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ABSTRACT1

The Recursive Network Architecture (RNA) explores 
the relationship of layering to protocol and network 
architecture. RNA examines the implications of using 
a single, tunable protocol for different layers of the 
protocol stack, reusing basic protocol operations 
across different protocol layers to avoid 
reimplementation. Its primary goal is to encourage 
cleaner cross-layer interaction and to support dynamic 
service composition, and to gain an understanding of 
how layering affects architecture. This document 
provides a preliminary description of RNA, its 
rationale, and discusses its features and challenges. 

1. INTRODUCTION 
The Recursive Network Architecture (RNA) reuses a 
single, flexible protocol for different layers of the 
protocol stack. RNA allows basic protocol operations 
to be reused in different protocol layers, avoiding 
recapitulation of implementation as well as 
encouraging cleaner cross-layer interaction. It allows 
protocols and protocol stacks to adjust at runtime, 
which allows more dynamic composition of services, 
both within stacks and in the way networking 
combines the stacks of individual hops into an overall 
network architecture. 

RNA helps us explore the impact of layering on 
network architecture and avoid redesign of basic 
protocol constructs used in a variety of protocol layers. 
By providing a basic metaprotocol – a single protocol 
to be instantiated at all layers of a stack – RNA 
facilitates the composition of as-needed stacks at 
runtime, based only on the capabilities required over 
the regions desired. This extends the notion of a single 
configurable protocol, as in XTP and TP++, to retain 
the layering necessary to partition capabilities across 
                                                           
1 This material is based upon work supported by the National 

Science Foundation under Grant No. <CNS-0626788>. Any 
opinions, findings, and conclusions or recommendations expressed 
in this material are those of the authors and do not necessarily 
reflect the views of the National Science Foundation. 

regions (links, subnets, nets, ASes) in a network 
[7][10]. The resulting architecture makes it easier to 
apply a wide range of capabilities throughout the stack, 
to combine these layers dynamically, and to integrate 
related capabilities like security and congestion control 
– at different layers using a similar API. 

2. Reasons for a new architecture 
The current Internet architecture has been accused of 
ossification, but it has demonstrated numerous 
extensions over the years [19]. Various layers and 
capabilities have been added, including shim layers 
like SHIM6, HIP, security with IPsec and IKE, and 
TLS [8][12][13][16][18]. Some facilities have been 
added in new protocols, e.g., multiplexing in the SCTP 
transport layer and BEEP session layer protocols, and 
addressing in IPv6 [21][26]. 

Many of these extensions challenge the static nature of 
the conventional protocol stack, introducing alternate 
layers that must be selected at runtime. This 
particularly plagues the choice between IPv4 and IPv6, 
which is typically solved at the application layer rather 
than in the interface between transport and network. It 
also affects the choice between TCP, DCCP, and 
SCTP, which suffice equally well for a number of 
applications [14][20][26]. 

Adding new services to protocol layers often 
recapitulates services available at existing layers. TCP 
included state establishment and coordination from its 
inception in 1981; the need for similar ‘connection’ 
services have crept into a number of other layers, 
including tunnel protocols (MPLS, GRE), key 
exchange and filtering protocols (GRE, IPsec/IKE), 
sessions (BEEP), and other transport protocols (SCTP, 
DCCP, RTP) [9][12][13][21] [22][25]. 

Virtualization has been added at a variety of layers, 
including link (L2VPN), network (L3VPN, X-Bone, 
RON, Detour), and application (DHTs) 
[1][2][6][24][28]. Virtual layers, like shim layers noted 
earlier, add layers to a formerly static protocol stack. 
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The distinction between virtual and real layers is a 
somewhat artificial one, however. 

RNA addresses these shortcomings of the current 
Internet architecture by providing a single, flexible 
architecture based on the reuse of a metaprotocol over 
different regions, and thus at different layers in the 
protocol stack. RNA reuses component services, such 
as three-way handshake, soft-state management, 
feedback-based congestion control, virtualization, and 
authentication at many protocol layers. It unifies the 
basic properties of a variety of protocols and protocol 
layers, and supports runtime protocol layer selection, 
enabling new dynamic stacks. 

