
Decentralized Virtual Internet Deployment
using DANSE

Venkata Pingali
USC/ISI

4676 Admiralty Way,
Marina del Rey, CA

pingali@isi.edu

Joseph D. Touch
USC/ISI

4676 Admiralty Way,
Marina del Rey, CA

touch@isi.edu

Yu-Shun Wang
USC/ISI

4676 Admiralty Way,
Marina del Rey, CA

yushunwa@isi.edu

ABSTRACT
DANSE (Dynamic Network Synthesizer) is a system
and architecture to deploy virtual networks in a
decentralized way using network-specific, platform-
independent and reusable deployment strategies.
DANSE combines network virtualization with
decentralized control to provide a simple and generic
control architecture in which sophisticated network
control algorithms can be expressed. Further, DANSE
provides the basic building blocks necessary to create
evolvable IP networks. The latter has applications in
the network management domain including automated
network (re)configuration without flag days and self-
organization.

1. INTRODUCTION
DANSE (Dynamic Network Synthesizer) extends
Virtual Internets, discussed later, with decentralized
control to provide a framework that is minimal and
generic enough to program different algorithms, called
control strategies to flexibly construct copies of IP
networks, bootstrap services within the networks and
garbage collect the old networks – all in a distributed
way. Advanced network-level operations such as
reconfiguration can be expressed as network-specific
control strategies. These control strategies are do not
disrupt existing/other networks and vary across
networks allowing for diversity in the networks
created. Virtualization, through its support for co-
existence of multiple networks on the same set of
hosts, is essential to making the control strategies,
which create and manipulate networks, non-disruptive.
The diversity in is achieved through a flexible two-tier
control architecture consisting of a core service that
exports a set of management primitives and a network-
specific control service that combines link local
information and operations with distributed
algorithms.

Virtual Internet architecture and associated
mechanisms support deployment of multiple
concurrent networks with overlapping address and
name spaces on a given set of hosts. VI architecture
effectively makes networks first class objects that can
be created, destroyed and modified algorithmically. X-
Bone [21], a tool built to deploy VIs, allows link-layer
technology-independent description of the network
and uses hierarchical deployment strategy. The need
for going beyond existing artifact, X-Bone, arises from
the fact that greater flexibility is needed in terms of
what is being deployed, how and when. Self-
organizing networks, in which nodes can initiate a
join, leave or change in topology, require that every
node be able to initiate and coordinate the change. In
X-Bone terms, every node is both an overlay manager
and a resource daemon. Further, coordination-logic is
specific to the VI. A set of hosts can support multiple
VIs each of which has a different control strategy. The
VI deployment mechanism as a result should be
minimal, stable and generic enough to allow wide
ranging approaches. We suggest that the deployment
service should split into a generic VI-independent
resource management service and a network-specific
control. The management service handles virtual node
and link creation and cross-network dependencies. The
control, on the other hand, determines when and with
whom the links must be established, and how to
bootstrap higher-level services.

The rest of the paper is as follows. Section 2 describes
the architecture and various issues of DANSE. Section
3 discusses the design and implementation of a
DANSE artifact that is based on clonable stacks [29].
Section 4 discusses possible application scenarios.
Section 5 identifies related work and Section 6
identifies open issues and future work.

2. ARCHITECTURE
This section describes the architecture of the DANSE.
The first sub-section is a brief recapitulation of the
principles of Virtual Internet (VI)[14]. Virtualization
makes the network a first class object that deployed,
moved and destroyed in a programmatic and non-
disruptive way.

STAR

RING

BASE

Figure 1 Multiple concurrent virtual internets can
be deployed each with separate name space,
address space and network properties such as
topology.

2.1 Virtual Internets
A Virtual Internet (VI) is a virtual version of the
Internet in which virtual hosts and routers are
connected by IP-encapsulation tunneled links over the
existing Internet (Figure 1,Figure 2). The idea is
similar to virtualization of memory. Each VI is
complete with addressing and routing, and applications
running inside the VI are unaware of anything outside
the VI. Some key principles underlying VIs include:

1. VIs are composed of VRs and VHs connected by
IP encapsulated tunnel links, emulating the
Internet architecture Virtual hosts are data
sources and sinks; only VHs increase or decrease
the number of headers on a packet (i.e.,
encapsulate or decapsulate). Virtual routers are
data transits; only VRs transit packets without
changing the number of headers

2. VIs are completely virtual, decoupled from the
base network on which they are deployed. VIs
support concurrence. VIs support revisitation

X-Bone[21] is a tool to deploy concurrent VIs in a
network. It has a simple architecture consists of a
central Overlay Manager (OM) that coordinates the
deployment and a Resource Daemon (RD) on each
host that configures the hosts to be part of the VI based
on the instructions from the OM. X-Bone, and
extensions support a variety of discovery mechanisms
including multicast, an explicit host list and distributed
registry[28] and alternative forwarding
mechanisms[18]. The control models supported
include centralized and peer-to-peer driven that is
decentralized in some aspects such as link construction

and topology management. VIs deployed use global
addresses managed by a centralized address server and
computed at deployment time.

