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ABSTRACT 
DANSE (Dynamic Network Synthesizer) is a system 
and architecture to deploy virtual networks in a 
decentralized way using network-specific, platform-
independent and reusable deployment strategies. 
DANSE combines network virtualization with 
decentralized control to provide a simple and generic 
control architecture in which sophisticated network 
control algorithms can be expressed. Further, DANSE 
provides the basic building blocks necessary to create 
evolvable IP networks. The latter has applications in 
the network management domain including automated 
network (re)configuration without flag days and self-
organization. 

1. INTRODUCTION  
DANSE (Dynamic Network Synthesizer) extends 
Virtual Internets, discussed later, with decentralized 
control to provide a framework that is minimal and 
generic enough to program different algorithms, called 
control strategies to flexibly construct copies of IP 
networks, bootstrap services within the networks and 
garbage collect the old networks – all in a distributed 
way. Advanced network-level operations such as 
reconfiguration can be expressed as network-specific 
control strategies. These control strategies are do not 
disrupt existing/other networks and vary across 
networks allowing for diversity in the networks 
created. Virtualization, through its support for co-
existence of multiple networks on the same set of 
hosts, is essential to making the control strategies, 
which create and manipulate networks, non-disruptive. 
The diversity in is achieved through a flexible two-tier 
control architecture consisting of a core service that 
exports a set of management primitives and a network-
specific control service that combines link local 
information and operations with distributed 
algorithms. 

Virtual Internet architecture and associated 
mechanisms support deployment of multiple 
concurrent networks with overlapping address and 
name spaces on a given set of hosts. VI architecture 
effectively makes networks first class objects that can 
be created, destroyed and modified algorithmically. X-
Bone [21], a tool built to deploy VIs, allows link-layer 
technology-independent description of the network 
and uses hierarchical deployment strategy. The need 
for going beyond existing artifact, X-Bone, arises from 
the fact that greater flexibility is needed in terms of 
what is being deployed, how and when. Self-
organizing networks, in which nodes can initiate a 
join, leave or change in topology, require that every 
node be able to initiate and coordinate the change. In 
X-Bone terms, every node is both an overlay manager 
and a resource daemon. Further, coordination-logic is 
specific to the VI. A set of hosts can support multiple 
VIs each of which has a different control strategy. The 
VI deployment mechanism as a result should be 
minimal, stable and generic enough to allow wide 
ranging approaches. We suggest that the deployment 
service should split into a generic VI-independent 
resource management service and a network-specific 
control. The management service handles virtual node 
and link creation and cross-network dependencies. The 
control, on the other hand, determines when and with 
whom the links must be established, and how to 
bootstrap higher-level services.  

The rest of the paper is as follows. Section 2 describes 
the architecture and various issues of DANSE. Section 
3 discusses the design and implementation of a 
DANSE artifact that is based on clonable stacks [29]. 
Section 4 discusses possible application scenarios. 
Section 5 identifies related work and Section 6 
identifies open issues and future work.  



2. ARCHITECTURE 
This section describes the architecture of the DANSE. 
The first sub-section is a brief recapitulation of the 
principles of Virtual Internet (VI)[14]. Virtualization 
makes the network a first class object that deployed, 
moved and destroyed in a programmatic and non-
disruptive way.  
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Figure 1 Multiple concurrent virtual internets can 
be deployed each with separate name space, 
address space and network properties such as 
topology. 

