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Abstract: Current Internet hosts open new connections that are initialized with a number 
of default, generally conservative, parameters. Applied Learning Networks (ALN) apply 
accumulated experience with previous network connections to help tune initial 
parameters for future network connections. ALN provides a demonstration of nontrivial 
learning in complex communication protocols such as TCP that result in task-specific 
performance enhancements.   

1.  Introduction 
Applied Learning Networks (ALN)1 demonstrates that a network protocol can learn to 
improve its performance over time, showing how to incorporate learning methods into a 
general class of network protocols. ALN integrates external inputs and network state over 
time to develop a strategy for configuring and tuning network components Figure 1 
shows external inputs such as user goals, such as usage patterns, policy, and constraints, 
as well as real-world data, such as time, date, holiday schedules etc. 

 

Figure 1. Applied Learning Network is based on input (dark solid arrows) and feedback of network 
state (dark dashed arrows), and affects the configurations of routers and hosts (light dotted arrows) 

Many components of the network already do some amount of automatic tuning, although 
it tends to be closed-loop and localized to specific protocols. Dynamic routing adjusts to 
link failures, congestion control adjusts to buffer overflows, and retransmission adjusts to 
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either expressed or implied, of the Defense Advanced Research Projects Agency (DARPA), the Air Force 
Research Laboratory, or the U.S. Government. 
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packet losses. Sometimes all three adjustments are caused by a single event, yet each 
mechanism detects and reacts individually – even when the event, e.g., Mother’s Day 
congestion, can be anticipated.  

The behavior of each protocol is governed by a fixed set of parameters: 

1. Initialization – initial conditions 

2. Internal state management algorithms – rules for how the state incorporates and 
reacts to its initial conditions and feedback 

3. In-band explicit feedback – state based on data in packets of the protocol, e.g., 
timestamp exchanges 

4. Local implicit feedback – state inferred based on the presence or absence of in-
band feedback together with timers, e.g., timeouts 

In each case, these parameters are either fixed a priori (#1-3) or are managed internal to 
each protocol. In most cases, these parameters are actually managed internal to each local 
instance of a protocol – i.e., each TCP connection. There have been a few attempts to 
integrate information across instances of a single protocol, e.g., sharing TCP state 
(RFC2140), or to provide a coordinated system for one protocol feature at a single 
endpoint e.g., unified congestion control (the Congestion Manager) [2][13] These are the 
exception, and are limited to a single protocol or single capability. 

There are several challenges in going from RFC2140 or the Congestion Manager to a 
unified, cross-protocol ALN system. Existing systems re-apply the same deterministic 
algorithms, albeit across instances; they do not learn from prior instances or from 
concurrent instances. They lack a way to use or even obtain external context, e.g., from 
peers on the same LAN or to coordinate throughout a network. Further, learning implies 
an ability to forget – to unlearn; existing protocols need to be adapted to support on-the-
fly reconfiguration. Finally, the extent of the benefit of a learning-based integrated 
solution is not known. 

2.  TCP-specific ALN 
A first step towards an ALN would measure the difference between the initial conditions 
and converged configuration of existing protocols, such as comparing TCP’s initial 
window to the congestion window computed by the end of a connection. The difference 
between the two demonstrates the opportunity of an ALN – to predict the eventual 
configuration, and use it from the beginning. This would benefit both the individual 
connections and increase the aggregate performance of a global network as a result.  

ALN assumes that TCP does a good job converging on TCP Control Block (TCB) state 
over time, but a poor job of guessing initial conditions. ALN also assumes that TCP 
experiences stable net conditions over the connection, and stable offered load. Under 
those conditions, ALN records TCP end-of-connection state, as well as 'kitchen sink' data 
(weather, endpoint location, etc.), trains an adaptive learning module on the state data 
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(e.g., TCB state, kitchen sink state), and applies TCBs of new connections based on 
predictive lookup (i.e., lookup kitchen sink state and retrieve expected TCP initial state). 

