

1

Applied Learning Networks
Joseph Bannister, Wei-Min Shen, Joseph D. Touch, Feili Hou, Venkata Pingali

ISI Computer Networks and Intelligent Systems Divisions

Abstract: Current Internet hosts open new connections that are initialized with a number
of default, generally conservative, parameters. Applied Learning Networks (ALN) apply
accumulated experience with previous network connections to help tune initial
parameters for future network connections. ALN provides a demonstration of nontrivial
learning in complex communication protocols such as TCP that result in task-specific
performance enhancements.

1. Introduction
Applied Learning Networks (ALN)1 demonstrates that a network protocol can learn to
improve its performance over time, showing how to incorporate learning methods into a
general class of network protocols. ALN integrates external inputs and network state over
time to develop a strategy for configuring and tuning network components Figure 1
shows external inputs such as user goals, such as usage patterns, policy, and constraints,
as well as real-world data, such as time, date, holiday schedules etc.

Figure 1. Applied Learning Network is based on input (dark solid arrows) and feedback of network
state (dark dashed arrows), and affects the configurations of routers and hosts (light dotted arrows)

Many components of the network already do some amount of automatic tuning, although
it tends to be closed-loop and localized to specific protocols. Dynamic routing adjusts to
link failures, congestion control adjusts to buffer overflows, and retransmission adjusts to

1 Effort sponsored by the Defense Advanced Research Projects Agency (DARPA) and Air Force
Research Laboratory, Air Force Materiel Command, USAF, under agreement number FA8750-05-0051.
The U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes
notwithstanding any copyright annotation thereon. The views and conclusions contained herein are those of
the authors and should not be interpreted as necessarily representing the official policies or endorsements,
either expressed or implied, of the Defense Advanced Research Projects Agency (DARPA), the Air Force
Research Laboratory, or the U.S. Government.

Real
world

Time, weather,

Link traffic, server loads

User

Usage patterns,

li

Applied
Learning

Net Module
Host

Router

2

packet losses. Sometimes all three adjustments are caused by a single event, yet each
mechanism detects and reacts individually – even when the event, e.g., Mother’s Day
congestion, can be anticipated.

The behavior of each protocol is governed by a fixed set of parameters:

1. Initialization – initial conditions

2. Internal state management algorithms – rules for how the state incorporates and
reacts to its initial conditions and feedback

3. In-band explicit feedback – state based on data in packets of the protocol, e.g.,
timestamp exchanges

4. Local implicit feedback – state inferred based on the presence or absence of in-
band feedback together with timers, e.g., timeouts

In each case, these parameters are either fixed a priori (#1-3) or are managed internal to
each protocol. In most cases, these parameters are actually managed internal to each local
instance of a protocol – i.e., each TCP connection. There have been a few attempts to
integrate information across instances of a single protocol, e.g., sharing TCP state
(RFC2140), or to provide a coordinated system for one protocol feature at a single
endpoint e.g., unified congestion control (the Congestion Manager) [2][13] These are the
exception, and are limited to a single protocol or single capability.

There are several challenges in going from RFC2140 or the Congestion Manager to a
unified, cross-protocol ALN system. Existing systems re-apply the same deterministic
algorithms, albeit across instances; they do not learn from prior instances or from
concurrent instances. They lack a way to use or even obtain external context, e.g., from
peers on the same LAN or to coordinate throughout a network. Further, learning implies
an ability to forget – to unlearn; existing protocols need to be adapted to support on-the-
fly reconfiguration. Finally, the extent of the benefit of a learning-based integrated
solution is not known.

2. TCP-specific ALN
A first step towards an ALN would measure the difference between the initial conditions
and converged configuration of existing protocols, such as comparing TCP’s initial
window to the congestion window computed by the end of a connection. The difference
between the two demonstrates the opportunity of an ALN – to predict the eventual
configuration, and use it from the beginning. This would benefit both the individual
connections and increase the aggregate performance of a global network as a result.

ALN assumes that TCP does a good job converging on TCP Control Block (TCB) state
over time, but a poor job of guessing initial conditions. ALN also assumes that TCP
experiences stable net conditions over the connection, and stable offered load. Under
those conditions, ALN records TCP end-of-connection state, as well as 'kitchen sink' data
(weather, endpoint location, etc.), trains an adaptive learning module on the state data

3

(e.g., TCB state, kitchen sink state), and applies TCBs of new connections based on
predictive lookup (i.e., lookup kitchen sink state and retrieve expected TCP initial state).

Current transport protocols train their parameters during individual connections, always
from a static set of initial conditions, relearning for each new connection. ALN enables
transport protocols to train from more appropriate, context-sensitive initial state,
converging more quickly and reducing overall connection duration. The goal of this
effort is to provide real, empirical metrics to determine the utility of applied machine
learning to a highly constrained subset of network optimization, focusing on this area of
transport protocol parameter prediction. The effort is based on the three component
investigations of (1) data collection and analysis, (2) search for domain-specific
knowledge, and (3) development of adaptive applied machine learning.