VIs deployed by X-Bone use two-layer tunnels. The
first and second layers are equivalent to a link layer
and network layer respectively in the VI. The two
layer tunneling achieves isolation between VIs and
handles the subtle but difficult case of revisitation in
which two virtual hosts belonging to the same VI
reside on one physical host.

LAYERED VIs

HOST A HOST B

PARALLEL VIs

SINGLE VI
Virtual Host

Virtual Link

Figure 2 Shows virtual hosts and tunnels
instantiated in three simple cases - single, parallel
and layered two-node networks.The links indicate
the flow of packets.

2.2 DANSE
DANSE combines virtualization and decentralization
to enable flexible construction of VIs. DANSE
provides a minimal control architecture in which a
wide range a network deployment and management
strategies can be expressed. These strategies combine
resources, mechanisms and deployment rules that
enable complex network services to be built. These
control capabilities are distributed between a network-
independent resource management module and
network-specific control modules, as discussed later.
Resource management module ensures consistency
and interoperability between networks and the control
modules coordinate network-specific operations across
hosts.

We first identify the class of VIs that are deployed
using DANSE, called Augmented VIs and then
elaborate on DANSE itself.

2.2.1 Assumptions
Assumptions made here include: (1) the link layer is
able to generate a unique link local address per
physical interface, (2) host operating system has
support for virtual network identified by the VI earlier

including virtual hosts and tunnels, and (3) backward
compatibility is preferable but not necessary.

2.2.2 Augmented Virtual Internets (AVI)
An Augment Virtual Internet (AVI) is a Virtual
Internet with subtle but important modifications related
to tunneling and naming. All other properties such as
two-level tunneling, use of a single addressing
protocol (IP version) throughout the VI, hop-by-hop
forwarding, and global addressing are inherited.

Tunneling. AVI tunnels use link local addresses
within the VI, and may be in the base network as well.
DANSE relaxes the assumptions regarding the global
addressing within each VI for two reasons. First, end-
to-end addressing service is VI-specific. That is
address distribution is yet another application that is
run within the VI. Second, existing VI deployment
approach requires global coordination for topology
control and addressing. The deployment process is
simplified because link establishment can be
performed using local information. Another difference
is that the base network associated each link is link-
specific and not network-specific. The latter
affectively creates “hybrid” virtual hosts in which two
links of the same virtual host may be overlaid on top of
two separate base networks and hybrid VIs that cross
base network boundaries. Existing artifact, X-Bone,
supports only strict layering in which nodes of a VI
have to exist to the base network. AVIs may use end-
to-end or link-local addresses in the base network but
always use link-local addressing within the VI. End-to-
end addresses are computed by an AVI-specific
addressing service and configured to be aliases on the
network interfaces in the second-layer tunnel. Once in
the network, the network-specific bootstrap services
can be instantiated that compute the rest of the
configuration.

Names. There is no explicit support for names in the
VI architecture through the implementation
incorporated it. AVI formalizes the support for naming
to allow for interoperation between networks and
implementations of the architecture. An Augmented
Virtual Internet (AVI) has at least one network name,
an opaque string that is known to a subset of nodes of
the AVI. Different nodes may use different names to
refer to a given AVI. A single network may have
multiple names reflecting the administrative or other
logical boundaries. However, at least one name must
be shared between nodes that are one away from each
other. The architecture does not specify ways of
enforcing a single consistent name or resolving name
conflicts across disjointed networks. Duplicate
detection mechanisms may built using the primitives
provided by the DANSE architecture. Node names are

required for mapping across networks and for
identifying specific virtual host when node revisitation
is enabled. The architecture does not specify a form for
this node name. Additional knowledge about the
nature of the AVIs deployed could be exploited for
this purpose. Each AVI also has a class name that
identifies the nature of control. This is necessary to
build control daemons that are network name-agnostic.