Current transport protocols train their parameters during individual connections, always 
from a static set of initial conditions, relearning for each new connection. ALN enables 
transport protocols to train from more appropriate, context-sensitive initial state, 
converging more quickly and reducing overall connection duration. The goal of this 
effort is to provide real, empirical metrics to determine the utility of applied machine 
learning to a highly constrained subset of network optimization, focusing on this area of 
transport protocol parameter prediction. The effort is based on the three component 
investigations of (1) data collection and analysis, (2) search for domain-specific 
knowledge, and (3) development of adaptive applied machine learning. 

There are a few systems that have investigated long-timescale sharing of configuration 
parameters among a number of connections. The use of inter-connection sharing was first 
developed to overcome the limits of very brief TCP connections (called Transaction 
TCP) in obtaining RTT trends [3]. This was extended for conventional connections, both 
in sequence and in parallel, called TCB Sharing [13]. The Congestion Manager (CM) 
provided a different approach based on a unified packet scheduler and feedback system, 
rather than explicitly coordinating separate connections, and included support for both 
TCP and non-TCP associations [2]. None of these systems have integrated learning of 
network parameters with prediction, which is the focus of ALN. 

Other systems have focused on tuning individual connections to long-range parameters 
because existing TCP congestion control is too slow, e.g., high-speed, high-latency 
connections [6] characteristic of satellite-based networks. The more challenging issue for 
ALN is how to extend these systems to handle imprecise input over much longer 
timescales, and how to resolve changes in tuning within existing constraints of ongoing 
connections. The API for such tuning, including these constraints and feedback, needs to 
be developed. There have been numerous systems for recognizing long-term trends in 
data sequences, as well as systems for applying that learning. These include neural 
networks as well as genetic algorithms [1][11]. 

3.  Overview of Results 
A software prototype was developed that demonstrated that: 

• ALN would be feasible to deploy in an operational environment  

o Learning does not adversely impact the performance of applications, a 
typical web server in this case.   

• Although only 20% of TCP connections would benefit from ALN, they could 
speedup by a factor of 17% (1.2x faster). 

o TCP is fairly well optimized, so it’s notable that any statistically 
significant improvement is even possible. 
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• When ALN was deployed, the results were mixed, where some connections were 
improved while others were slowed; the net result was positive, but only 
marginally so. 

o It’s not clear whether the result was due to the challenge of predicting 
nondeterministic data, the challenge of discretizing widely ranging data 
sufficient for tractable learning, or whether the predicted values simply 
had unpredictable effects when coupled with traffic in the global Internet. 

On the positive side, the accuracy of the prediction system was less important than fast, 
rough prediction, which further bodes well for operational use of these kinds of 
techniques. On the negative side, even though this was a highly constrained application, 
substantial extensions were required to process the data to make it suitable for learning 
and to augment the learning system to interface to the control mechanisms used in one of 
the most basic network protocols, and the results were mixed. Overall, the opportunity to 
apply learning to manage other network control systems such as dynamic routing, 
network management and configuration, and other types of tuning are likely to be even 
more challenging. 

Finally, the ALN system resulted in three software artifacts. The first is an extended 
instrumentation platform, based on Web100, augmented to gather additional ‘kitchen 
sink’ data as well as to record support information (such as DNS resolutions) at the time 
of recording the statistics of each TCP connection [9]. The second is a software system to 
train on that data and provide predictions on future connection initial conditions. The 
third is an integration of the first two into the FreeBSD OS that demonstrates their 
interoperation and performance. This software is available on the ALN website, 
www.isi.edu/aln 

4.  Prototype 
An experimental prototype was built to experiment with automatic learning-driven 
application-independent congestion window tuning. The primary result is that for 
narrowly framed problems such as predicting the congestion window the learning 
networks are promising in terms of accuracy and performance. A method to integrate the 
learning algorithms was developed that is simple and readily usable. The experimental 
setup is presented first. The next subsections discuss the high-level observations from the 
connection data collected, opportunities available for optimization and expected gain. 
The next two subsections discuss actual performance limits of the experiment design and 
actual performance measurements on a live website.  

Experimental Setup 
The experimental system consists of three basic components - the Web100 TCP 
instrumentation [9], a Bayesian learning network, and a user-space connection-tuning 
daemon that combines the other two components with connection information processing 
functions. Each is discussed in greater detail below.  
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The experiment was conducted in two phases – a data collection and analysis phase, and 
performance evaluation phase. The former was intended to evaluate the potential for 
performance gain. The latter was intended to measure real system performance of the 
integrated system to identify parameter ranges within which the system can operate and 
the impact on actual connections.  