2.1 Virtual Internets 
A Virtual Internet (VI) is a virtual version of the 
Internet in which virtual hosts and routers are 
connected by IP-encapsulation tunneled links over the 
existing Internet (Figure 1,Figure 2). The idea is 
similar to virtualization of memory. Each VI is 
complete with addressing and routing, and applications 
running inside the VI are unaware of anything outside 
the VI. Some key principles underlying VIs include: 

1. VIs are composed of VRs and VHs connected by 
IP encapsulated tunnel links, emulating the 
Internet architecture Virtual hosts are data 
sources and sinks; only VHs increase or decrease 
the number of headers on a packet (i.e., 
encapsulate or decapsulate). Virtual routers are 
data transits; only VRs transit packets without 
changing the number of headers 

2. VIs are completely virtual, decoupled from the 
base network on which they are deployed. VIs 
support concurrence. VIs support revisitation 

X-Bone[21] is a tool to deploy concurrent VIs in a 
network. It has a simple architecture consists of a 
central Overlay Manager (OM) that coordinates the 
deployment and a Resource Daemon (RD) on each 
host that configures the hosts to be part of the VI based 
on the instructions from the OM. X-Bone, and 
extensions support a variety of discovery mechanisms 
including multicast, an explicit host list and distributed 
registry[28] and alternative forwarding 
mechanisms[18]. The control models supported 
include centralized and peer-to-peer driven that is 
decentralized in some aspects such as link construction 

and topology management. VIs deployed use global 
addresses managed by a centralized address server and 
computed at deployment time.  

VIs deployed by X-Bone use two-layer tunnels. The 
first and second layers are equivalent to a link layer 
and network layer respectively in the VI. The two 
layer tunneling achieves isolation between VIs and 
handles the subtle but difficult case of revisitation in 
which two virtual hosts belonging to the same VI 
reside on one physical host. 
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Figure 2 Shows virtual hosts and tunnels 
instantiated in three simple cases - single, parallel 
and layered two-node networks.The links indicate 
the flow of packets. 

2.2 DANSE  
DANSE combines virtualization and decentralization 
to enable flexible construction of VIs. DANSE 
provides a minimal control architecture in which a 
wide range a network deployment and management 
strategies can be expressed. These strategies combine 
resources, mechanisms and deployment rules that 
enable complex network services to be built. These 
control capabilities are distributed between a network-
independent resource management module and 
network-specific control modules, as discussed later. 
Resource management module ensures consistency 
and interoperability between networks and the control 
modules coordinate network-specific operations across 
hosts. 

We first identify the class of VIs that are deployed 
using DANSE, called Augmented VIs and then 
elaborate on DANSE itself. 

2.2.1 Assumptions 
Assumptions made here include: (1) the link layer is 
able to generate a unique link local address per 
physical interface, (2) host operating system has 
support for virtual network identified by the VI earlier 



including virtual hosts and tunnels, and (3) backward 
compatibility is preferable but not necessary. 

2.2.2 Augmented Virtual Internets (AVI) 
An Augment Virtual Internet (AVI) is a Virtual 
Internet with subtle but important modifications related 
to tunneling and naming. All other properties such as 
two-level tunneling, use of a single addressing 
protocol (IP version) throughout the VI, hop-by-hop 
forwarding, and global addressing are inherited. 

Tunneling. AVI tunnels use link local addresses 
within the VI, and may be in the base network as well. 
DANSE relaxes the assumptions regarding the global 
addressing within each VI for two reasons. First, end-
to-end addressing service is VI-specific. That is 
address distribution is yet another application that is 
run within the VI. Second, existing VI deployment 
approach requires global coordination for topology 
control and addressing. The deployment process is 
simplified because link establishment can be 
performed using local information. Another difference 
is that the base network associated each link is link-
specific and not network-specific. The latter 
affectively creates “hybrid” virtual hosts in which two 
links of the same virtual host may be overlaid on top of 
two separate base networks and hybrid VIs that cross 
base network boundaries. Existing artifact, X-Bone, 
supports only strict layering in which nodes of a VI 
have to exist to the base network. AVIs may use end-
to-end or link-local addresses in the base network but 
always use link-local addressing within the VI. End-to-
end addresses are computed by an AVI-specific 
addressing service and configured to be aliases on the 
network interfaces in the second-layer tunnel. Once in 
the network, the network-specific bootstrap services 
can be instantiated that compute the rest of the 
configuration. 