Default Base Network. The DANSE architecture
makes the assumption that lowest level network is that
includes all nodes in the world. The addressing in the
default network may be link local or global. AVI
layered on top of the default network are limited by the
reachability properties of the default network. In case
of global addressing and/or the special case of on-
demand links such as dial up, mechanisms outside the
scope of DANSE are expected to handle them.

2.2.3 Resources
DANSE identifies the following host-local and link-
local resources for explicit management:

1. Virtual hosts

2. Virtual links

3. Address space for tunnels

4. Name spaces (node, network and class)

These resources have to be managed “outside” of
AVIs because they all have built-in cross network
dependencies and limits. Virtual host and link creation
involves allocation of system resources including
interfaces, security contexts, cpu time and disk space.
In a given VI, the network-layer tunnel is located
within a virtual host corresponding to that VI and the
link-layer tunnel is located within a virtual host in the
base network. Correct functioning requires that the
base-network addresses of network-layer tunnel must
correspond to the tunnel addresses set on the link-layer
tunnel. The address dependency effectively crosses
virtual network boundaries. Tunnel establishment
involves negotiation between neighboring physical
hosts. Network names and virtual host’s node names
are used to identify the end point of the virtual link
accurately. Each network is assumed to belong to a
particular class that broadly identifies the
characteristics of the network. In practice this class
name is used to identify appropriate control service.

DANSE does not specify important implementation
details such as the specific address spaces used for the
tunneling, the nature of control over these resources,
the interface to drive allocation of these resources or
the host-mechanisms to limit the capabilities of the
management processes within each VI.

2.2.4 Mechanisms
DANSE requires that two mechanisms be supported by
the network-independent part of any instantiation of
the architecture. These are mechanisms that the
network-specific control processes will use to manage
the network. They include:

1. A way to discover/create/destroy virtual hosts and
links, with link-local auto-configured addresses,
on the local host

2. A minimal best-effort coordination mechanism
within each AVI

Network-specific control processes can use these two
mechanisms to bootstrap themselves and higher-level
services.

2.2.5 Rules
DANSE-deployed virtual networks satisfy the
following rules:

1. All networks deployed are augmented virtual
internets.

2. All networks except a special default network is
overlain on another network

3. Base network of a link is link-specific

4. A link that crosses VI boundaries requires inter-
network routing layer.

5. Each network has at least one name

6. Node names are network-specific

Rules for deployment are as follows:

1. Deployment can be initiated from any node in
the network that can reach atleast one other node
in one hop.

2. Negotiation from link establishment in any given
AVI occurs outside the AVI.

Link Establishment. Just like in the X-Bone system,
DANSE requires that the negotiation for the link
establishment for a particular VI occurs outside the
virtual network, typically in the base network over
which the tunneling occurs. This allows for immediate
testing of node reachability. The base network is
required to support end-to-end addressing if the link-
peers are more than one hop away in the base network.
Either end can initiate the link establishment process.
The process might require multiple initiations and
iterations until parameters such as tunnel addresses
satisfy the required constraints at both ends. Upon
successful negotiation, the interfaces are configured
and state updated. A physical node may have multiple
virtual nodes from a single network. The link

establishment request not only has to specify the
network name but also a node name within the
network. Constraints on the underlying network can be
expressed by in the design language. This could
potentially cover network properties such as topology
and security. This is a per-link decision and that could
result in possible loops. Discovery of these loops and
preventing such loops is part of the future work.

Cross-network overlays. DANSE supports cross-
network overlay deployment (Figure 3), i.e., allows for
nodes from different networks to be tunnel end points.
A default implementation would use a single tunnel
that crosses network boundaries. However, this adds to
the complexity and need for global knowledge and
network address translation. Instead DANSE deploys a
network that serves as an intermediate routing layer on
top of which the link is constructed. This network has
three nodes and two hops with the middle node being a
hybrid node. This hybrid node has presence in two
networks and has one link each in each of the
networks. This network requires end-to-end
addressing. The link establishment, therefore, triggers
a network deployment. The architecture does not
specify any optimization approaches if there are
multiple such links between the same host pair or some
other host pair between the same networks.

A ------------- B ------------- C

 A------------- C

ROUTING LAYER

VI-X VI-Y

VI-Z

X X Y Y

Z Z
HOST A HOST B HOST C

Figure 3 Shows a network Z overlaid upon two
different networks X and Y. A-C link of network Z
crosses network boundaries. This requires an inter-
network layer, which is also a VI, to avoid
translation.