There are a few systems that have investigated long-timescale sharing of configuration
parameters among a number of connections. The use of inter-connection sharing was first
developed to overcome the limits of very brief TCP connections (called Transaction
TCP) in obtaining RTT trends [3]. This was extended for conventional connections, both
in sequence and in parallel, called TCB Sharing [13]. The Congestion Manager (CM)
provided a different approach based on a unified packet scheduler and feedback system,
rather than explicitly coordinating separate connections, and included support for both
TCP and non-TCP associations [2]. None of these systems have integrated learning of
network parameters with prediction, which is the focus of ALN.

Other systems have focused on tuning individual connections to long-range parameters
because existing TCP congestion control is too slow, e.g., high-speed, high-latency
connections [6] characteristic of satellite-based networks. The more challenging issue for
ALN is how to extend these systems to handle imprecise input over much longer
timescales, and how to resolve changes in tuning within existing constraints of ongoing
connections. The API for such tuning, including these constraints and feedback, needs to
be developed. There have been numerous systems for recognizing long-term trends in
data sequences, as well as systems for applying that learning. These include neural
networks as well as genetic algorithms [1][11].

3. Overview of Results
A software prototype was developed that demonstrated that:

• ALN would be feasible to deploy in an operational environment

o Learning does not adversely impact the performance of applications, a
typical web server in this case.

• Although only 20% of TCP connections would benefit from ALN, they could
speedup by a factor of 17% (1.2x faster).

o TCP is fairly well optimized, so it’s notable that any statistically
significant improvement is even possible.

4

• When ALN was deployed, the results were mixed, where some connections were
improved while others were slowed; the net result was positive, but only
marginally so.

o It’s not clear whether the result was due to the challenge of predicting
nondeterministic data, the challenge of discretizing widely ranging data
sufficient for tractable learning, or whether the predicted values simply
had unpredictable effects when coupled with traffic in the global Internet.

On the positive side, the accuracy of the prediction system was less important than fast,
rough prediction, which further bodes well for operational use of these kinds of
techniques. On the negative side, even though this was a highly constrained application,
substantial extensions were required to process the data to make it suitable for learning
and to augment the learning system to interface to the control mechanisms used in one of
the most basic network protocols, and the results were mixed. Overall, the opportunity to
apply learning to manage other network control systems such as dynamic routing,
network management and configuration, and other types of tuning are likely to be even
more challenging.

Finally, the ALN system resulted in three software artifacts. The first is an extended
instrumentation platform, based on Web100, augmented to gather additional ‘kitchen
sink’ data as well as to record support information (such as DNS resolutions) at the time
of recording the statistics of each TCP connection [9]. The second is a software system to
train on that data and provide predictions on future connection initial conditions. The
third is an integration of the first two into the FreeBSD OS that demonstrates their
interoperation and performance. This software is available on the ALN website,
www.isi.edu/aln

4. Prototype
An experimental prototype was built to experiment with automatic learning-driven
application-independent congestion window tuning. The primary result is that for
narrowly framed problems such as predicting the congestion window the learning
networks are promising in terms of accuracy and performance. A method to integrate the
learning algorithms was developed that is simple and readily usable. The experimental
setup is presented first. The next subsections discuss the high-level observations from the
connection data collected, opportunities available for optimization and expected gain.
The next two subsections discuss actual performance limits of the experiment design and
actual performance measurements on a live website.

Experimental Setup
The experimental system consists of three basic components - the Web100 TCP
instrumentation [9], a Bayesian learning network, and a user-space connection-tuning
daemon that combines the other two components with connection information processing
functions. Each is discussed in greater detail below.

5

The experiment was conducted in two phases – a data collection and analysis phase, and
performance evaluation phase. The former was intended to evaluate the potential for
performance gain. The latter was intended to measure real system performance of the
integrated system to identify parameter ranges within which the system can operate and
the impact on actual connections.

The data collection and tuning was performed on a readily available relatively slower
machine with two-processor 1Ghz Intel Pentium III running Linux Fedora Core 4
(upgraded later to Core 5) with 1GB memory. The stress testing used three machines –
one as the server and two as traffic generators. All the nodes were on a single private
LAN connected using a Gigabit Switch and links. The server had two-processor Intel
Core Duo with 2.4 GHz P4s with hyper-threading enabled and 1GB memory. The traffic
generator nodes had two-processor 2.4Ghz P4 each with 1GB memory. This difference in
setups was deemed reasonable because the load on the host in terms of connections/sec is
very light (<10/sec) almost all the time during data collection and tuning. The stress
testing on the other hand required faster machines to test the limits of the design.

TUNING
DAEMON

NNet

Kernel

UserRaw stats

Recorder

TCP

Analyzer

www.postel.org:80

Stats

TCB
table

Figure 2. Experimental setup that combines Web100 kernel instrumentation with ALN in the user

space.

Web100
The Web100 instrumentation system consists of kernel extensions that provide an
interface to access the state variables of any given TCP connection and user-level library
that provides a higher layer abstraction to the same [9]. Under the hood, each connection
is associated with a set of well-defined variables that are exported as a single file with the
connection identifier as the file name in /proc virtual file system. The user-level library
provides a high level API to access the content of these files.