The data collection and tuning was performed on a readily available relatively slower 
machine with two-processor 1Ghz Intel Pentium III running Linux Fedora Core 4 
(upgraded later to Core 5) with 1GB memory. The stress testing used three machines – 
one as the server and two as traffic generators. All the nodes were on a single private 
LAN connected using a Gigabit Switch and links. The server had two-processor Intel 
Core Duo with 2.4 GHz P4s with hyper-threading enabled and 1GB memory. The traffic 
generator nodes had two-processor 2.4Ghz P4 each with 1GB memory. This difference in 
setups was deemed reasonable because the load on the host in terms of connections/sec is 
very light (<10/sec) almost all the time during data collection and tuning. The stress 
testing on the other hand required faster machines to test the limits of the design.  
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Figure 2. Experimental setup that combines Web100 kernel instrumentation with ALN in the user 

space.  

Web100 
The Web100 instrumentation system consists of kernel extensions that provide an 
interface to access the state variables of any given TCP connection and user-level library 
that provides a higher layer abstraction to the same [9]. Under the hood, each connection 
is associated with a set of well-defined variables that are exported as a single file with the 
connection identifier as the file name in /proc virtual file system. The user-level library 
provides a high level API to access the content of these files. 

Web100 applications are informed of TCP connection establishment and closure through 
asynchronous NETLINK messages sent from the kernel to the user space. Upon receiving 
the messages, the applications are expected to query the Web100 library for connection 
information such as the source and destination addresses, ports and MaxRTT (maximum 
observed RTT).  
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Though the original intent was incorporate the learning into the kernel, a user-level 
tuning daemon-based approach was selected. The Web100 instrumentation provided a 
simple and extensible framework that allowed the work to be focused on aspects that are 
unique to ALN such as the integration with the learning library.  

Bayesian Learning Library 
A Bayesian network was developed to learn input patterns, based on an implementation 
developed specifically for this project. The learning system is trained on past data first to 
learn the function relating the input and output fields. The learned function can be used 
for prediction, and updated via incremental training. Figure 3 shows the learning and 
prediction process.  

Fxxxxx1 

Y1

Offline Training Period 

Fxxxxx1 

Y1

Predicting Period 
 

Figure 3. Learning and Prediction 

In the TCP protocol, the input fields are “address”, “hour”, “day”, “month”, 
“Loc_latitude”, “Loc_longitude”, and the output fields are “MaxCwnd”, “MinRTT”, 
“MaxRTT”, “PcktsIn”, “PcksIn”, “PcksOut”. The function to be learned is F (address, 
hour, day, month, Loc_latitude, Loc_longitude) -> the correct initial value for 
“MaxCwnd, MinRTT, PcktsIn, PcksIn, PcksOut”.  

Discretization 
The primary issue with the learning network is the value range for the input variables. 
While the network can handle the range in theory, in practice the operations (training and 
lookup) become very slow. Thus, a simple variable-specific quantization function that 
maps a large range of values to a small range (10-30) was used. The learning and 
prediction is in terms of the smaller range. An inverse map is used to translate predicted 
values to appropriate. The quantization function used is a either a static table that is based 
on empirical data collected or a simple linear function. For example, mapping function 
for latitude maps the -90° to +90° to the range 0-11 (f(x) = 6+ x/15). In case of MaxRTT, 
the quantization function is a table is constructed by analyzing the connection data. An 
inverse quantization function maps the quantized values back to the original range. The 
form of the inverse function, as before, depends on individual tables. 
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Nondeterministic Inputs 
ALN trained on a large data set (~ 1 million entries), and the data are non-deterministic. 
Even under the same input data set, the output value can vary. For example, Figure 4 
shows some instances extracted from collected data. For example, the same input vector 
has multiple MaxCwnd values. The non-deterministic nature of the training data makes it 
forces us to use the probability predication instead of a single point or value prediction by 
the learning network.  