2.3 Example: Emergency Network
Consider the deployment of an emergency network.
The scenario is characterized by uncertainty in the
number of hosts, topology and non-availability of
expert administrators to configure the hosts and
routers. The network is expected to be self-organizing,
adaptive and inter-operable with the Internet.

A B C

Figure 4 Hosts A and B, that do not have a link
between them initially, discover each other and
initiate a new trivial network

The configuration process starts at any given node
upon achieving one-hop reachability through other
mechanisms such a human physically connecting the
cable to the host or the host registering with the
wireless access point. IPv6 configures link-local
network-layer fe80:: address that is used for tunneling
and negotiation. Each host is assumed to run the
DANSE resource management service and self-
organizing network control service, henceforth
referred to simply as the control service that directs the
network self-organization process. The DANSE
service broadcasts the host’s presence on the link and
learns about other nodes. When two nodes learn of
each other’s presence (

Figure 4), the control daemons running on both hosts
request the DANSE service running on the local host
to create a new virtual network with the neighboring
host. The DANSE service instantiates a new virtual
host, clonable network stack [29] in our artifact,
negotiates addresses with the neighboring node,
configures appropriate tunnels in the virtual host. The
hosts initiate this network creation in an uncoordinated
fashion. Depending on the implementation of the
DANSE service and the timing, zero, one or two
networks are created. This is an efficiency, and not
correctness, issue because the creation of the network
has no side effects on the rest of the nodes or
networks. In case no network is created, either end can
restart the process after a random delay. If two
networks are created, one can be destroyed by control
service.

At this point a trivial two-node network is ready to
use. The network comes preconfigured with interfaces
and link local addressing. This network does not have,
and also does not require at this point, services such as
global addressing or routing. Additional services have
to be instantiated separately using the intra-network

coordination service provided by the DANSE
implementation within the new network.

A B C

Figure 5 Hosts B and C also discover each other
and form a second trivial network. The two
networks are eventually merged in a systematic
way to form a single three-node network.

If a new physical host is now detected (Figure 5), there
are two possibilities. Either the new node can join the
existing network or a new network can be formed with
one of the nodes from the existing network. The
control service decides the course. Over time, multiple
networks may be formed. The control service
coordinates the process of network merging where a
single unified network is constructed from the
members of two or more existing networks in a multi-
step operation. The process is typically initiated on a
node that participates in multiple networks. The
implementation of the control service can vary from
simple trial and error with no control over topology to
sophisticated topology and plan-based algorithms. In
all cases, the transition from one network to another is
seamless and non-disruptive. The smooth migration
from one generation of the network to the next is not
possible in existing Internet because mutual exclusivity
of the old and new configurations.

2.4 Discussion
The issues raised by DANSE can be broadly classified
as those related to virtualization and those related
decentralization of control. DANSE addresses the
mismatch between the control capabilities that exist
today and those required to express sophisticated
network control strategies through a combination of
virtualization and decentralization. DANSE trades
complexity for simplicity, scalability and uncertainty.
The state of the network must be discovered and
control expressed through indirect operational rules.

2.4.1 Virtualization
Bootstrapping Services. AVIs have minimal
configuration – a set of links pre-configured with link-
local addresses. To enable bootstrapping of higher
layer services, the architecture requires that at least one
coordination mechanism be deployed. For example, a
simple broadcast based on the distributed consensus
algorithms with minimal complexity such as the Echo
algorithms[23] can be instantiated at the time of virtual
network deployment. This simple coordination
mechanism can be used to bootstrap other services. For
example, a broadcast-based DHCP service can be
implemented in which the DHCP clients broadcast
their DHCP request to all nodes. The DHCP server can
then respond, using the same broadcast mechanism.
Similarly a routing server may use the coordination
mechanism to discover the topology and determine the
routing parameters. Such service instantiation can be
network-specific, programmable and reusable.

2.4.2 Decentralization
DANSE embraces decentralized knowledge and
control and the uncertainties that arise in terms of state
and dynamics in the network. With decentralization,
networks are created and modified in a distributed
way. The control is specified and exercised in an
indirect way through local rules that capture
constraints, invariants and goals. Knowledge about the
network is discovered as opposed to specified.

Control. The control of the network is based on local
rules for the inter-network and intra-network daemons.
Rules can cover (1) pre- and post-conditions for
allocation of resources such as names, links, and hosts
including admission control rules (2) resolution of
naming and addressing conflicts (3) Dynamics of the
networks such as frequency of reorganization (relative
sizes could be a hint) and persistence of networks
created (4) life times and cleanup.