Web100 applications are informed of TCP connection establishment and closure through
asynchronous NETLINK messages sent from the kernel to the user space. Upon receiving
the messages, the applications are expected to query the Web100 library for connection
information such as the source and destination addresses, ports and MaxRTT (maximum
observed RTT).

6

Though the original intent was incorporate the learning into the kernel, a user-level
tuning daemon-based approach was selected. The Web100 instrumentation provided a
simple and extensible framework that allowed the work to be focused on aspects that are
unique to ALN such as the integration with the learning library.

Bayesian Learning Library
A Bayesian network was developed to learn input patterns, based on an implementation
developed specifically for this project. The learning system is trained on past data first to
learn the function relating the input and output fields. The learned function can be used
for prediction, and updated via incremental training. Figure 3 shows the learning and
prediction process.

Fxxxxx1

Y1

Offline Training Period

Fxxxxx1

Y1

Predicting Period

Figure 3. Learning and Prediction

In the TCP protocol, the input fields are “address”, “hour”, “day”, “month”,
“Loc_latitude”, “Loc_longitude”, and the output fields are “MaxCwnd”, “MinRTT”,
“MaxRTT”, “PcktsIn”, “PcksIn”, “PcksOut”. The function to be learned is F (address,
hour, day, month, Loc_latitude, Loc_longitude) -> the correct initial value for
“MaxCwnd, MinRTT, PcktsIn, PcksIn, PcksOut”.

Discretization
The primary issue with the learning network is the value range for the input variables.
While the network can handle the range in theory, in practice the operations (training and
lookup) become very slow. Thus, a simple variable-specific quantization function that
maps a large range of values to a small range (10-30) was used. The learning and
prediction is in terms of the smaller range. An inverse map is used to translate predicted
values to appropriate. The quantization function used is a either a static table that is based
on empirical data collected or a simple linear function. For example, mapping function
for latitude maps the -90° to +90° to the range 0-11 (f(x) = 6+ x/15). In case of MaxRTT,
the quantization function is a table is constructed by analyzing the connection data. An
inverse quantization function maps the quantized values back to the original range. The
form of the inverse function, as before, depends on individual tables.

7

Nondeterministic Inputs
ALN trained on a large data set (~ 1 million entries), and the data are non-deterministic.
Even under the same input data set, the output value can vary. For example, Figure 4
shows some instances extracted from collected data. For example, the same input vector
has multiple MaxCwnd values. The non-deterministic nature of the training data makes it
forces us to use the probability predication instead of a single point or value prediction by
the learning network.

Figure 4. Training Instances Between 5/22/06 and 7/21/2006

Moreover, the MaxCwnd value between a fixed pair of endpoints, as shown in Figure 5,
shows no directly observable diurnal pattern can be used for learning.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

0

1

2

3

4

5

Hour

M
ax

C
w

nd

month:5,day:24

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

0

1

2

3

4

5

Hour

M
ax

C
w

nd

month:5,day:28

8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

0

1

2

3

4

5

Hour

M
ax

C
w

nd

month:5,day:26

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

0

1

2

3

4

5

Hour

M
ax

C
w

nd

month:5,day:28

Figure 5. Data Pattern for MaxCwnd

Based on the non-deterministic data, the learning system needs to predict more than a
single, simple output variable. For this system learning was extended to predict a
probability distribution, which can be used to compute a single centroid value and a
variance range. Two approaches were considered: 1. Modified neural networks 2. Naïve
Bayesian learning.

No existing neural network methods are believed effective for predicting a “probability
distribution” [4][5][8]. In the system developed for ALN, first a weighed average is
computed for each nondeterministic set. A neural network with back-propagation using
hidden layers was used to predict the probability for each output value. The system
predicts the value of Prob[(RTT=i) | inputs] (i ∈ S) under each input instance for each
output variable y that with state space S. All the output values are trained separately and
normalized afterwards. Whenever a new input/output set is presented to the network, the
weights and biases of the network are updated. The network is trained incrementally to
adapt to new changes

Naive Bayesian learning is a probabilistic learner based on applying Bayes’ theorem with
strong (naive) independence assumptions [12][11]. The probability model for the learner
is

P(y|x1,x2,…,xn) = P(y) P(x1,x2,…,xn|y) / P(x1,x2,…,xn)
Depending on the precise nature of the probability model, Naive Bayesian learner can be
trained very efficiently in a supervised learning setting. The Naive Bayesian network is
also trained incrementally to adapt to new changes.

Each of these two mechanisms results in a predicted output distribution for each input.
There are three possible ways to use that set: 1) pick the output with the highest
probability, 2) pick the highest probable value with a range, or 3) generate a random
value based on the output distribution. Method 3 has the potential for higher accuracy,
but method 2 is most appropriate to match to TCP, which already uses [mean, variance]
pairs to indicate some of the state ALN is designed to predict.