 

Figure 4. Training Instances Between 5/22/06 and 7/21/2006 

Moreover, the MaxCwnd value between a fixed pair of endpoints, as shown in Figure 5, 
shows no directly observable diurnal pattern can be used for learning.  
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Figure 5. Data Pattern for MaxCwnd 

Based on the non-deterministic data, the learning system needs to predict more than a 
single, simple output variable. For this system learning was extended to predict a 
probability distribution, which can be used to compute a single centroid value and a 
variance range. Two approaches were considered: 1. Modified neural networks 2. Naïve 
Bayesian learning.  

No existing neural network methods are believed effective for predicting a “probability 
distribution” [4][5][8]. In the system developed for ALN, first a weighed average is 
computed for each nondeterministic set. A neural network with back-propagation using 
hidden layers was used to predict the probability for each output value. The system 
predicts the value of Prob[(RTT=i) | inputs] (i ∈ S) under each input instance for each 
output variable y that with state space S. All the output values are trained separately and 
normalized afterwards. Whenever a new input/output set is presented to the network, the 
weights and biases of the network are updated. The network is trained incrementally to 
adapt to new changes  

Naive Bayesian learning is a probabilistic learner based on applying Bayes’ theorem with 
strong (naive) independence assumptions [12][11]. The probability model for the learner 
is  

P(y|x1,x2,…,xn) = P(y) P(x1,x2,…,xn|y) / P(x1,x2,…,xn) 
Depending on the precise nature of the probability model, Naive Bayesian learner can be 
trained very efficiently in a supervised learning setting. The Naive Bayesian network is 
also trained incrementally to adapt to new changes. 

Each of these two mechanisms results in a predicted output distribution for each input. 
There are three possible ways to use that set: 1) pick the output with the highest 
probability, 2) pick the highest probable value with a range, or 3) generate a random 
value based on the output distribution. Method 3 has the potential for higher accuracy, 
but method 2 is most appropriate to match to TCP, which already uses [mean, variance] 
pairs to indicate some of the state ALN is designed to predict. 
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Learning accuracy 
Ideally, if the true distribution of the output values is known, its mean and variance can 
be compared with that of the learned probability. However, in TCP, the true probability 
of the output values is unknown. A rough measure is the “exact-hit-ratio”. However, even 
if the probability is exactly known, the “exact-hit-ratio” will not be perfect. For example, 
flipping a coin and knowing the probability to be heads is 0.5, the “exact-hit-ratio” is 
only 50%.  

The ALN learning network was trained on 90% of the data set and tested on the 
remaining 10% for preliminary analysis. The system converts a predicted distribution into 
the value that has the highest probability. To measure the accuracy of learning, fixed-
prediction is used as the benchmark. Fixed prediction always predicts the output to be the 
value that occurs most frequently, no matter what inputs are. Comparison results are 
given below with Exact-hit-ratio H and Error-Variance S. 

Results from Fixed prediction 
MinRTT: (H = 30.47%, S=1.9451);  MaxCwnd: (H = 68.45%, S=0.8657) 

PktIn: (H = 88.41%, S=0.5962) 

Results from Neural Network learner:  
MinRTT: (H = 45.69%, S=1.3378);   MaxCwnd: (H = 68.31%, S=0.8685) 

PktIn: (H = 87.93%, S=0.6587) 

Results from Naive Bayesian learner:  
MinRTT: (H = 47.55%, S =1.3697)  MaxCwnd: (H = 68.34%, S=0.8709);   

PktIn: (H = 88.41%, S=0.5965) 

For the variable has more uncertainty feature (MinRTT), ALN prediction improves the 
“exact-hit-ratio” compared with fixed value predictions. For the other two variables, 
fixed prediction is already good enough. 

Lookup Modules 
Lookup modules are used to compute ALN-specific variables. Examples include GeoIP 
for translating IP address into location information, calendar module to identify location-
specific holidays, weather module to lookup weather information for any given location 
and a time module to compute day of the week, etc. [7]. The data analysis integrated 
these modules but the final experimentation only used GeoIP module. Some of issues 
associated with these lookup modules include incomplete and possibly inaccurate 
information (GeoIP, weather), ambiguous information (weather), textual word mismatch 
(location, weather) and cost (weather). The performance evaluation phase only uses the 
GeoIP module.  
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Tuning Daemon 
The tuning daemon, written in C, interfaces on one side with the Web100 library to set 
the congestion window variable of selected connections to appropriate value and on 
another side with the neural network to determine what that value should be. The primary 
function of the tuning daemon, as discussed in earlier sections, is to carefully ramp up the 
congestion window for a small subset of the connections.  