Names. There is no explicit support for names in the 
VI architecture through the implementation 
incorporated it. AVI formalizes the support for naming 
to allow for interoperation between networks and 
implementations of the architecture. An Augmented 
Virtual Internet (AVI) has at least one network name, 
an opaque string that is known to a subset of nodes of 
the AVI. Different nodes may use different names to 
refer to a given AVI. A single network may have 
multiple names reflecting the administrative or other 
logical boundaries. However, at least one name must 
be shared between nodes that are one away from each 
other. The architecture does not specify ways of 
enforcing a single consistent name or resolving name 
conflicts across disjointed networks. Duplicate 
detection mechanisms may built using the primitives 
provided by the DANSE architecture. Node names are 

required for mapping across networks and for 
identifying specific virtual host when node revisitation 
is enabled. The architecture does not specify a form for 
this node name. Additional knowledge about the 
nature of the AVIs deployed could be exploited for 
this purpose. Each AVI also has a class name that 
identifies the nature of control. This is necessary to 
build control daemons that are network name-agnostic. 

Default Base Network. The DANSE architecture 
makes the assumption that lowest level network is that 
includes all nodes in the world. The addressing in the 
default network may be link local or global. AVI 
layered on top of the default network are limited by the 
reachability properties of the default network. In case 
of global addressing and/or the special case of on-
demand links such as dial up, mechanisms outside the 
scope of DANSE are expected to handle them. 

2.2.3 Resources 
DANSE identifies the following host-local and link-
local resources for explicit management: 

1. Virtual hosts 

2. Virtual links 

3. Address space for tunnels 

4. Name spaces (node, network and class)  

These resources have to be managed “outside” of 
AVIs because they all have built-in cross network 
dependencies and limits. Virtual host and link creation 
involves allocation of system resources including 
interfaces, security contexts, cpu time and disk space. 
In a given VI, the network-layer tunnel is located 
within a virtual host corresponding to that VI and the 
link-layer tunnel is located within a virtual host in the 
base network. Correct functioning requires that the 
base-network addresses of network-layer tunnel must 
correspond to the tunnel addresses set on the link-layer 
tunnel. The address dependency effectively crosses 
virtual network boundaries. Tunnel establishment 
involves negotiation between neighboring physical 
hosts. Network names and virtual host’s node names 
are used to identify the end point of the virtual link 
accurately. Each network is assumed to belong to a 
particular class that broadly identifies the 
characteristics of the network. In practice this class 
name is used to identify appropriate control service.  

DANSE does not specify important implementation 
details such as the specific address spaces used for the 
tunneling, the nature of control over these resources, 
the interface to drive allocation of these resources or 
the host-mechanisms to limit the capabilities of the 
management processes within each VI.  



2.2.4 Mechanisms 
DANSE requires that two mechanisms be supported by 
the network-independent part of any instantiation of 
the architecture. These are mechanisms that the 
network-specific control processes will use to manage 
the network. They include:  

1. A way to discover/create/destroy virtual hosts and 
links, with link-local auto-configured addresses, 
on the local host 

2. A minimal best-effort coordination mechanism 
within each AVI 

Network-specific control processes can use these two 
mechanisms to bootstrap themselves and higher-level 
services.  

2.2.5 Rules 
DANSE-deployed virtual networks satisfy the 
following rules:  

1. All networks deployed are augmented virtual 
internets. 

2. All networks except a special default network is 
overlain on another network 

3. Base network of a link is link-specific 

4. A link that crosses VI boundaries requires inter-
network routing layer. 

5. Each network has at least one name 

6. Node names are network-specific 

Rules for deployment are as follows: 