9

Learning accuracy
Ideally, if the true distribution of the output values is known, its mean and variance can
be compared with that of the learned probability. However, in TCP, the true probability
of the output values is unknown. A rough measure is the “exact-hit-ratio”. However, even
if the probability is exactly known, the “exact-hit-ratio” will not be perfect. For example,
flipping a coin and knowing the probability to be heads is 0.5, the “exact-hit-ratio” is
only 50%.

The ALN learning network was trained on 90% of the data set and tested on the
remaining 10% for preliminary analysis. The system converts a predicted distribution into
the value that has the highest probability. To measure the accuracy of learning, fixed-
prediction is used as the benchmark. Fixed prediction always predicts the output to be the
value that occurs most frequently, no matter what inputs are. Comparison results are
given below with Exact-hit-ratio H and Error-Variance S.

Results from Fixed prediction
MinRTT: (H = 30.47%, S=1.9451); MaxCwnd: (H = 68.45%, S=0.8657)

PktIn: (H = 88.41%, S=0.5962)

Results from Neural Network learner:
MinRTT: (H = 45.69%, S=1.3378); MaxCwnd: (H = 68.31%, S=0.8685)

PktIn: (H = 87.93%, S=0.6587)

Results from Naive Bayesian learner:
MinRTT: (H = 47.55%, S =1.3697) MaxCwnd: (H = 68.34%, S=0.8709);

PktIn: (H = 88.41%, S=0.5965)

For the variable has more uncertainty feature (MinRTT), ALN prediction improves the
“exact-hit-ratio” compared with fixed value predictions. For the other two variables,
fixed prediction is already good enough.

Lookup Modules
Lookup modules are used to compute ALN-specific variables. Examples include GeoIP
for translating IP address into location information, calendar module to identify location-
specific holidays, weather module to lookup weather information for any given location
and a time module to compute day of the week, etc. [7]. The data analysis integrated
these modules but the final experimentation only used GeoIP module. Some of issues
associated with these lookup modules include incomplete and possibly inaccurate
information (GeoIP, weather), ambiguous information (weather), textual word mismatch
(location, weather) and cost (weather). The performance evaluation phase only uses the
GeoIP module.

10

Tuning Daemon
The tuning daemon, written in C, interfaces on one side with the Web100 library to set
the congestion window variable of selected connections to appropriate value and on
another side with the neural network to determine what that value should be. The primary
function of the tuning daemon, as discussed in earlier sections, is to carefully ramp up the
congestion window for a small subset of the connections.

The implementation is based on existing implementation of a Web100 tuning daemon
called WAD (Work Around Daemon). It has been significantly rewritten and extended
with ALN-specific code since then.

5. Data Collection
Two modes of data collection were explored – client mode and server mode. In the client
mode, a proxy server was setup to intercept all outgoing web accesses from a small set of
users. In the server mode, a host was setup to serve www.postel.org. In both cases, the
kernel was instrumented and user level process extracted all the connection information
from the kernel and wrote them into a MySQL database.

Analysis showed that the client mode setup did not provide any opportunities for
performance improvement because the congestion window depends on the amount of
outgoing traffic and there was little traffic other than TCP acknowledgements. As a
result, the client mode was not pursued and all discussion of results henceforth assumes a
server mode setup.

In the server mode, only a subset of connections was considered for analysis. IPv6
connections were ignored for simplicity reasons. Also accesses from the search engine
web crawlers were ignored. The website maintains an archive of hundreds of large
documents. Sequential accesses to these documents skewed the data transfer patterns by
accounting for up to 80% of the data transferred. Although they have to be accounted for
in reality, the website is not a typical website in terms of file size distribution and claims
about overall performance impact are extrapolated based only on the subset of
connections considered here.

In all 173 parameters were collected for each connection. They include 147 parameters
from Web100 and 26 parameters associated with ALN. Although Web100 variables
focused on the connection parameters, ALN variables covered aspects such as weather,
location and time. The first phase of the experiment which involved analysis stored all
the information in multiple tables in a local MySQL database. Post-processing scripts
ensure that tables are complete and referential integrity is maintained. These scripts also
generated input for analysis and testing the learning mechanism. The performance
evaluation phase differs from the data analysis phase in two ways – primarily due to the
limited nature of the experiment. First, it does not use any offline information/learning.
Second, only the location and time information is used for prediction.

ALN requires the connections be long enough that there is value to optimizing through
the reduction in the roundtrips but not too long. Since ALN optimizes only the slow start,

11

only those connections where the slow start dominates, the optimization has any impact.
Figure 6 shows that only a small fraction of connections are of appropriate length (~ 3-
4%) but they carry 60-70% of the traffic. The MaxCwnd observed in these connections is
shown in Figure 7. The MaxCwnd should be at least a few packets wide. Figure 8 shows
the distribution of the connection duration. Most connections last less than 1 second and
these connections have < 400ms RTT as shown in Figure 9. Together most connections
have a small number of RTTs and duration of slow start dominates the total connection
time.

CDF of MaxCwnd vs Connections

0

10

20

30

40

50

60

70

80

90

100

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

MaxCwnd (Bytes)

P
e
rc

e
n

ti
le

Figure 6. Most connections have a small congestion window. Only connections with large enough
window can benefit from tuning.