The implementation is based on existing implementation of a Web100 tuning daemon 
called WAD (Work Around Daemon). It has been significantly rewritten and extended 
with ALN-specific code since then.  

5.  Data Collection 
Two modes of data collection were explored – client mode and server mode. In the client 
mode, a proxy server was setup to intercept all outgoing web accesses from a small set of 
users. In the server mode, a host was setup to serve www.postel.org. In both cases, the 
kernel was instrumented and user level process extracted all the connection information 
from the kernel and wrote them into a MySQL database.  

Analysis showed that the client mode setup did not provide any opportunities for 
performance improvement because the congestion window depends on the amount of 
outgoing traffic and there was little traffic other than TCP acknowledgements. As a 
result, the client mode was not pursued and all discussion of results henceforth assumes a 
server mode setup.  

In the server mode, only a subset of connections was considered for analysis. IPv6 
connections were ignored for simplicity reasons. Also accesses from the search engine 
web crawlers were ignored. The website maintains an archive of hundreds of large 
documents. Sequential accesses to these documents skewed the data transfer patterns by 
accounting for up to 80% of the data transferred. Although they have to be accounted for 
in reality, the website is not a typical website in terms of file size distribution and claims 
about overall performance impact are extrapolated based only on the subset of 
connections considered here. 

In all 173 parameters were collected for each connection. They include 147 parameters 
from Web100 and 26 parameters associated with ALN. Although Web100 variables 
focused on the connection parameters, ALN variables covered aspects such as weather, 
location and time. The first phase of the experiment which involved analysis stored all 
the information in multiple tables in a local MySQL database. Post-processing scripts 
ensure that tables are complete and referential integrity is maintained. These scripts also 
generated input for analysis and testing the learning mechanism. The performance 
evaluation phase differs from the data analysis phase in two ways – primarily due to the 
limited nature of the experiment. First, it does not use any offline information/learning. 
Second, only the location and time information is used for prediction.  

ALN requires the connections be long enough that there is value to optimizing through 
the reduction in the roundtrips but not too long. Since ALN optimizes only the slow start, 
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only those connections where the slow start dominates, the optimization has any impact. 
Figure 6 shows that only a small fraction of connections are of appropriate length (~ 3-
4%) but they carry 60-70% of the traffic. The MaxCwnd observed in these connections is 
shown in Figure 7. The MaxCwnd should be at least a few packets wide. Figure 8 shows 
the distribution of the connection duration. Most connections last less than 1 second and 
these connections have < 400ms RTT as shown in Figure 9. Together most connections 
have a small number of RTTs and duration of slow start dominates the total connection 
time.  
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Figure 6. Most connections have a small congestion window. Only connections with large enough 
window can benefit from tuning.  
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Figure 7. Most connections are short but most bytes belong to long connections.  
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CDF of Connection Duration
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Figure 8. ALN can improve connections that last long enough to open the congestion window but 
short enough that transients dominate. 
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Figure 9. Most RTTs are less than 400ms. There are modalities at 10ms and 80ms.  

Simple Performance Estimator 
A simple model, shown in Figure 10, was used to obtain a rough estimate the impact of 
the optimization. The model assumes exponential growth of congestion window during 
slow start to MaxCwnd, and than a stable congestion window that is equal to MaxCwnd 
for the rest of the connection. This model assumes a fixed RTT that is equal to MaxRTT 
recorded for the connection and perfect transfer model with no losses or other 
performance reducing events. As a result, this model underestimates the duration of both 
un-optimized and optimized connections. The actual performance depends on the 
connection events. As results from the live web server show this model’s prediction was 
consistent with the results to a first level of approximation.  
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Simplified Model of Existing and ALN TCP
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Figure 10. Simple model used to estimate potential speedup 

The results first assume a prediction accuracy of 70% of MaxCwnd and later look at the 
sensitivity of estimated gain to the prediction accuracy.  
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Figure 11. Potential for low load on the prediction mechanism given which of the 3-5% of 
connections to optimize.  