3. The Recursive Network Architecture 
RNA is based on the notion that protocol stacks have 
design gaps, both between the layers (vertically), and 
between stacks (horizontally, also hop-by-hop), as 
shown in Figure 1. These gaps stem from the lack of 
understanding of how one protocol can link to or stack 
upon another (vertical), and how the forwarding 
operation (horizontal) integrates with traversing layers 
in a stack (vertical). 

The interlayer (left) gaps affect next-layer resolution, 
where upper layer protocols are typically bound tightly 
to lower layer protocols, e.g., TCP being bound to 
IPv4 or IPv6 by the socket layer above TCP. The 
interstack gaps (right) affect next-hop resolution, in 
which each stack is typically bound to a particular 
network forwarding mechanism. RNA addresses these 
gaps, to enable protocol layers to be more coordinated 
within a stack and between different stacks throughout 
a network architecture. 

 
Figure 1 Gaps in one stack (L) or between (R) 

RNA uses a single metaprotocol as a generic protocol 
layer. This metaprotocol includes a number of basic 
services, as well as hooks to configurable capabilities 
(Figure 2). This distinguishes RNA from configurable 
protocol systems such as Click and Netgraph; RNA 
develops the generic protocol, rather than just the 
software system in which it could be built. The 
metaprotocol includes interlayer coordination, such as 
might integrate identity management at various layers, 
or couple flow control. 

This metaprotocol provides the building block from 
which protocol layers are formed. The architecture 

based on this metaprotocol is based on three 
fundamental observations about protocol design: that 
services are relative to a layer, that recapitulation 
(including virtualization support) should be avoided, 
and that composition (esp. dynamic composition) 
should be supported. 
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Figure 2 RNA metaprotocol 

3.1 Observation 1: Services are Relative 
There are a variety of services which can be 
implemented at multiple layers in a conventional 
protocol stack, including security, reliability, state 
management, policy (filtering), and congestion control. 
A number of earlier protocol systems were developed 
to try to modularize these capabilities, so that a 
particular instance of a protocol could have only the 
most efficient subset enabled. The eXpress Transfer 
Protocol (XTP) and TP++ were two such protocol 
systems. These systems assumed that only a key subset 
of desired capabilities should be enabled at any given 
layer [7][10]. 

It is useful to note that all services are relative, local 
only to the layer in which they are presented. Link 
security operates only over a single link hop; network 
layer security can protect the network layer, but is not 
sufficient for application layer security. This hints that 
we should revisit some aspects of the (in)famous End-
to-End (E2E) Argument, which is based on the 
principle of non-composition [23]: 

 E2E Principle: End-to-end services cannot 
be provided solely by the composition of hop-
by-hop services. 

As important as the principle is, there is a corollary 
which is often overlooked [27]: 

 E2E Corollary: Hop-by-hop services may 
help performance, but they enhance, rather 
than replace, corresponding end-to-end 
services.  

2 
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Networkers are familiar with the ISO 7-layer stack, in 
which each layer is imbued with a particular function, 
and provides particular capabilities (Figure 3). For 
example, the data link layer is responsible for 
formatting the data onto the next-lower layer 
(physical), and the network layer is responsible for 
multiplexing messages from the next-higher layer 
(transport). RNA notes that many of these services 
(including the two examples) occur at many layers in 
the stack; data formatting is also done at the 
presentation layer; multiplexing is also done at the 
session layer.  

 
Figure 3 ISO 7-layer reference model 

RNA observes that hop-by-hop services are the 
definition of layer-based services; all services within a 
layer are local to the endpoints of that layer. The E2E 
Corollary suggests that it might be useful to provide 
almost any service at a particular layer, notably in 
enhancing the performance of other layers. 