1. Deployment can be initiated from any node in 
the network that can reach atleast one other node 
in one hop.  

2. Negotiation from link establishment in any given 
AVI occurs outside the AVI.  

Link Establishment. Just like in the X-Bone system, 
DANSE requires that the negotiation for the link 
establishment for a particular VI occurs outside the 
virtual network, typically in the base network over 
which the tunneling occurs. This allows for immediate 
testing of node reachability. The base network is 
required to support end-to-end addressing if the link-
peers are more than one hop away in the base network. 
Either end can initiate the link establishment process. 
The process might require multiple initiations and 
iterations until parameters such as tunnel addresses 
satisfy the required constraints at both ends. Upon 
successful negotiation, the interfaces are configured 
and state updated. A physical node may have multiple 
virtual nodes from a single network. The link 

establishment request not only has to specify the 
network name but also a node name within the 
network. Constraints on the underlying network can be 
expressed by in the design language. This could 
potentially cover network properties such as topology 
and security. This is a per-link decision and that could 
result in possible loops. Discovery of these loops and 
preventing such loops is part of the future work. 

Cross-network overlays. DANSE supports cross-
network overlay deployment (Figure 3), i.e., allows for 
nodes from different networks to be tunnel end points. 
A default implementation would use a single tunnel 
that crosses network boundaries. However, this adds to 
the complexity and need for global knowledge and 
network address translation. Instead DANSE deploys a 
network that serves as an intermediate routing layer on 
top of which the link is constructed. This network has 
three nodes and two hops with the middle node being a 
hybrid node. This hybrid node has presence in two 
networks and has one link each in each of the 
networks.  This network requires end-to-end 
addressing.  The link establishment, therefore, triggers 
a network deployment. The architecture does not 
specify any optimization approaches if there are 
multiple such links between the same host pair or some 
other host pair between the same networks. 
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Figure 3 Shows a network Z overlaid upon two 
different networks X and Y. A-C link of network Z 
crosses network boundaries. This requires an inter-
network layer, which is also a VI, to avoid 
translation. 

2.3 Example: Emergency Network 
Consider the deployment of an emergency network. 
The scenario is characterized by uncertainty in the 
number of hosts, topology and non-availability of 
expert administrators to configure the hosts and 
routers. The network is expected to be self-organizing, 
adaptive and inter-operable with the Internet.  
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Figure 4 Hosts A and B, that do not have a link 
between them initially, discover each other and 
initiate a new trivial network 

The configuration process starts at any given node 
upon achieving one-hop reachability through other 
mechanisms such a human physically connecting the 
cable to the host or the host registering with the 
wireless access point. IPv6 configures link-local 
network-layer fe80:: address that is used for tunneling 
and negotiation. Each host is assumed to run the 
DANSE resource management service and self-
organizing network control service, henceforth 
referred to simply as the control service that directs the 
network self-organization process. The DANSE 
service broadcasts the host’s presence on the link and 
learns about other nodes. When two nodes learn of 
each other’s presence ( 

Figure 4), the control daemons running on both hosts 
request the DANSE service running on the local host 
to create a new virtual network with the neighboring 
host. The DANSE service instantiates a new virtual 
host, clonable network stack [29] in our artifact, 
negotiates addresses with the neighboring node, 
configures appropriate tunnels in the virtual host. The 
hosts initiate this network creation in an uncoordinated 
fashion. Depending on the implementation of the 
DANSE service and the timing, zero, one or two 
networks are created. This is an efficiency, and not 
correctness, issue because the creation of the network 
has no side effects on the rest of the nodes or 
networks. In case no network is created, either end can 
restart the process after a random delay. If two 
networks are created, one can be destroyed by control 
service.  

At this point a trivial two-node network is ready to 
use. The network comes preconfigured with interfaces 
and link local addressing. This network does not have, 
and also does not require at this point, services such as 
global addressing or routing. Additional services have 
to be instantiated separately using the intra-network 

coordination service provided by the DANSE 
implementation within the new network. 
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Figure 5 Hosts B and C also discover each other 
and form a second trivial network. The two 
networks are eventually merged in a systematic 
way to form a single three-node network. 

