “An Overview of the TP++
Transport Protocol,” in: Tantawy A.N.(ed.): High
Performance Communication, Kluwer Academic
Publishers, 1994.

[11] Hutchinson, N., and Peterson, L., "The X-Kernel:
An Architecture for Implementing Network
Protocols," IEEE Trans. on Software Eng., 17(1),
pp. 64-76, 1991.

[12] Kaufman, C., (ed.), “Internet Key Exchange
(IKEv2) Protocol,” RFC 4306, December 2005.

[13] Kent, S., and Seo, K., “Security Architecture for
the Internet Protocol,” RFC 4301, December
2005.

[14] Kohler, E., Handley, M., Floyd, S. and Padhye, J.,
“Datagram Congestion Control Protocol
(DCCP),” Internet Draft draft-ietf-dccp-spec-02
(work in progress), May 2003.

[15] Kohler, E., Morris, R., Chen, B., Jannotti, J., and
Kaashoek, M., “The Click Modular Router,”
ACM Transactions on Computer Systems, 18(3),
pp. 263-297, 2000.

[16] Moskowitz, R., and Nikander, P., “Host Identity
Protocol Architecture,” (work in progress),
August 2005.

8

ISI-TR-2006-626

[17] “Netgraph: Graph-Based Kernel Network
Subsystem,” FreeBSD manual page,
http://www.freebsd.org.

[18] Nordmark, E. and Bagnulo, M., “Level 3
Multihoming Shim Protocol,” draft-ietf-shim6-
proto-03.txt (work in progress), September, 2005.

[19] Peterson, L., Shenker, S., Turner, J., “Overcoming
the Internet Impasse Through Virtualization,”
Proc. Hotnets-III, Nov. 2004.

[20] Postel, J., “Transmission Control Protocol,” RFC
793, September 1981.

[21] Rose, M., “The Blocks Extensible Exchange
Protocol Core,” RFC 3080, March 2001.

[22] Rosen, E., Viswanathan, A., and Callon, R.,
“Multiprotocol Label Switching Architecture,”
RFC 3031, January 2001.

[23] Saltzer, J., Reed, D., and Clark, D., “End-to-end
arguments in system design,” ACM Transactions
on Computer Systems 2, 4 (November 1984)
pages 277-288.

[24] Savage, S., Anderson, T., et al., “Detour: a Case
for Informed Internet Routing and Transport,”
IEEE Micro, V19, N1, Jan. 1999, pp. 50-59.

[25] Schulzrinne, H., Casner, S. Frederick, R. and
Jacobson, V., “RTP: A Transport Protocol for
Real-Time Applications.” RFC 3550 / STD 64,
July 2003.

[26] Stewart, R. and Xie, Q. “Stream Control
Transmission Protocol (SCTP): A Reference
Guide,” Addison Wesley, New York, NY, 2001.

[27] Touch, J., “End2End Argument vs. Programming
the Internet: Are the Two Complementary?”

presentation at E2E issues panel at Opensig 2000,
Napa, CA, Oct. 2000.

[28] Touch, J., “Dynamic Internet Overlay Deployment
and Management Using the X-Bone,” Computer
Networks, July 2001, pp. 117-135. A previous
version appeared in Proc. ICNP 2000, pp. 59-68.

[29] Touch, J., “Defending TCP Against Spoofing
Attacks,” (work in progress), Feb. 2006.

[30] Touch, J., Wang, Y., Eggert, L. and Finn, G.,
“Virtual Internet Architecture,” presented at
Future Developments of Network Architectures
(FDNA) at Sigcomm, August 2003. Available as
ISI-TR-2003-570.

[31] Touch, J., Finn, G., Wang, Y., Eggert, L.,
“DynaBone: Dynamic Defense Using Multi-layer
Internet Overlays,” Proc. 3rd DARPA Information
Survivability Conference and Exposition
(DISCEX-III), Washington, DC, USA, April 22-
24, 2003, Vol. 2, pp. 271-276.

[32] Tschudin, C., “Flexible Protocol Stacks,” Proc.
ACM SIGCOMM 1991, pp. 197-204, 1991.

[33] Wang, Y, Touch, J., Silvester, J., “A Unified
Model for End Point Resolution and Domain
Conversion for Multi-Hop, Multi-Layer
Communication,” ISI Tech. Report ISI-TR-2004-
590, June 2004.

[34] Williams, N., “Clarifications and Extensions to the
GSS-API for the Use of Channel Bindings,” draft-
ietf-kitten-gssapi-channel-bindings-01 (work in
progress), Oct. 2005.

[35] Williams, N., “IPsec Channels: Connection
Latching,” (work in progress), Feb. 2006.

9

	1. INTRODUCTION
	2. Reasons for a new architecture
	3. The Recursive Network Architecture
	3.1 Observation 1: Services are Relative
	3.2 Observation 2: Recapitulation is Avoidable
	3.3 Observation 3: Composition Requires Coordination
	3.4 Features of RNA

	4. Challenges
	4.1 Metaprotocol Design
	4.2 Stack Management
	4.3 Interlayer Coordination
	4.4 Context and Performance Sensitivity

	5. Related work
	5.1 Modular Protocol Systems
	5.2 Template-based Protocol Models
	5.3 Context-Sensitive Extensions
	5.4 Configurable Protocols

	6. Summary and Future Work
	7. REFERENCES