The notion of a protocol layer is more than just a 
header format and processing rules. A layer exists 
relative to the layers it is between in the protocol stack. 
A layer is also local to a region, providing services 
only over those regions.  

A layer builds on the services provided by the layers 
below, and provides them to layers above. Ethernet 
delivers frames between Ethernet endpoints, and IP 
delivers packets to IP endpoints – assuming a link 
layer such as Ethernet coupled with a forwarding 
mechanism at intermediate locations. Layers are also 
specific to regions; IP encompasses the public Internet, 
but a VPN encompasses that, plus private regions as 
well. IP is local to a pair of end systems, whereas 
HTTP is local to a pair of end applications. 

RNA observes that the particular services of a protocol 
are context dependent, relative to the layers below and 
above, and that the services are local to its endpoints 

(Figure 4). There is little other difference between 
protocols, however. Protocols at the link, network, 
transport, and session layers may all require shared 
state to manage authentication and its associated 
filtering, but the distinctions between WEP, IPsec/IKE, 
TCP/MD5, and TLS are less significant. There are 
places where a particular protocol mechanism is better 
suited to its context – i.e., where stateless or soft-state 
coordination is better than hard state, but that is based 
on context more than layer per se. 

 
Figure 4 Services are local to endpoints of a layer 

As a result of the current fixed layer architecture, new 
services are added either by wedging new layers 
between existing ones or by adding layers of 
virtualization (Figure 5, left and right respectively). 
Neither fits well within the current, static notion of a 
stack, and each begs the question of what services 
need to be added to existing protocol layers, and 
whether a new protocol is required to do so. 

 
Figure 5 Add shim layers (L) or virtual layers (R) 

As a result, in RNA, no service is specific to a 
particular layer; the same protocol, with a variety of 
services, suffices at any layer. That metaprotocol is 
tuned (manually or automatically) to the context at 
which it is deployed, and the same service may – and 
should – be deployed at a number of layers in the 
protocol stack. 

Physical 

Data link 

Network 

Transport 

Session 

App 
Application 

Presentation Trans 

Net 
Process 

Program 

Host 

100bT 

802.3 
IPsec 

IP 

TCP 

BEEP 

XDR 

HTTP 

100bT 

802.3 

IP 

Virt. IP 

Virt. IP 

TCP 

BEEP 

XDR 

HTTP 

3 



ISI-TR-2006-626 

3.2 Observation 2: Recapitulation is 
Avoidable 
Offering similar services at many protocol layers 
invites recapitulation. There are many such examples, 
e.g., of security being re-implemented at the link, 
network, transport, session, and application layers, 
sometimes based on the same algorithms (e.g., DES or 
MD5). Some of these services include: 

- handshake / state management 

- security 

- policy (admission control, filtering) 

- multiplexing and demultiplexing 

- retransmission 

- reordering 

- pacing / congestion control 

- switching / forwarding 

It is not always useful to implement all of these 
services at every layer of a protocol stack; reordering 
every layer could be very inefficient and unnecessary. 
It may be useful to reorder packets coming into a 
transport protocol to streamline processing, especially 
where processing predicts the structure of headers in 
sequence. Such prediction has been used to streamline 
TCP, and can be useful when the security algorithm 
involves chaining. 

There is fundamentally little difference between the 
layers of an overlay vs. the base layers of the protocol 
that the stack natively supports. Virtualization layers 
need additional state coordination, to establish and 
maintain tunnels; they also require a 
switching/forwarding mechanism so that more than 
two tunnels can be joined at a node. A virtual protocol 
further requires a way to distinguish messages of one 
overlay from those of another; this involves labeling 
and a way to associate labels with context. 

RNA observes that these capabilities are all part of any 
protocol at any layer, which is why it unifies them into 
a single metaprotocol. Additional layers of the 
metaprotocol can be invoked where desired, e.g., to 
enable particular services over subregions of a 
network, or to add services which have not been 
enabled by others at lower layers. This allows RNA’s 
stack to accommodate both shim layers and 
virtualization layers without additional, separate 
mechanisms. 