If a new physical host is now detected (Figure 5), there 
are two possibilities. Either the new node can join the 
existing network or a new network can be formed with 
one of the nodes from the existing network. The 
control service decides the course. Over time, multiple 
networks may be formed. The control service 
coordinates the process of network merging where a 
single unified network is constructed from the 
members of two or more existing networks in a multi-
step operation. The process is typically initiated on a 
node that participates in multiple networks. The 
implementation of the control service can vary from 
simple trial and error with no control over topology to 
sophisticated topology and plan-based algorithms. In 
all cases, the transition from one network to another is 
seamless and non-disruptive. The smooth migration 
from one generation of the network to the next is not 
possible in existing Internet because mutual exclusivity 
of the old and new configurations.  

2.4 Discussion 
The issues raised by DANSE can be broadly classified 
as those related to virtualization and those related 
decentralization of control. DANSE addresses the 
mismatch between the control capabilities that exist 
today and those required to express sophisticated 
network control strategies through a combination of 
virtualization and decentralization. DANSE trades 
complexity for simplicity, scalability and uncertainty. 
The state of the network must be discovered and 
control expressed through indirect operational rules.  



2.4.1 Virtualization 
Bootstrapping Services. AVIs have minimal 
configuration – a set of links pre-configured with link-
local addresses. To enable bootstrapping of higher 
layer services, the architecture requires that at least one 
coordination mechanism be deployed. For example, a 
simple broadcast based on the distributed consensus 
algorithms with minimal complexity such as the Echo 
algorithms[23] can be instantiated at the time of virtual 
network deployment. This simple coordination 
mechanism can be used to bootstrap other services. For 
example, a broadcast-based DHCP service can be 
implemented in which the DHCP clients broadcast 
their DHCP request to all nodes. The DHCP server can 
then respond, using the same broadcast mechanism. 
Similarly a routing server may use the coordination 
mechanism to discover the topology and determine the 
routing parameters. Such service instantiation can be 
network-specific, programmable and reusable.  

2.4.2 Decentralization 
DANSE embraces decentralized knowledge and 
control and the uncertainties that arise in terms of state 
and dynamics in the network. With decentralization, 
networks are created and modified in a distributed 
way. The control is specified and exercised in an 
indirect way through local rules that capture 
constraints, invariants and goals. Knowledge about the 
network is discovered as opposed to specified.  

Control. The control of the network is based on local 
rules for the inter-network and intra-network daemons. 
Rules can cover (1) pre- and post-conditions for 
allocation of resources such as names, links, and hosts 
including admission control rules (2) resolution of 
naming and addressing conflicts (3) Dynamics of the 
networks such as frequency of reorganization (relative 
sizes could be a hint) and persistence of networks 
created (4) life times and cleanup.  

Knowledge. Since the network will be deployed in a 
decentralized fashion, the information and resources 
must be discovered. There is no easy way to find out if 
two networks with the same name are the same 
network that has either reachability issues or 
partitioned or whether they are two separate networks 

Integration. AVIs are isolated from each other. 
DANSE does not address the issue of integration of a 
sub-network beyond co-existence. The challenges this 
creates include having to create large-scale AVIs even 
when the changes are small or local and extending 
applications to handle multiple AVIs.  

2.4.3 Issues Not Addressed 
Several issues are addressed in this work. First, 
software distribution aspects are also out of scope. 
Second, the architecture does not address mobility. We 
do make the observation that mobility can be 
supported with existing tunnel establishment and 
address negotiation mechanisms. The virtual address 
that the application sees need not change during the 
process of renegotiation making mobility relatively 
transparent.  Third, auto-configuration requires new 
application architecture that supports multiple contexts 
within the application-network space. Last, the policy 
framework for managing the creation and destruction 
of the AVIs is also unspecified by the architecture. 