Figure 11 shows the fraction of expected speedup based on the model. The estimated gain 
is mostly between 1.1x-1.4x range but for some combinations of transfer sizes and RTTs, 
it is higher. Figure 12 shows the fraction of bytes that see a specific speedup. Almost 
30% of the bytes see no speedup. Another 30% see only a small (1.1x) speedup. About 
40% of the bytes see 1.2x or more speedup. Figure 13 shows that the distribution of 
speedup across the RTTs is relatively uniform. Note that this is speedup relative to the 
ideal TCP computed using the above model. Higher RTTs see a larger absolute gain in 
terms of the connection duration. Figure 15 shows that the improvement seems to be 
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relatively robust to the prediction quality, assuming there is no over prediction. It is 
sufficient for the prediction to be only 30% of the actual MaxCwnd value to observe 
gains. Accuracy delivers another 20% improvement. 

ALN Impact on Bytes Transferred
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Figure 12. 70% of the bytes transferred see 20% or more gain. 
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Figure 13. RTTs less than 400ms account for bulk of the gain. 
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Estimated ALN Speedup vs Prediction Accuracy
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Figure 14. Poor (under)prediction is better than none. Fair prediction can add another 20% 
improvement.  

Stress Testing 
The objective of the stress tests is to find out potential bottlenecks in the system. The 
basic result here is that (1) for the Bayesian learning system and parameters explored, 
learning performance is not the issue, and (2) the asynchronous messaging used by 
Web100, and therefore by the user-space tuning daemon, results in a negative interaction 
with the process scheduler at high connection rates. This has a significant impact on the 
accuracy and fraction of connections tuned.  

Bayesian Learning Library 
The Bayesian learning network was trained using 10,000 examples and evaluated the 
prediction performance over another 10,000 examples. All the data was randomly 
generated. However that does not materially affect the results since the data structure 
accesses are fairly independent of the values of the individual inputs and depend on 
structural aspects such as the number and range of inputs. Further, the performance, and 
not accuracy, of the prediction is being evaluated here. 

Experiments determined the scalability of the learning network. The parameters 
associated with the learning system were varied - the number of input variables, output 
variables and the range associated with each variable. The normalized time to predict an 
output variable linearly increases with the number of input variables as shown in Figure 
15. However prediction time for each output is almost independent of the number of the 
output parameters, as shown in Figure 16. Note that the y-axis scale is in terms of 
microseconds and in absolute terms the speed of prediction is not an issue unless each of 
the parameters is at the higher end of the ranges considered (Figure 17). The experiments 
use 4 input variables, 1 output variable and range of up to 24.  
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Figure 15. Prediction time for each output variable increases linearly with input parameters. 
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Figure 16. Prediction time for output variables is independent of the number of output variables. 
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Figure 17. Prediction time for each output increases linearly with range of each variable. 
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Web100 
The objective of this experiment is to understand the impact of user-level implementation 
and messaging on the accuracy and effectiveness of tuning. The experimental setup, as 
discussed in an earlier section, consisted of three hosts connected using Gigabit 
interfaces, links and switch. One host was configured to be a server and the other two as 
traffic generators. The server host ran a simple TCP server process that received 
connections from the TCP clients running on the other two machines. The Web100 
NETLINK messages generated by the kernel were processed by the tuning daemon. The 
daemon was run in a test mode, i.e., the tuning daemon performed all the necessary 
computation for tuning but actually does not tune. The experiment measured, for various 
connection rates, the fraction of messages successfully received by the daemon and 
amount of time it took to process the connection from the time the connection is 
established.  

The computation involves looking up connection-related information using Web100 user-
level library. Web100 lookup performance was initially poor. This is because library 
maintains information on all the active connections and refreshes the connection list upon 
each call to a Web100 function. At high connection rates, when thousands of connections 
are outstanding in TIME_WAIT and other states, the delay associated with the refresh is 
high. Also since the tuning daemon itself maintained an internal list of active 
connections, this internal data structure of Web100 library was unnecessary. The Web100 
library was thus extended with a new more limited lookup function that avoids the cost of 
duplication of the connection information and associated delay. 