3.3 Observation 3: Composition Requires 
Coordination 
The advent of component services at multiple layers 
requires coordination. Capabilities such as filtering, 
identity authentication, and congestion control require 
explicit coordination between layers. Connection 
latching and connection binding are examples of this. 

Connection binding allows authentication from a 
higher layer to be used at a lower layer. This permits 
TLS identities, as might be derived from credit card 
information on web transactions, to be bound to IPsec 
associations [8][12][34]. Without network-layer 
protection, a TCP connection can be attacked and shut-
down remotely, e.g., by sending RST messages [29]. 
Protecting the transport layer requires either transport 
or network layer authentication, so that only the valid 
endpoints of a connection can send packets affecting 
the signaling of the connection. However, the network 
layer security may not be configured with a single 
user’s identity, e.g., on a shared host.  

Connection latching is closely related to connection 
binding; latching ensures that data at one layer of a 
protocol is exchanged over a connection at that layer 
only when another layer is also connected [35]. This 
ensures, that traffic between a customer and website 
can proceed – at all layers of the stack – only when the 
appropriate layer indicates permission, e.g., when the 
user’s credit card has been authenticated. 

It is currently very difficult to combine connection 
binding and connection latching with existing 
protocols. TCP has one model of connection 
establishment, IPsec another (via IKE), and TLS yet 
another (at the application layer). Because these 
protocols use different mechanisms for state 
establishment and filtering, it is not always possible to 
merge their capabilities in a meaningful way without 
awkward external mechanisms. I.e., it is very difficult 
to establish an IPsec association via IKE with another 
endpoint that affects only a single TCP connection 
because IPsec filters on IP address and port numbers, 
but not on SYN cookies. There is no way to ensure 
that a particular TCP establishment (via a particular 
SYN) uses a particular IPsec Security Association 
(SA).  

Further, DOS protection requires congestion detection 
and avoidance at all layers of the stack in order to 
reduce the effects of an attack. Every layer needs to be 
able to detect an overload, either of state, computation, 
or network resources, and to be able to shed that load, 
often at the previous layer. However, because each 
layer uses its own mechanisms for security, policy 
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Next-hop 
Resolution 

Next Layer 
Resolution

LAYER(DATA, SRC, DST)  
    Process DATA, SRC, DST into MSG 
    WHILE (Here <> DST) 
        IF (exists(lower layer)) 
            Select a lower layer 
            Resolve SRC/DST to lower layer S’,D’  
            LAYER(MSG, S’, D’) 
        ELSE 
            FAIL /* can’t find destination */ 
        ENDIF 
   ENDWHILE 
   /* message arrives here */ 
  RETURN {up the current stack} 

filtering, and load monitoring, it is difficult to integrate 
these mechanisms. 

RNA observes that a single metaprotocol can support 
this coordination much more easily, since it uses a 
single API. The metaprotocol supports DOS 
offloading, filtering, and connection associations, so 
these features can be applied at any or all layers in the 
stack. 

3.4 Features of RNA 
RNA relies on the principle of a basic metaprotocol as 
a building block from which to instantiate layers and 
stacks. Each layer of the stack is an instance of the 
metaprotocol, tuned to the properties of the layers 
below it. Figure 6 shows four metaprotocol layers 
above a physical layer (shown unchanged here); in this 
case, mp-1 might employ retransmission if the physical 
layer were wireless, and might not if it were SONET. 
As a result, mp-2 might employ its own level of 
retransmission if any of the intermediate mp-1 hops 
had retransmission, to further limit the end-to-end 
retransmission delays. The layers of the metaprotocol 
are thus context dependent, but based on the same 
protocol; using the same mp-1 over a different 
physical layer results in a different mp-1’ (Figure 7). 

 
Figure 6 RNA metaprotocol stack 

 
Figure 7 RNA metaprotocol context-sensitivity 

This metaprotocol, shown in Figure 8, is based on a 
template developed for the X-Bone’s Virtual Internet 
Architecture called the MultiDomain Communications 
Model (MDCM) (Figure 8) [33].  