CDF Number/Bytes Transferred Out vs Connection
Length

0

20

40

60

80

100

10 100 1000 10000 100000 1000000
C o nnect io n Leng t h (x 10) B yt es

P
e
rc

e
n

ti
le

Cumulative Number of Connections
Cumulative Bytes Transferred

Figure 7. Most connections are short but most bytes belong to long connections.

12

CDF of Connection Duration

0

10

20

30

40

50

60

70

80

90

100

10 100 1000 10000 100000

Dur a t i on of Conne c t i on (ms)

Number of Connect ions

Figure 8. ALN can improve connections that last long enough to open the congestion window but
short enough that transients dominate.

CDF of MaxRTT

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300 350 400

MaxRTT (ms)

P
e
rc

e
n

ti
le

Figure 9. Most RTTs are less than 400ms. There are modalities at 10ms and 80ms.

Simple Performance Estimator
A simple model, shown in Figure 10, was used to obtain a rough estimate the impact of
the optimization. The model assumes exponential growth of congestion window during
slow start to MaxCwnd, and than a stable congestion window that is equal to MaxCwnd
for the rest of the connection. This model assumes a fixed RTT that is equal to MaxRTT
recorded for the connection and perfect transfer model with no losses or other
performance reducing events. As a result, this model underestimates the duration of both
un-optimized and optimized connections. The actual performance depends on the
connection events. As results from the live web server show this model’s prediction was
consistent with the results to a first level of approximation.

13

Simplified Model of Existing and ALN TCP

0

20

40

60

80

100

120

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

T
h

o
u

sa
n

d
s

Time (ms)

C
o

n
g

e
st

io
n

 W
in

d
o

w

Existing TCP ALN TCP

Figure 10. Simple model used to estimate potential speedup

The results first assume a prediction accuracy of 70% of MaxCwnd and later look at the
sensitivity of estimated gain to the prediction accuracy.

ALN Impact - Speedup vs Number of
Connections

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

94 95 96 97 98 99 100

Percentile of Connections

S
p

e
e
d

u
p

Figure 11. Potential for low load on the prediction mechanism given which of the 3-5% of
connections to optimize.

Figure 11 shows the fraction of expected speedup based on the model. The estimated gain
is mostly between 1.1x-1.4x range but for some combinations of transfer sizes and RTTs,
it is higher. Figure 12 shows the fraction of bytes that see a specific speedup. Almost
30% of the bytes see no speedup. Another 30% see only a small (1.1x) speedup. About
40% of the bytes see 1.2x or more speedup. Figure 13 shows that the distribution of
speedup across the RTTs is relatively uniform. Note that this is speedup relative to the
ideal TCP computed using the above model. Higher RTTs see a larger absolute gain in
terms of the connection duration. Figure 15 shows that the improvement seems to be

14

relatively robust to the prediction quality, assuming there is no over prediction. It is
sufficient for the prediction to be only 30% of the actual MaxCwnd value to observe
gains. Accuracy delivers another 20% improvement.

ALN Impact on Bytes Transferred

0

10

20

30

40

50

60

70

80

90

100

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

Speedup

P
e
rc

e
n

ti
le

 o
f

B
y
te

s

T
ra

n
s
fe

rr
e
d

 o
u

t

Figure 12. 70% of the bytes transferred see 20% or more gain.

ALN Impact

0

10

20

30

40

50

60

70

80

90

100

0 200 400 600 800 1000 1200 1400

MaxRTT (ms)

C
u

m
u

la
ti

v
e
 S

p
e
e
d

u
p

[S

u
m

 o
f

(S
p

e
e
d

u
p

 *
 N

u
m

C

o
n

n
s
)

o
v
e
r

a
ll

 R
T

T
s
]

Figure 13. RTTs less than 400ms account for bulk of the gain.

15

Estimated ALN Speedup vs Prediction Accuracy

0

10

20

30

40

50

60

70

80

90

100

1 1.2 1.4 1.6 1.8 2

Speedup

B
y
te

s
T

ra
n

sf
e
rr

e
d

 O
u

t
(P

e
rc

e
n

ti
le

)

Accuracy=10%

Accuracy=20%

Accuracy=30%

Accuracy=40%

Accuracy=50%

Accuracy=60%

Accuracy=70%

Accuracy=80%

Accuracy=90%

Figure 14. Poor (under)prediction is better than none. Fair prediction can add another 20%
improvement.

Stress Testing
The objective of the stress tests is to find out potential bottlenecks in the system. The
basic result here is that (1) for the Bayesian learning system and parameters explored,
learning performance is not the issue, and (2) the asynchronous messaging used by
Web100, and therefore by the user-space tuning daemon, results in a negative interaction
with the process scheduler at high connection rates. This has a significant impact on the
accuracy and fraction of connections tuned.

Bayesian Learning Library
The Bayesian learning network was trained using 10,000 examples and evaluated the
prediction performance over another 10,000 examples. All the data was randomly
generated. However that does not materially affect the results since the data structure
accesses are fairly independent of the values of the individual inputs and depend on
structural aspects such as the number and range of inputs. Further, the performance, and
not accuracy, of the prediction is being evaluated here.