3. PROTOTYPE 
An initial prototype that reuses code from the X-Bone 
software system has been built. The system, written in 
Perl, uses a combination of user-level control 
processes and custom kernel extensions to FreeBSD.  

3.1 Building Blocks 
Three important building blocks for the prototype 
include the intra-host isolation mechanism, the 
network layer protocol and distributed algorithm used 
for coordination. We discuss each of them below in 
more detail.  

3.1.1 Clonable stacks and extensions 
Clonable stacks [29] for FreeBSD supports full-
fledged virtual hosts and routers by integrating 
FreeBSD Jails with replicated kernel network data 
structures such as the TCP control block list, routing 
table and interface list.  

In the virtual internet context, two-layer tunnels are 
used and IP packets cross the network contexts. The 
network-layer tunnel is configured in the overlay and 
link-layer tunnel in the base network. After the 
network-layer tunnel encapsulates the packet with the 
link-layer tunnel’s outer header, the packet is injected 
in the base network. The packet is then forwarded to 
the link-layer tunnel, which in turn encapsulates the 
packet. This crossing of contexts was implicit in the 
original VI deployment systems, X-Bone, because 
there was no kernel support for virtual hosting and 
therefore the issue was never addressed. Custom 
kernel modifications to the clonable stacks explicitly 
mark the tunnel interfaces as being link or network 
layer tunnels and in case of network-layer tunnels, an 
explicit identification of the underlying network is 
added. A different, but minor, extension allowed the 
creation of tunnels using link-local addresses.  



Clonable stacks implementation supports processes 
that can simultaneously exist in multiple virtual hosts 
and listen to sockets from multiple hosts. This 
capability is used in the implementation to reduce 
number of processes and association communication 
overhead and code complexity.  

3.1.2 IPv6 
The architecture is agnostic with respect to the version 
of IP used. Neighboring nodes must agree upon a 
mutually acceptable range. The current implementation 
uses IPv6 as the default-addressing scheme and a 
predefined fixed block of IPv6 addresses for tunneling. 
IPv6 has link local addressing that until recently was 
missing from IPv4. Stability of the link local address is 
necessary because tunnels are constructed with them as 
the outer addresses. Current techniques to obtain IPv4 
link local addresses make the address a function of 
time. This is however not a huge problem because 
certain private address spaces 10.0.0.0/8 are large 
enough to support many concurrent networks and can 
be reused across links. The lower bits of a hash of the 
name can be used to generate stable link local address. 

3.1.3 Echo algorithm 
DANSE uses a lightweight distributed consensus 
algorithm, Echo algorithm [23]. The algorithm is best 
effort and has low complexity. It works by establishing 
a spanning tree at run time to ensure that all nodes 
receive a given message or that particular run of the 
algorithm fails. The only knowledge required for the 
correct functioning at each node is the host-local 
information regarding links – the number and next 
hops. Because the algorithm does not use messages 
that cross multiple hops, end-to-end addressing is not 
required. The module is a plug-in and a more robust 
implementation that provides support for lost packets 
and NACKs can also be used instead.  

  

RES MGMT

OS SUPPORT

VI Š A
VH - P

É

VI - A
CTL

VI - Z
CTLÉ

VIRTUAL
LINK(S)

VI - Z
 VR - Q

PHYSICAL HOST

 
Figure 6 Network-specific control daemons 
communicate with network-independent host-local 

resource management service to configure virtual 
hosts and links  in a decentralized way. (Notation: 
VI: Virt.Internet,VH:Virt.Host, VR:Virt.Router) 
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Figure 7 Cross host interaction. Resource 
management service instances coordinate virtual 
host and link creation. Network-specific control 
instances coordinate with each other and with host-
local resource management service for network-
level operations. 

3.2 Design 
The user-level processes consist of two logical 
modules (Figure 6) – resource management module 
and control module.  