NETLINK messaging is an indirect bottleneck. Because a single message is sent from the 
kernel to user space at the start and end of each connection, in the worst case processing a 
single connection requires two context switches to the tuning daemon. Since process 
context switches happen at a coarser granularity (on the order of 1ms) than the 
connections themselves, the socket eventually overflows with the unprocessed NETLINK 
messages. Further since the tuning daemon is single threaded and the core connection 
processing is on the critical path, the wait time for the NETLINK messages in the socket 
increases. As a result, only a small fraction of the connections are tuned to begin with at 
high rates.  

Figure 18 shows the variation of the message process delay with connection rates. At 
high connection rates (> 500/sec), the delay is unbounded and the standard deviation is 
comparable to an RTT. At lower connection rates (< 500/sec) the delay is a low fixed 
value of 170us but the standard deviation remains high because of interaction with 
process scheduling mechanisms. Figure 19 shows the fraction of connections processed 
as the connection rate increases. The fraction is as low as 10% of the connections when 
the connection rate increases to 5000/sec. Given that the fraction of connections that are 
available for optimization is small (~ 5%), it is unnecessary and wasteful for the user-
level daemon to receive and discard 95% of messages. A potential work involves filtering 
unnecessary messages in the kernel itself.  
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Figure 18. At high rates, the time to tune is high both in absolute terms and in terms of standard 
deviation. At rates <= 500 connections/sec, the time to tune is a low fixed value (170us).  
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Figure 19. At high rates, most connections to untuned because of high load.  

6.  Performance  
The experiment was setup as follows: A live web server (www.postel.org) with real 
traffic was used. The configuration of the machine is same as described in the previous 
section for data collection including the hardware (Dual 1Ghz PIII with 1GB memory) 
and operating system (Linux Fedora Core 5 patched with Web100 kernel extension). The 
http server used was Apache version 2.0.54. The Web100 components were extended in 
two ways. First, a Web100 variable was added to the kernel component to enable 
updating the congestion window in the kernel (CurCwnd). Second, the user-level 
Web100 library was extended with a new primitive to reduce connection lookup costs, as 
discussed in the previous section. The performance of the Bayesian learning library or the 
user-kernel messaging is not an issue because of the low connection rate. An ALN-
specific output filter was written for the Apache web server [3] to compute the expected 
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size of the transfer for each connection and inform the tuning daemon of the same. This 
information is used only to determine whether or not to tune and not during the tuning 
process. In general this information is not available with the tuning daemon or sometimes 
even to the application itself. The learning system would have to be extended in future to 
predict the transfer size before deciding to tune or not. Due to limited time and scope of 
the experiment, this line of enquiry could not be pursued. Also, for the same reason the 
tuning phase has fewer samples than the data collection phase. The results therefore 
should be considered as indicative of the potential more rather than absolute performance 
levels.  

For each incoming connection, the tuning daemon selects a tuning strategy at random 
from a fixed set that includes a “null” strategy i.e., no tuning. The strategies differ in 
terms of how to interpret the results of the prediction. Note that the prediction by the 
Bayesian learning library is a two-tuple (mean, standard deviation). Further this mean and 
standard deviation are in terms of the quantized values and not actual values as discussed 
in the experimental setup section. As mentioned before, a quantization function maps the 
actual values of each variable to a small range and an inverse quantization function maps 
the value back to the actual range.  

i) Null: Do not tune. 

ii) FixedCwnd: Ignore the prediction. Use an arbitrary but fixed congestion 
window size of 72400 

iii) PredMean (Low): Use the mean, but rounded to the nearest lower integer 
value, as input to the inverse quantization function.  

iv) PredMean (High): Use the mean, but rounded to the nearest higher integer 
value, as input to the inverse quantization function. 

v) PredMean (Round): Use the mean, but rounded to the nearest integer value, as 
input to the inverse quantization function. 

Four variables were used as input to the learning system and one as output. The input 
variables include latitude, longitude, day of the month, and hour of the day. The output 
variable is the MaxCwnd. The value for the congestion window (CurCwnd) is based on 
the prediction for MaxCwnd. The choice of the four input variables is somewhat 
arbitrary. Future work will explore combinations of variables to identify which ones are 
better predictors and which ones are not.  