Knowledge. Since the network will be deployed in a
decentralized fashion, the information and resources
must be discovered. There is no easy way to find out if
two networks with the same name are the same
network that has either reachability issues or
partitioned or whether they are two separate networks

Integration. AVIs are isolated from each other.
DANSE does not address the issue of integration of a
sub-network beyond co-existence. The challenges this
creates include having to create large-scale AVIs even
when the changes are small or local and extending
applications to handle multiple AVIs.

2.4.3 Issues Not Addressed
Several issues are addressed in this work. First,
software distribution aspects are also out of scope.
Second, the architecture does not address mobility. We
do make the observation that mobility can be
supported with existing tunnel establishment and
address negotiation mechanisms. The virtual address
that the application sees need not change during the
process of renegotiation making mobility relatively
transparent. Third, auto-configuration requires new
application architecture that supports multiple contexts
within the application-network space. Last, the policy
framework for managing the creation and destruction
of the AVIs is also unspecified by the architecture.

3. PROTOTYPE
An initial prototype that reuses code from the X-Bone
software system has been built. The system, written in
Perl, uses a combination of user-level control
processes and custom kernel extensions to FreeBSD.

3.1 Building Blocks
Three important building blocks for the prototype
include the intra-host isolation mechanism, the
network layer protocol and distributed algorithm used
for coordination. We discuss each of them below in
more detail.

3.1.1 Clonable stacks and extensions
Clonable stacks [29] for FreeBSD supports full-
fledged virtual hosts and routers by integrating
FreeBSD Jails with replicated kernel network data
structures such as the TCP control block list, routing
table and interface list.

In the virtual internet context, two-layer tunnels are
used and IP packets cross the network contexts. The
network-layer tunnel is configured in the overlay and
link-layer tunnel in the base network. After the
network-layer tunnel encapsulates the packet with the
link-layer tunnel’s outer header, the packet is injected
in the base network. The packet is then forwarded to
the link-layer tunnel, which in turn encapsulates the
packet. This crossing of contexts was implicit in the
original VI deployment systems, X-Bone, because
there was no kernel support for virtual hosting and
therefore the issue was never addressed. Custom
kernel modifications to the clonable stacks explicitly
mark the tunnel interfaces as being link or network
layer tunnels and in case of network-layer tunnels, an
explicit identification of the underlying network is
added. A different, but minor, extension allowed the
creation of tunnels using link-local addresses.

Clonable stacks implementation supports processes
that can simultaneously exist in multiple virtual hosts
and listen to sockets from multiple hosts. This
capability is used in the implementation to reduce
number of processes and association communication
overhead and code complexity.

3.1.2 IPv6
The architecture is agnostic with respect to the version
of IP used. Neighboring nodes must agree upon a
mutually acceptable range. The current implementation
uses IPv6 as the default-addressing scheme and a
predefined fixed block of IPv6 addresses for tunneling.
IPv6 has link local addressing that until recently was
missing from IPv4. Stability of the link local address is
necessary because tunnels are constructed with them as
the outer addresses. Current techniques to obtain IPv4
link local addresses make the address a function of
time. This is however not a huge problem because
certain private address spaces 10.0.0.0/8 are large
enough to support many concurrent networks and can
be reused across links. The lower bits of a hash of the
name can be used to generate stable link local address.

3.1.3 Echo algorithm
DANSE uses a lightweight distributed consensus
algorithm, Echo algorithm [23]. The algorithm is best
effort and has low complexity. It works by establishing
a spanning tree at run time to ensure that all nodes
receive a given message or that particular run of the
algorithm fails. The only knowledge required for the
correct functioning at each node is the host-local
information regarding links – the number and next
hops. Because the algorithm does not use messages
that cross multiple hops, end-to-end addressing is not
required. The module is a plug-in and a more robust
implementation that provides support for lost packets
and NACKs can also be used instead.

RES MGMT

OS SUPPORT

VI Š A
VH - P

É

VI - A
CTL

VI - Z
CTLÉ

VIRTUAL
LINK(S)

VI - Z
 VR - Q

PHYSICAL HOST

Figure 6 Network-specific control daemons
communicate with network-independent host-local

resource management service to configure virtual
hosts and links in a decentralized way. (Notation:
VI: Virt.Internet,VH:Virt.Host, VR:Virt.Router)

RES MGMT

OS SUPPORT

VI - A
CTL

VI - Z
CTL..É

HOST

RES MGMT

OS SUPPORT

VI - A
CTL

VI - Z
CTL..É

HOST

Figure 7 Cross host interaction. Resource
management service instances coordinate virtual
host and link creation. Network-specific control
instances coordinate with each other and with host-
local resource management service for network-
level operations.