Experiments determined the scalability of the learning network. The parameters
associated with the learning system were varied - the number of input variables, output
variables and the range associated with each variable. The normalized time to predict an
output variable linearly increases with the number of input variables as shown in Figure
15. However prediction time for each output is almost independent of the number of the
output parameters, as shown in Figure 16. Note that the y-axis scale is in terms of
microseconds and in absolute terms the speed of prediction is not an issue unless each of
the parameters is at the higher end of the ranges considered (Figure 17). The experiments
use 4 input variables, 1 output variable and range of up to 24.

16

Normalized Prediction Time (per output)
vs. Number of Inputs

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25 30 35

Number of Input Variables

P
re

d
ic

ti
o

n
 T

im
e
/

O
u

tp
u

t
(i

n
 m

ic
ro

se
cs

)

Figure 15. Prediction time for each output variable increases linearly with input parameters.

Normalized Prediction Time (per output) vs
Number of Outputs

5

7

9

11

13

15

17

19

0 2 4 6 8 10 12

Number of Outputs

P
re

d
ic

ti
o

n
 T

im
e
/

O
u

tp
u

t
(i

n
 m

ic
ro

se
cs

)

Figure 16. Prediction time for output variables is independent of the number of output variables.

Normalized Prediction Time (per Output) vs
Range of Variables

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60

Range of Variable (Both Input and Output Variables)

P
re

d
ic

ti
o

n
 T

im
e
 p

e
r

O
u

tp
u

t
(i

n

m
ic

ro
se

cs
)

Figure 17. Prediction time for each output increases linearly with range of each variable.

17

Web100
The objective of this experiment is to understand the impact of user-level implementation
and messaging on the accuracy and effectiveness of tuning. The experimental setup, as
discussed in an earlier section, consisted of three hosts connected using Gigabit
interfaces, links and switch. One host was configured to be a server and the other two as
traffic generators. The server host ran a simple TCP server process that received
connections from the TCP clients running on the other two machines. The Web100
NETLINK messages generated by the kernel were processed by the tuning daemon. The
daemon was run in a test mode, i.e., the tuning daemon performed all the necessary
computation for tuning but actually does not tune. The experiment measured, for various
connection rates, the fraction of messages successfully received by the daemon and
amount of time it took to process the connection from the time the connection is
established.

The computation involves looking up connection-related information using Web100 user-
level library. Web100 lookup performance was initially poor. This is because library
maintains information on all the active connections and refreshes the connection list upon
each call to a Web100 function. At high connection rates, when thousands of connections
are outstanding in TIME_WAIT and other states, the delay associated with the refresh is
high. Also since the tuning daemon itself maintained an internal list of active
connections, this internal data structure of Web100 library was unnecessary. The Web100
library was thus extended with a new more limited lookup function that avoids the cost of
duplication of the connection information and associated delay.

NETLINK messaging is an indirect bottleneck. Because a single message is sent from the
kernel to user space at the start and end of each connection, in the worst case processing a
single connection requires two context switches to the tuning daemon. Since process
context switches happen at a coarser granularity (on the order of 1ms) than the
connections themselves, the socket eventually overflows with the unprocessed NETLINK
messages. Further since the tuning daemon is single threaded and the core connection
processing is on the critical path, the wait time for the NETLINK messages in the socket
increases. As a result, only a small fraction of the connections are tuned to begin with at
high rates.

Figure 18 shows the variation of the message process delay with connection rates. At
high connection rates (> 500/sec), the delay is unbounded and the standard deviation is
comparable to an RTT. At lower connection rates (< 500/sec) the delay is a low fixed
value of 170us but the standard deviation remains high because of interaction with
process scheduling mechanisms. Figure 19 shows the fraction of connections processed
as the connection rate increases. The fraction is as low as 10% of the connections when
the connection rate increases to 5000/sec. Given that the fraction of connections that are
available for optimization is small (~ 5%), it is unnecessary and wasteful for the user-
level daemon to receive and discard 95% of messages. A potential work involves filtering
unnecessary messages in the kernel itself.

18

Time to Tune

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Connection Delay Units (1 unit is 0.5 us approx)

U
n

it
s

(d
e
p

e
n

d
s

o
n

 v
a
ri

a
b

le
)

Rate (Connections/sec)

Time to Tune from Connection Start (microsecs)

Standard Deviation of Time to Tune (in microsecs)

Figure 18. At high rates, the time to tune is high both in absolute terms and in terms of standard
deviation. At rates <= 500 connections/sec, the time to tune is a low fixed value (170us).

Tuning Efficiency

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 1000 2000 3000 4000 5000

Delay Units (1 = approx 0.4 us)

C
o
n

n
e
ct

io
n

s/
se

c

0

10

20

30

40

50

60

70

80

90

100

P
e
rc

e
n

ta
g

e
 o

f
C

o
n

n
e
ct

io
n

s
T

u
n

e
d

Rate (Connections/sec) Fraction of Connections Tuned

Figure 19. At high rates, most connections to untuned because of high load.