The results compare performance of the various tuning strategies for connections to/from 
the same subnet. The null strategy is used as the baseline performance. To reduce 
spurious measurements, the comparison is reported only for those destinations that have 
more than a threshold number (10) of connections using the null strategy. 

A total of 57,093 connections were observed during the experimental duration. A total of 
7,772 connections (13.6% in number, 38.9% in bytes) were tuned using the various 
strategies out of which performance over 3852 connections (6.7%) is reported here. 
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Figure 20 shows that the average speedups observed are between 1.16x and 1.22x. The 
distribution across the RTT range is shown in Figure 21. Connections with RTTs around 
100-200ms have the most to gain. Too short RTTs and long RTTs don’t benefit as much 
because of short connection durations and small MaxCwnd respectively. Figure 19 shows 
the overall gain weighted with the number of connections across various RTTs. It shows 
that although there is variation in terms of gains for individual connections, the overall 
gain is same across the various strategies i.e., the gain is not too sensitive to the particular 
strategy used. Figure 22 shows the prediction accuracy of individual strategies. Any 
prediction ratio over 1.0 is over-prediction that makes the connection more aggressive 
than the untuned connection. Clearly the FixedCwnd strategy over predicts most of the 
time. PredMean(High) also consistently over-predicts. Although PredMean(Round) 
reduces the overprediction, and PredMean(Low) predicts the best. It consistently under-
predicts but by not too much - only by 20-30%.  

A few observations are in order. First, the basic results suggest that at some level any 
prediction is better than none. In this experiment the learning algorithm was simple, the 
quantization was coarse, and variables used were few. Even then the performance is quite 
reasonable. Second, the average gain reported is consistent with the simple performance 
model used in the previous section. Second, the coverage in terms of bytes is within the 
estimated range but towards the lower end. Third, the connections that can be tuned is 
significantly more than 4% estimated from the data collection phase which indicates a 
dependency on the particular website, file size and access distribution.  
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Figure 20. Average performance gain is around 1.2x 
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Average Speedup for Tuned Connections
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Figure 21. Speedups observed are best for RTTs in the middle of the RTT range. The speedups 
range from 1.1x to 2.2x with an average around 1.2x. 
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Figure 22. The weighted speedups across RTTs almost independent of the specific strategy used.  
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Figure 23. Conservative prediction strategy PredMean(Low) underpredicts but is almost as 
effective as the others.  
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Fraction of Potential Achieved 
Figure 24 shows how much closer the tuned connections are to the ideal, relative to the 
situation today. The ideal was computed based on the best performance in terms of 
MaxRTT and MaxCwnd observed for all the connections to a particular destination. The 
results are inconclusive. Although a simple majority of the connections see positive gain 
(53%-60%), a large fraction (40-47%) of the connections see negative gain i.e., the tuned 
connections are worse than the non-tuned connections. 20% of the tuned connections 
achieve 80% or more the potential maximum gain. There could be several reasons for 
this, such as simplicity of the computation of the ideal, the small sample size and the 
observed large standard deviations in terms of connection durations. More work is 
required to identify the other information that can more precisely compute the ideal 
performance and help identify more accurately the connections that can benefit from 
ALN.  
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Figure 24. More work is required to accurately identify connections and conditions in which ALN 
can improve the performance.  

7.  Future Work 
Several extensions are possible for this work:  

• Tuning Daemon Implementation 

o Have a multi-threaded implementation to remove connection-specific 
processing from the critical path  

o Preprocess connection information in the kernel to reduce user-kernel 
transitions and the fraction of connections that the tuning daemon must 
process.  

o Integrate offline processing/learning with online tuning. This requires the 
capability to checkpoint and restore the state of the Bayesian network. 
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• Lookup Modules 

o Build uniform representation to integrate multiple sources of information 

o Identify a strategy to consistently handle the issues with the source 
(completeness, accuracy, performance) 

• Prediction process 

o Predict the transfer size in addition to the tuning 

o Experiment with more variables such as weather and holidays.  

o Use fine grained ranges for the input and output variables for greater 
accuracy  

• Quantization  

o Make the quantization table more dynamic and data dependent 
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