 
Figure 8 MDCM template 

MDCM was developed to explain both next-hop and 
next-layer resolution, where either can be chosen at 
run-time. When a packet arrives at a protocol layer in a 
node, the steps shown in Figure 8 are followed. A 
packet is either at its destination address, or some other 
protocol – the next layer down, or the next hop – will 
hopefully get it closer to that destination. The line in 
italics, “Select a lower layer”, is where both of these 
resolutions occur. 

Note that MDCM is based on a structured, abstract 
template; packets are always formatted based on their 
source/destination addresses, protocol layers and hops 
are examined in turn, and the process continues at the 
next hop or next layer via a form of recursion (shown 
as “LAYER(MSG, S’, D’)”). Some of the services – 
such as ‘Select a lower layer’ (from among those 
extant) or ‘resolve SRC/DST into lower layer S’,D’ are 
instantiated by plug-in functions. Configured various 
ways, MDCM instantiates the layer/hop behaviors of 
ARP, IP forwarding, DNS, and BGP. 

physical 

RNA mp-1 

RNA mp-2 

RNA mp-3 

RNA mp-4 

RNA’s metaprotocol is based on this kind of structure, 
additionally including some of the following steps. 
Note that the specific order, organization, and structure 
of the metaprotocol is part of the RNA research, but it 
will include: 

1. Establish / refresh state 

2. Encrypt / decrypt message 

3. Apply filtering 

4. Proceed based on flow control 

5. On input, proceed based on reordering 

6. Multiplex/demultiplex as indicated (includes 
switching/forwarding) 

wireless 

RNA mp-1 

RNA mp-2 

RNA mp-3 

RNA mp-4 

optical 

RNA mp-1’ 

RNA mp-4 

RNA mp-3 

RNA mp-2 
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These are the protocol operations which, in the 
MDCM template, are denoted by “Process DATA”, 
and otherwise ignored in that model. RNA thus 
extends MDCM to address not only resolution 
functions between the layers and stacks, but also the 
other mechanisms common to all protocols at all 
layers. 

RNA takes advantage of this metaprotocol to 
encourage reuse of common mechanisms, including 
hard (handshake-based) and soft (refresh-based) state 
maintenance, security, filtering, etc. This unified 
approach makes it easier to integrate related functions 
at different layers, such as coupled authentication (i.e., 
Channel Binding), coupled connections and filtering 
(i.e., Connection Latching), and coordinated 
reordering, retransmission, and flow control. 

4. Challenges 
RNA explores the impact of the structure of a network 
stack and protocols therein on network architecture. 
There are a number of open issues in RNA which 
make it exciting, exploratory research. These include 
the design of the metaprotocol itself, the system that 
manages the stack, ways to integrate interaction 
between layers in the stack, and the extent to which 
context and performance plays a role in how the 
metaprotocol operates. 

4.1 Metaprotocol Design 
RNA relies on a single metaprotocol to provide the 
capabilities currently dispersed in different layers of 
the protocol stack. The composition and sequence of 
the component services are key to developing a 
flexible module that can be used in a variety of 
contexts. 

The services will be chosen from among the list 
provided in Section 3.2, where some well-known 
examples include: 

- state management: hard state from TCP; soft 
state from RSVP 

- congestion control: feedback-based from TCP 
and its extensions 

- security association: key exchange from IKE 

Due to the limited scope of the project, simplified 
versions of these protocols will be incorporated or 
code reused from existing implementations where 
possible. In addition, the sequencing and priorities of 
the component services will reflect current best-
practices for protocol design, e.g., to filter early, to act 
only on authenticated fields (when authentication is 
available), etc. 