3.2 Design
The user-level processes consist of two logical
modules (Figure 6) – resource management module
and control module.

Resource management module: In general, this handles
all aspects that need information or capability that
cannot be obtained from within the virtual network or
when there are cross-network dependencies. There is
one module per physical host. The functions include
management of virtual hosts and links, one-hop
multicast-based discovery, basic link establishment
including address negotiation, persistent network
database, and access control. The resource
management is driven by network-specific control
daemons and does not initiate operations
independently other than discovery.

Control module: Each network has a separate control
module that encodes the high-level design of the
network. Through appropriate calls to the Resource
management module and coordination with other
control modules of the same network, the control
module implements multi-step multi-way coordinated
operations (Figure 7) including network creation,
destruction, move, and duplication. A distributed
consensus algorithm such as the echo algorithm is used
to achieve the multi-way coordination. This module
interacts with the user and provides high-level
abstractions to the user. The control module can be
further split into a intra-network coordination service

and class-dependent control service. Alternatives are
being explored here.

Graphs may be expressed in a compressed form. This
could arise because the size of the graph is too big, or
if the number and distribution of the nodes is not
available at the time of the time of the network
deployment. The language to express the topology or
properties depends on the design of the policy module.
There could be multiple such modules at any point in
time.

4. DANSE APPLICATIONS
DANSE makes the network deployment and
subsequent management more programmable by
adding a level of indirection in the form of reusable
policy and intra-network daemons that are type-
dependent. This has two advantages. First, custom
extensions to the VI deployment system can be reused
across sites. Second, the dynamics of the network can
be more sophisticated than what a single
implementation can provide. There a variety of
situations where programmability might be useful:

4.1 Customizable Testbeds
Experimental Testbeds have been the original
motivation of the Virtual Internet [14] and the artifact,
X-Bone system. Other testbeds include Emulab [30]
and Planet-Lab [12] In each case a reusable
experiment-specific script is used to customize the
environment that is instantiated. However, the testbed
itself is not programmable and one size does not fit all
needs. For example, in Planet-Lab, one cannot
experiment with alternative addressing or routing.
Here the knowledge of when to add nodes, what is the
minimal set of services and configuration required is
dependent on the testbed.

4.2 Self-Organization
A self-organizing network with minimal network
administrator involvement has been an ideal for a long
time. While this problem has been address in specific
environments such as wireless ad-hoc networks, a
generic solution does not exist for Internet. DANSE
can support self-organization in a straightforward way.
A self-organizing network control can be written that
can driven by simple rules such as: (1) Two nodes
which are one hop away (physical or logical) can
create a new network and (2) Two networks can merge
if they have at least one common node. Such a daemon
is under development.

4.3 Automatic (Re)Configuration
With DANSE the cost of reconfiguration is reduced
significantly and the connections could continue
without major disruptions. Assuming that the
production network itself is a virtual Internet – which
is a major assumption – a network reconfiguration
attempt might include the following steps: (1) Create a
new network, with properties derived from the existing
network including topology. (2) Refine the new
network over time independent of the old network. If
that doesn’t work, go to step (1). (3) When done,
migrate users to the new network. (4) Move the old
network over the new network. (5) Garbage collect the
old network when done. The procedure is non-
disruptive and amenable to automation. Among the
issues that must be addressed include application
migration between versions of the network and cross-
VI communication.

Similar to copy-on-write mechanisms in operating
systems, a network redesign mechanism based on VIs
can be built upon a copy-on-write network where a
network change would involve creating a copy of the
network and applying the modifications to the copy.
Here we assume that every network is a VI. When the
new network has been tested, then users are migrated
over time to the new network. The old and the
networks are decoupled in time. The key advantage
that this approach gives us is that we can construct
arbitrary number of new networks each possibly using
a different algorithm. These individual networks can
be refined in parallel and tested “in the field” before
committing to one or more resulting deployments [22].

5. RELATED WORK
DANSE touches upon many areas including internet
architecture, automatic network configuration, and
evolutionary systems. We discuss related work in each
of the areas below.

5.1 Internet Architecture
Virtualization is increasingly an important but still an
optional component of the Internet. Virtualization of
memory [17] is ubiquitous and that of host [24] [25]
and software [27] is becoming more common. X-Bone
and its variation Global X-Bone use centralized
deployment model. P2P-XBone[18] supports
decentralization of control but within the larger XBone
system architecture. DANSE generalizes the P2P-
Xbone by completely eliminating the overlay manager,
simplifying the VI that deployed and building in
relationships between the VIs deployed. DANSE
suggests a micro-kernel like structure for the control
architecture of the Internet.