6. Performance
The experiment was setup as follows: A live web server (www.postel.org) with real
traffic was used. The configuration of the machine is same as described in the previous
section for data collection including the hardware (Dual 1Ghz PIII with 1GB memory)
and operating system (Linux Fedora Core 5 patched with Web100 kernel extension). The
http server used was Apache version 2.0.54. The Web100 components were extended in
two ways. First, a Web100 variable was added to the kernel component to enable
updating the congestion window in the kernel (CurCwnd). Second, the user-level
Web100 library was extended with a new primitive to reduce connection lookup costs, as
discussed in the previous section. The performance of the Bayesian learning library or the
user-kernel messaging is not an issue because of the low connection rate. An ALN-
specific output filter was written for the Apache web server [3] to compute the expected

19

size of the transfer for each connection and inform the tuning daemon of the same. This
information is used only to determine whether or not to tune and not during the tuning
process. In general this information is not available with the tuning daemon or sometimes
even to the application itself. The learning system would have to be extended in future to
predict the transfer size before deciding to tune or not. Due to limited time and scope of
the experiment, this line of enquiry could not be pursued. Also, for the same reason the
tuning phase has fewer samples than the data collection phase. The results therefore
should be considered as indicative of the potential more rather than absolute performance
levels.

For each incoming connection, the tuning daemon selects a tuning strategy at random
from a fixed set that includes a “null” strategy i.e., no tuning. The strategies differ in
terms of how to interpret the results of the prediction. Note that the prediction by the
Bayesian learning library is a two-tuple (mean, standard deviation). Further this mean and
standard deviation are in terms of the quantized values and not actual values as discussed
in the experimental setup section. As mentioned before, a quantization function maps the
actual values of each variable to a small range and an inverse quantization function maps
the value back to the actual range.

i) Null: Do not tune.

ii) FixedCwnd: Ignore the prediction. Use an arbitrary but fixed congestion
window size of 72400

iii) PredMean (Low): Use the mean, but rounded to the nearest lower integer
value, as input to the inverse quantization function.

iv) PredMean (High): Use the mean, but rounded to the nearest higher integer
value, as input to the inverse quantization function.

v) PredMean (Round): Use the mean, but rounded to the nearest integer value, as
input to the inverse quantization function.

Four variables were used as input to the learning system and one as output. The input
variables include latitude, longitude, day of the month, and hour of the day. The output
variable is the MaxCwnd. The value for the congestion window (CurCwnd) is based on
the prediction for MaxCwnd. The choice of the four input variables is somewhat
arbitrary. Future work will explore combinations of variables to identify which ones are
better predictors and which ones are not.

The results compare performance of the various tuning strategies for connections to/from
the same subnet. The null strategy is used as the baseline performance. To reduce
spurious measurements, the comparison is reported only for those destinations that have
more than a threshold number (10) of connections using the null strategy.

A total of 57,093 connections were observed during the experimental duration. A total of
7,772 connections (13.6% in number, 38.9% in bytes) were tuned using the various
strategies out of which performance over 3852 connections (6.7%) is reported here.

20

Figure 20 shows that the average speedups observed are between 1.16x and 1.22x. The
distribution across the RTT range is shown in Figure 21. Connections with RTTs around
100-200ms have the most to gain. Too short RTTs and long RTTs don’t benefit as much
because of short connection durations and small MaxCwnd respectively. Figure 19 shows
the overall gain weighted with the number of connections across various RTTs. It shows
that although there is variation in terms of gains for individual connections, the overall
gain is same across the various strategies i.e., the gain is not too sensitive to the particular
strategy used. Figure 22 shows the prediction accuracy of individual strategies. Any
prediction ratio over 1.0 is over-prediction that makes the connection more aggressive
than the untuned connection. Clearly the FixedCwnd strategy over predicts most of the
time. PredMean(High) also consistently over-predicts. Although PredMean(Round)
reduces the overprediction, and PredMean(Low) predicts the best. It consistently under-
predicts but by not too much - only by 20-30%.

A few observations are in order. First, the basic results suggest that at some level any
prediction is better than none. In this experiment the learning algorithm was simple, the
quantization was coarse, and variables used were few. Even then the performance is quite
reasonable. Second, the average gain reported is consistent with the simple performance
model used in the previous section. Second, the coverage in terms of bytes is within the
estimated range but towards the lower end. Third, the connections that can be tuned is
significantly more than 4% estimated from the data collection phase which indicates a
dependency on the particular website, file size and access distribution.

Average Speedup

1.13

1.14

1.15

1.16

1.17

1.18

1.19

1.2

1.21

1.22

1.23

FixedCwnd PredMean(Low) PredMean(High) PredMean(Round)

Strategy

S
p

e
e
d

u
p

Figure 20. Average performance gain is around 1.2x

21

Average Speedup for Tuned Connections

1

1.2

1.4

1.6

1.8

2

2.2

2.4

0 50 100 150 200 250 300 350 400

MaxRTT (ms)

S
p

e
e
d

u
p

FixedCwnd PredMean(Low) PredMean(High) PredMean(Round)

Figure 21. Speedups observed are best for RTTs in the middle of the RTT range. The speedups
range from 1.1x to 2.2x with an average around 1.2x.