Resource management module: In general, this handles 
all aspects that need information or capability that 
cannot be obtained from within the virtual network or 
when there are cross-network dependencies. There is 
one module per physical host. The functions include 
management of virtual hosts and links, one-hop 
multicast-based discovery, basic link establishment 
including address negotiation, persistent network 
database, and access control.  The resource 
management is driven by network-specific control 
daemons and does not initiate operations 
independently other than discovery. 

Control module: Each network has a separate control 
module that encodes the high-level design of the 
network. Through appropriate calls to the Resource 
management module and coordination with other 
control modules of the same network, the control 
module implements multi-step multi-way coordinated 
operations (Figure 7) including network creation, 
destruction, move, and duplication. A distributed 
consensus algorithm such as the echo algorithm is used 
to achieve the multi-way coordination. This module 
interacts with the user and provides high-level 
abstractions to the user. The control module can be 
further split into a intra-network coordination service 



and class-dependent control service. Alternatives are 
being explored here.  

Graphs may be expressed in a compressed form. This 
could arise because the size of the graph is too big, or 
if the number and distribution of the nodes is not 
available at the time of the time of the network 
deployment. The language to express the topology or 
properties depends on the design of the policy module. 
There could be multiple such modules at any point in 
time. 

4. DANSE APPLICATIONS  
DANSE makes the network deployment and 
subsequent management more programmable by 
adding a level of indirection in the form of reusable 
policy and intra-network daemons that are type-
dependent. This has two advantages. First, custom 
extensions to the VI deployment system can be reused 
across sites. Second, the dynamics of the network can 
be more sophisticated than what a single 
implementation can provide. There a variety of 
situations where programmability might be useful: 

4.1 Customizable Testbeds 
Experimental Testbeds have been the original 
motivation of the Virtual Internet [14] and the artifact, 
X-Bone system. Other testbeds include Emulab [30] 
and Planet-Lab [12] In each case a reusable 
experiment-specific script is used to customize the 
environment that is instantiated. However, the testbed 
itself is not programmable and one size does not fit all 
needs. For example, in Planet-Lab, one cannot 
experiment with alternative addressing or routing. 
Here the knowledge of when to add nodes, what is the 
minimal set of services and configuration required is 
dependent on the testbed.  

4.2 Self-Organization 
A self-organizing network with minimal network 
administrator involvement has been an ideal for a long 
time. While this problem has been address in specific 
environments such as wireless ad-hoc networks, a 
generic solution does not exist for Internet. DANSE 
can support self-organization in a straightforward way. 
A self-organizing network control can be written that 
can driven by simple rules such as: (1) Two nodes 
which are one hop away (physical or logical) can 
create a new network and (2) Two networks can merge 
if they have at least one common node. Such a daemon 
is under development.   

4.3 Automatic (Re)Configuration 
With DANSE the cost of reconfiguration is reduced 
significantly and the connections could continue 
without major disruptions. Assuming that the 
production network itself is a virtual Internet – which 
is a major assumption – a network reconfiguration 
attempt might include the following steps: (1) Create a 
new network, with properties derived from the existing 
network including topology. (2) Refine the new 
network over time independent of the old network. If 
that doesn’t work, go to step (1). (3) When done, 
migrate users to the new network. (4) Move the old 
network over the new network. (5) Garbage collect the 
old network when done. The procedure is non-
disruptive and amenable to automation. Among the 
issues that must be addressed include application 
migration between versions of the network and cross-
VI communication.  

Similar to copy-on-write mechanisms in operating 
systems, a network redesign mechanism based on VIs 
can be built upon a copy-on-write network where a 
network change would involve creating a copy of the 
network and applying the modifications to the copy. 
Here we assume that every network is a VI. When the 
new network has been tested, then users are migrated 
over time to the new network. The old and the 
networks are decoupled in time. The key advantage 
that this approach gives us is that we can construct 
arbitrary number of new networks each possibly using 
a different algorithm. These individual networks can 
be refined in parallel and tested “in the field” before 
committing to one or more resulting deployments [22]. 