On the specific issue of communication across
networks, the approach of a routing layer with hybrid
nodes differs from existing proposals that depend on
header modifications [26] or translation [13].

This effectively revisits an old discussion on
application-specific memory management. In case of
virtual memory, the discussion has effectively ended
with few applications needing or seeking control over
memory management. Both the techniques have
improved as well as the gain from the additional
complexity was not considered substantial. The
discussion is yet to happen in the case of network
virtualization.

5.2 Complexity
The complexity of network configuration has been
growing with time because of increasing number
devices and modules within, module features and the
number of possible interaction. There are relative few
measures [4] of the same. It harder to compute
deterministically the correctness or performance of a
specific configuration and therefore network
configuration is increasingly a search process in which
various alternative configurations are tried and
successful ones retained. Internet is already being
discussed as a complex system[3] and observations
from other domains including system science
encourages us to think in alternative ways to handle
complexity and emergent properties through
hierarchical abstractions and stable configurations at a
network-level [1][2]. DANSE does not provide the
solutions to complexity issues but rather provides a
framework to experiment with alternative approaches
at low cost. DANSE allows a variety of controls
including agents driving self-organization. The general
idea is reused but not the specifics. Evolvability has
been studied in software systems context [5] but they
have focused on single systems. Evolution of
networked systems is more difficult and recent work
on software updates with versioning support [11] is
promising. Network-level evolvability complements
the software-level solutions.

5.3 Automatic Configuration
The two basic approaches have been (1)
Configuration-database which that either stores the
actual configurations [6] or parameters to be used
along with a model database [7]. In both cases, a
central server generates the appropriate configuration
for each host that is then distributed to the individual
hosts (2) Agent-based approach in which an agent
running on each host continuously refines the
configuration until the required goal is achieved
[15][20]. The problem with the first approach is two

fold. First, the complexity of the configuration is
hidden in the database/models and not eliminated [16].
Second, there is no easy way to recover if the
configuration is wrong. DANSE is closer the agent-
based approach. The cost of experimenting with
alternate configurations is lower because the
experimentation can be performed on an experimental
VI instead of production VI.

Autonomic computing [19] is a control-theory
approach to tuning software systems. It is not unclear
how this might help obtain the base configuration
necessary before tuning can be done and in a
distributed fashion.

While Simple Network Management Protocol (SNMP)
[8] has been around for a long time, it is mainly used
to gather information to gain insight into network
patterns than configuration of systems. The
Management Information Base (MIB) is too low level
an interface and the support for MIBs vary in quality.
Recent discussions in IETF have focused on the
interface [9] or in a limited context [10].

6. CONCLUSION AND FUTURE WORK
This paper mainly discussed the architecture of the
deployment system. Developing artifacts consistent
with this architecture will be a major part of the future
work including the specifics of the daemons, a
language for network-level service deployment and
advanced network control written as policy daemons.

7. ACKNOWLEDGMENTS
The X-Bone group for their inputs.

8. REFERENCES
[1] Simon, H. A. The Sciences of the Artificial. MIT

Press, Cambridge, MA.1981.

[2] Heylighen, F. Principles of Systems and
Cybernetics: Evolutionary Perspective.
Cybernetics and Systems, World Science,
Singapore, 1992.

[3] Willinger, W., and Doyle, J. Robustness and the
Internet: Design and Evolution, Unpublished
manuscript. March 2002. URL
http://netlab.caltech.edu/internet/.

[4] Brown, A. B., and Hellerstein, J. L., An Approach
to Benchmarking Configuration Complexity.
Proceedings of the 11th ACM SIGOPS European
Workshop, Leuven, Belgium, September 2004.

[5] Lehman, M. M. Laws of Software Evolution
Revisited. C. Montangero, editor, Software
Process Technology (EWSPT 96), Volume 1149

of LNCS, Springer-Verlag, Nancy, France, 1996.
108-124

[6] Hewlett-Packard. OpenView Operations Manuals.
2003. http://ovweb.external.hp.com/lpe/doc_serv

[7] Caldwell, D., et al. The Cutting EDGE of IP
Router Configuration. Proc. 2nd ACM Workshop
on Hot Topics in Networks (Hotnets-II),
Cambridge, MA, November 2003.

[8] Case, J., Fedor, M., Schoffstall, M. and Davin, J.
Simple Network Management Protocol. STD 15,
RFC 1157, May 1990.