CDF of Speedup

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300 350 400

MaxRTT

P
e
rc

e
n

ti
le

FixedCwnd PredMean(Low) PredMean(High) PredMean(Round)

Figure 22. The weighted speedups across RTTs almost independent of the specific strategy used.

Average Prediction Accuracy

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 50 100 150 200 250 300 350 400 450

MaxRTT (ms)

R
a
ti

o
 o

f
P

re
d

ic
te

d
/
A

ct
u

a
l

M
a
x
C

w
n

d

FixedCwnd PredMean(Low) PredMean(High) PredMean(Round)

Figure 23. Conservative prediction strategy PredMean(Low) underpredicts but is almost as
effective as the others.

22

Fraction of Potential Achieved
Figure 24 shows how much closer the tuned connections are to the ideal, relative to the
situation today. The ideal was computed based on the best performance in terms of
MaxRTT and MaxCwnd observed for all the connections to a particular destination. The
results are inconclusive. Although a simple majority of the connections see positive gain
(53%-60%), a large fraction (40-47%) of the connections see negative gain i.e., the tuned
connections are worse than the non-tuned connections. 20% of the tuned connections
achieve 80% or more the potential maximum gain. There could be several reasons for
this, such as simplicity of the computation of the ideal, the small sample size and the
observed large standard deviations in terms of connection durations. More work is
required to identify the other information that can more precisely compute the ideal
performance and help identify more accurately the connections that can benefit from
ALN.

CDF of Fraction of the Potential Gain Achieved

0

10

20

30

40

50

60

70

80

90

100

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Fr a c t i on of P ot e nt i a l Ga i n (1 - (ol d - ne w/ ol d - i de a l))

FixedCwnd PredMean(Low) PredMean(High) PredMean(Round)

Figure 24. More work is required to accurately identify connections and conditions in which ALN
can improve the performance.

7. Future Work
Several extensions are possible for this work:

• Tuning Daemon Implementation

o Have a multi-threaded implementation to remove connection-specific
processing from the critical path

o Preprocess connection information in the kernel to reduce user-kernel
transitions and the fraction of connections that the tuning daemon must
process.

o Integrate offline processing/learning with online tuning. This requires the
capability to checkpoint and restore the state of the Bayesian network.

23

• Lookup Modules

o Build uniform representation to integrate multiple sources of information

o Identify a strategy to consistently handle the issues with the source
(completeness, accuracy, performance)

• Prediction process

o Predict the transfer size in addition to the tuning

o Experiment with more variables such as weather and holidays.

o Use fine grained ranges for the input and output variables for greater
accuracy

• Quantization

o Make the quantization table more dynamic and data dependent

8. References
[1] Adlib, J., Shen, W., Noorbakhsh, E., “Self-Similar Hidden Markov Model for

Predictive Modeling of Network Data,” SIPE DM: Data Mining and Knowledge
Discovery: Theory, Tools, and Technology Intelligent Data Analysis, Florida 2002.

[2] Balakrishnan, H., Rahul, H., Seshan, S., “An Integrated Congestion Management
Architecture for Internet Hosts,” Proc. ACM SIGCOMM, Cambridge, MA,
September 1999.

[3] Braden, R., “T/TCP -- TCP Extensions for Transactions Functional Specification,”
RFC-1644, July 1994.

[4] Bridle, J.S. “Training Stochastic Model Recognition Algorithms as Networks can
lead to Maximum Mutual Information Estimation of Parameters.” In Touretzky, D.,
edit, Advances in Neural Information Processing Systems, Vol. 2, NIPS-89, Denver.
Morgan Kaufman.

[5] Denke, J., leCun, Y., “Transforming Neural-Net Output Levels to Probability
Distributions,” (AT&T Bell Labs Technical Memorandum 11359-901120-05, 1990.)
Advances in Neural Information Processing Systems, Vol. 3 853-859. Morgan
Kaufman, 1991.

[6] Floyd, S., “HighSpeed TCP for Large Congestion Windows,” RFC-3649,
Experimental, December 2003.

[7] GeoIP http://www.maxmind.com
[8] Hoekstra, A., Tholen, S., Duin,, R., “Estimating the reliability of neural network

classifications,” Proceedings of the ICANN’96, 53-58, 1996.
[9] Mathis, M., Heffner, J., Reddy, R., “Web100: Extended TCP Instrumentation for

Research, Education and Diagnosis,” ACM Computer Communications Review, Vol
33, Num 3, July 2003.

24

[10] Postel, J. (ed.), “Transmission Control Protocol,” RFC 793, Sept.1981.
[11] Shen, W-M., Autonomous Learning from the Environment, W. H. Freeman,

Computer Science Press, 1994. (Foreword by Herbert A. Simon)
[12] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach.

Prentice Hall, 1995
[13] Touch, J., “TCP Control Block Interdependence,” RFC-2140, ISI, April, 1997.