5. RELATED WORK 
DANSE touches upon many areas including internet 
architecture, automatic network configuration, and 
evolutionary systems. We discuss related work in each 
of the areas below.  

5.1 Internet Architecture  
Virtualization is increasingly an important but still an 
optional component of the Internet. Virtualization of 
memory [17] is ubiquitous and that of host [24] [25] 
and software [27] is becoming more common. X-Bone 
and its variation Global X-Bone use centralized 
deployment model. P2P-XBone[18] supports 
decentralization of control but within the larger XBone 
system architecture. DANSE generalizes the P2P-
Xbone by completely eliminating the overlay manager, 
simplifying the VI that deployed and building in 
relationships between the VIs deployed. DANSE 
suggests a micro-kernel like structure for the control 
architecture of the Internet. 



On the specific issue of communication across 
networks, the approach of a routing layer with hybrid 
nodes differs from existing proposals that depend on 
header modifications [26] or translation [13].  

This effectively revisits an old discussion on 
application-specific memory management. In case of 
virtual memory, the discussion has effectively ended 
with few applications needing or seeking control over 
memory management. Both the techniques have 
improved as well as the gain from the additional 
complexity was not considered substantial. The 
discussion is yet to happen in the case of network 
virtualization.  

5.2 Complexity 
The complexity of network configuration has been 
growing with time because of increasing number 
devices and modules within, module features and the 
number of possible interaction. There are relative few 
measures [4] of the same. It harder to compute 
deterministically the correctness or performance of a 
specific configuration and therefore network 
configuration is increasingly a search process in which 
various alternative configurations are tried and 
successful ones retained. Internet is already being 
discussed as a complex system[3] and observations 
from other domains including system science 
encourages us to think in alternative ways to handle 
complexity and emergent properties through 
hierarchical abstractions and stable configurations at a 
network-level [1][2]. DANSE does not provide the 
solutions to complexity issues but rather provides a 
framework to experiment with alternative approaches 
at low cost. DANSE allows a variety of controls 
including agents driving self-organization. The general 
idea is reused but not the specifics. Evolvability has 
been studied in software systems context [5] but they 
have focused on single systems. Evolution of 
networked systems is more difficult and recent work 
on software updates with versioning support [11] is 
promising. Network-level evolvability complements 
the software-level solutions.  

5.3 Automatic Configuration 
The two basic approaches have been (1) 
Configuration-database which that either stores the 
actual configurations [6] or parameters to be used 
along with a model database [7]. In both cases, a 
central server generates the appropriate configuration 
for each host that is then distributed to the individual 
hosts (2) Agent-based approach in which an agent 
running on each host continuously refines the 
configuration until the required goal is achieved 
[15][20]. The problem with the first approach is two 

fold. First, the complexity of the configuration is 
hidden in the database/models and not eliminated [16]. 
Second, there is no easy way to recover if the 
configuration is wrong. DANSE is closer the agent-
based approach. The cost of experimenting with 
alternate configurations is lower because the 
experimentation can be performed on an experimental 
VI instead of production VI.  

Autonomic computing [19] is a control-theory 
approach to tuning software systems. It is not unclear 
how this might help obtain the base configuration 
necessary before tuning can be done and in a 
distributed fashion.  

While Simple Network Management Protocol (SNMP) 
[8] has been around for a long time, it is mainly used 
to gather information to gain insight into network 
patterns than configuration of systems. The 
Management Information Base (MIB) is too low level 
an interface and the support for MIBs vary in quality. 
Recent discussions in IETF have focused on the 
interface [9] or in a limited context [10]. 

6. CONCLUSION AND FUTURE WORK 
This paper mainly discussed the architecture of the 
deployment system. Developing artifacts consistent 
with this architecture will be a major part of the future 
work including the specifics of the daemons, a 
language for network-level service deployment and 
advanced network control written as policy daemons.  
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