4.2 Stack Management 
Part of deploying the same metaprotocol at different 
layers, as well as over different regions of a network 
assumes a stack management system. Individual 
messages need to be labeled with the chain of 
applicable metaprotocol instances, and nodes need to 
be able to install and remove metaprotocol instances. 
For this purpose, existing modular protocol processing 
systems, such as Click or Netgraph will be employed 
[15][17]. Coordination between stacks will be done 
either by using a predefined list of protocol chains – as 
is implicitly the case for existing, ‘well-known’ 
protocols in the Internet (e.g., DNS, SNMP, DHCP), 
or by using a negotiation phase that an instance of the 
metaprotocol can itself provide. 

4.3 Interlayer Coordination 
A major challenge for existing protocol stacks is the 
coordination of services between protocol layers, such 
as would support Connection Latching and Channel 
Binding [34][35]. Connections initiated at one layer 
often depend on services at other layers, including 
filtering, authentication, and state establishment. 
Although RNA’s reuse of a single metaprotocol 
module facilitates this coordination, the APIs the 
module provides for such interaction are critical to this 
capability. Important aspects of these APIs are the 
order, locking, and nesting of transactions across the 
layers, which is another key area of research for RNA.  

4.4 Context and Performance Sensitivity 
It would be impractical to expect every instance of the 
RNA metaprotocol to operate identically. Different 
instances need to be tuned to the context in which they 
are deployed, i.e., to use soft state, hard state, or no 
shared state as desired. This tuning is expected to be 
part of protocol deployment, i.e., when new physical 
layers are added, or additional processing capabilities 
available at a node and protocol layer, the adjacent 
layers would adjust accordingly.  

It would be useful for the metaprotocol to ultimately 
self-tune, to adapt as needed, enabling or disabling 
services on-the-fly based on the capabilities of 
adjacent layers. By disabling services not needed, a 
layer could increase its performance. Different layers 
could also coordinate their services, e.g., bidding for 
use of a fixed (application-specified) latency budget, 
where reordering could be deployed where it is most 
useful, subject to an overall reordering latency impact. 

5. Related work 
RNA is related to previous work on modular protocol 
systems, though it advocates for the use of a single 
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instance – the metaprotocol – rather than just 
supporting a template where protocols can be 
instantiated. Other, template-based protocol systems 
have also been considered, but tend to focus on a 
single protocol layer, whereas RNA relies on the use 
of the metaprotocol at different layers in a stack to 
operate over different regions of a network, just as 
existing stacks do. RNA attempts to incorporate the 
kind of context-sensitivity that other research has 
shown useful in deploying existing Internet protocols 
in nonstandard environments. Finally, RNA is inspired 
by configurable, integrated protocols, but again intends 
a solution that can be used recursively throughout the 
protocol stack rather than at a single layer. 

5.1 Modular Protocol Systems 
The Click modular router, x-Kernel, and Netgraph 
systems all support modular design of network 
protocols. Click focuses on router functions, and 
operates on a variety of platforms [15]. The x-Kernel 
focuses on the integration of modular messaging into 
the operating system [11]. Netgraph is a more 
incremental approach, supporting dynamically 
loadable and inter-connectable packet processing 
functions as a configurable kernel service [17]. RNA 
differs from these services in that our metaprotocol is 
an instance of a protocol, not a template from which 
others might develop a protocol. RNA will use one of 
these services – likely Netgraph or Click – as the 
platform for developing both the metaprotocol module 
and the dynamic stack management system. 

Flexible Protocol Stacks similarly provides an 
environment in which protocols can be implemented, 
providing a rich set of services from which an instance 
can be developed [32]. RNA similarly relies on a set of 
common services; we will examine leveraging their 
work in this area. 

5.2 Template-based Protocol Models 
RNA’s metaprotocol is based on an extension of the 
X-Bone’s MultiDomain Communication Model 
(MDCM) [28][30][33]. MDCM focused on the 
interaction between the layers of protocols in a stack 
and on the impact of next-hop and ID resolution on the 
dynamic structure of a stack, but ignores the basic 
operation of a protocol. RNA completes the MDCM 
design, adding the rest of the services of a protocol, 
such as state management, security, filtering, etc., 
rendering MDCM’s template into a functional protocol 
instance. 