[9] R. Enns, NETCONF Configuration Protocol.
IETF Work in Progress (draft-ietf-netconf-prot-
09), October, 2005.

[10] Williams, A. Requirements for Automatic
Configuration of IP Hosts. IETF Work in Progress
(draft-ietf-zeroconf-reqts-12.txt), September,
2002.

[11] Ajmani, S. Automatic Software Upgrades for
Distributed Systems. Ph.D. Thesis, MIT, Boston,
MA, 2004.

[12] Peterson, L. L., Culler, D., Anderson, T., and
Roscoe, T. A Blueprint for Introducing Disruptive
Technology into the Internet. Proceedings of
HotNets-I, October 2002.

[13] Crowcroft, J., Hand, S., Mortier, R., Roscoe, T.,
and Warfield, A. Plutarch: An Argument for
Network Pluralism. ACM SIGCOMM Workshop
on Future Directions in Network Architecture
(FDNA'03), August, 2003.

[14] Touch, J., Wang, Y., Eggert, Y., and Finn, G.
Virtual Internet Architecture. In ACM
SIGCOMM Workshop on Future Directions in
Network Architecture, Karlsruhe, Germany,
August 2003.

[15] Burgess, M. Cfengine A Site Configuration
Engine. USENIX Computing systems, Vol8, No.
3, 1995

[16] Amey, P. Logic versus Magic in Critical Systems.
Ada-Europe 2001: 49-67

[17] Denning, P. J. Virtual memory. ACM Computing
Surveys (CSUR), 2(3):153--189, 1970.

[18] Fujita, N., Touch, J., Pingali V., Wang., Y., P2P-
XBone: A Virtual Network Support for Peer-to-
Peer Systems. Technical Report ISI-TR-2005-607,
USC/ISI, September 2005.

[19] Kephart, J. O. and Chess, D. M. The Vision of
Autonomic Computing. IEEE Computer, 36(1)
IEEE, January 2003. 41—50.

[20] Hori, K., Yoshihara, K., Horiuchi, H. Automatic
Configuration of IP Networks and Routers. KDDI
Labs, Japan

[21] Touch, J., and Hotz, S., The X-Bone. Third Global
Internet Mini-Conference at Globecom Sydney,
Australia Nov. 8-12, 1998 pp. 59-68

[22] Bar-Yam, Y. About Engineering Complex
Systems: Multiscale Analysis and Evolutionary
Engineering. Engineering Self Organising
Systems: Methodologies and Applications, S.
Brueckner, G. Di Marzo Serugendo, A.
Karageorgos, R. Nagpal (Eds.), ESOA 2004,
LNCS 3464, Springer-Verlag, 16-31, 2005.

[23] Andrews, G.R. Paradigms for process interaction
in distributed programs. ACM Computing
Surveys 23,1(March 1991), 49-90.

[24] Smith, J. E., Nair, R.The Architecture of Virtual
Machines. IEEE Computer 38(5): 32-38 (2005)

[25] Barham, P., Dragovic, B., Fraser, K., Hand, S.,
harris, T., Ho, A., Neugebauer, R., Pratt, I., and
Warfield, A. Xen and the Art of Virtualization. In
Symposium on Operating Systems Principles
(SOSP '03) Oct. 2003.

[26] Francis, P. and Gummadi, R. IPNL: A NAT-
Extended Internet Architecture. Proc. ACM
SIGCOMM, San Diego, CA, USA, August 2001,
pp. 69-80.

[27] Potter, S. and Nieh, J. AutoPod: Unscheduled
System Updates with Zero Data Loss. Abstract in
Proceedings of the Second IEEE International
Conference on Autonomic Computing (ICAC
2005), Seattle, WA, June 13-16, 2005, pp. 367-
368.

[28] Touch, J., Wang, Y., Pingali, V., Eggert, L., Zhou,
R., and Finn, G. A Global X-Bone for Network
Experiments. Invited paper, Proc. of Tridentcom,
Trento, Italy, February 21-25, 2005, pp. 194-203.

[29] Zec, M., Implementing a Clonable Network Stack
in the FreeBSD Kernel, in Proceedings of the
2003 USENIX Annual Technical Conference,
FreeNIX track, San Antonio, June 2003.

[30] White, B., Lepreau, J., Stoller, L., Ricci, R.,
Guruprasad, S., Barb, C., and Joglekar, A. An
Integrated Experimental Environment for
Distributed Systems and Networks, Proc. of OSDI,
Boston, MA, December 2002