USC/ISI’s Role-Based Architecture (RBA) proposes a 
heap-style header in a single-layer architecture, in 
which individual protocol modules (‘roles’) can be 

implemented in a variety of ways and addressed 
explicitly [5]. RBA removes the concept of layering, 
and replaces it with a rule-based association between 
Role-specific headers, allowing them to be reordered 
as desired. RNA relies on the conventional concept of 
layering, but uses the replication of a single protocol 
throughout different layers in different network 
regions. RNA could incorporate RBA’s more flexible 
header structure and processing sequence in its 
metaprotocol, and might also be able to order its layers 
in ways that map to roles, but this is orthogonal to the 
goals of the RNA project.  

5.3 Context-Sensitive Extensions 
A number of protocols have incorporated context-
based extensions for enhanced performance. The 
generic concept of adding such features, typically at 
intermediate nodes using shim protocol layers, are 
known as Performance Enhancing Proxies (PEPs) [4]. 
PEPs can be deployed over subsets of a network to 
introduce limited retransmission or deploy a tunnel 
with forward error correction, such as to correct 
increased error over mobile wireless networks. Similar 
extensions have been developed for existing protocols, 
such as wireless-aware TCP [3].  

RNA integrates these capabilities within the layers of 
the protocol stack, so these capabilities can be 
deployed as needed less obtrusively. In particular, 
RNA allows TCP-like retransmission to be supported 
over a link layer because the metaprotocol supports 
retransmission that can be enabled as needed. This 
avoids the need to create intermediate overlay layers, 
such as PEPs, or even some overlay management 
systems (Detour, RON, X-Bone, DynaBone) support 
[1][24][28][31]. It also avoids the need to redefine 
host-to-host semantics (i.e., that loss probably means 
congestion) in TCP to accommodate the characteristics 
of only a portion of a network (i.e., the wireless mobile 
part). 

5.4 Configurable Protocols 
RNA is based on the concept of the generic, inclusive 
protocol, such as the eXpress Transfer Protocol (XTP) 
and TP++ [7][10]. These protocols included a large set 
of services, such that enabling or disabling particular 
services could instantiate different protocols, like 
connectionless messaging, transaction messaging, and 
reliable streams. Both protocols considered the current 
view that services should be specific to a particular 
layer of a protocol stack, and intended to be configured 
to provide only those services that were necessary at 
their transport layer. 

7 
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The Stream Control Transport Protocol (SCTP) is a 
more recent protocol designed in a similar spirit [26]. 
SCTP was originally developed to support transaction-
based messaging services, in particular as would be 
needed to support telephone signaling (SS7 in 
particular) over the Internet. It included a number of 
features considered necessary for telephony, including 
support for backup addresses for fault tolerance, which 
is evolving into support for multipath communication. 
SCTP borrows heavily from TCP’s connection 
management and congestion control protocols, and 
adds a layer of multiplexing that allows a single 
connection to support multiple, concurrent transfers.  

RNA is designed to apply the concepts of these 
generic, configurable protocols recursively throughout 
a networking stack. By including numerous services at 
every protocol layer as an option, it is hoped that RNA 
will encourage the use of these services at the layers 
where they are most useful. This distinguishes RNA 
from SCTP, where all such services are supported 
within the transport layer alone. Unlike XTP and 
TP++, RNA assumes that services can be reused at 
multiple layers in the stack and thus operate over 
different regions of a network; this avoids the need to 
determine which layer is solely responsible for a 
particular service. Whether to enable it at any 
particular layer can be a comparatively local (subject 
to performance and interaction) decision. 

6. Summary and Future Work 
This paper presented an overview of RNA, the 
Recursive Network Architecture. RNA applies a single 
protocol across different layers and regions, to explore 
the relationship between layer environment and scope 
on network architecture. This work is just 
commencing; the next step involves a preliminary 
implementation to determine how protocol reuse at 
multiple layers impacts our notion of layer capability 
and differentiation. 
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