
Aug 7, 2009 ISI‐TR‐662

1

The Tetris Switch
Stephen Suryaputra and Joseph D. Touch

USC/ISI
Marina del Rey, CA, USA

surya@isi.edu and touch@isi.edu

Joseph A. Bannister
Aerospace Corp.

El Segundo, CA, USA
joseph.a.bannister@aero.org

Abstract—This paper presents a packet switching architecture
that replaces conventional random-access queues with a new kind
of FIFO queues called variable speed conveyor (VSC) queues as
part of a new contention resolution mechanism inspired by the
Tetris video game. This paper presents the results of both
quasipoission non-bursty and pareto bursty simulation analyses
comparing the switch to a virtual output queued (VOQ) switch,
as well as details of the architecture and a discussion of how it
can be implemented in either electronics or optics. The switch
achieves approximately 95% of the throughput of a VOQ switch
under bursty and non-bursty loads, using as little as 100 kb of
buffering under typical Internet distributions of variable-length
packets.

Keywords-optical; switch; packet; throughput; shifting

I. INTRODUCTION1
Random-access buffering in electronic switches can be

viewed as a contention resolution mechanism, which works
well and can achieve near 100% throughput. Unfortunately, it
is not currently feasible to implement random-access buffers in
the optical domain, therefore optical switches cannot achieve
the same level of throughput performance as electronic ones.
Our goal is to develop a packet switch design that closes that
throughput gap. This paper presents the design of a packet
switch that can time-shift packets in either the electronic or
optical domains, called the Tetris2 switch. We evaluate its
throughput using simulation for multiple switch sizes, packet
size distributions, and uniform switching matrix, and show that
it can achieve performance approaching that of conventional
electronic routers using virtual output queues (VOQs), which
are currently the standard for random-access buffered switches.

II. TETRIS SWITCH
The Tetris switch performs contention resolution using

packet time-shifting, rather than random-access buffering. To
simplify the design, only forward time-shifts (i.e., packet
acceleration) are considered. Hence the switch is named after
the Tetris game, which has a mode to accelerate the arrival of
blocks to the bottom of the game window (i.e., hitting the

1 This material is based upon work supported by the U.S. Air Force,

MILSATCOM Systems Wing SMC/MCX under the National Science
Foundation Grant No. CNS-0626788 and the CIAN NSF ERC Grant No.
EEC-0812072. Any opinions, findings and conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily
reflect the views of the National Science Foundation or the Air Force.

2 The term “Tetris” is a registered copyright of Tetris Holding, LLC. The
term herein is used as shorthand for “Tetris-inspired”, and has no direct
relation to the game of the same name.

“space bar”). Shifting is possible only if there is room. If the
input line is heavily loaded, there isn’t much room. A packet
can only be shifted up to the tail of the previous packet on the
same input line. This is the same problem as HOL blocking in
electronic switches. Thus, we use the same solution but without
random-access buffering by splitting traffic based on the output
port. Figure 1 illustrates this point. The top picture shows the
packets lining up back to back on all four input ports. The
bottom picture shows only the packets that are destined to an
output port. When packets destined to the other output ports are
eliminated, shifting forward is possible.

Figure 1: Illustration of the benefit of splitting traffic based 

on the output port. 

The Tetris switch operates on a single electronic channel or
optical wavelength and has several components:

• Input port demux that splits traffic based on the output port
and informs the switch scheduler about the packets.

• Output traffic mux that combines packets from each input
destined to the same switch output port. The combined
output is back-to-back packets destined to a single output
port. It is composed of a set of variable speed conveyor
(VSC) queues together with a coordinated VSC queue delay
controller and a simple passive muxing element.

• Variable speed conveyor (VSC) queues, which are a
configurable set of switched delay lines (SDLs) [17, 18]
using slow light buffers or electronic shift lines to
implement controllable FIFOs. This FIFO isn’t a true FIFO,
but rather is a VSC queue, because it can be sped up or
slowed down, but never stops shifting packets out (to a
packet dump if no other space is available) [1].

Aug 7, 2009 ISI‐TR‐662

2

• VSC queue delay controller, which is an electronic control
block that dynamically configures the speeds of the VSC
queues.

The input port demux can be implemented optically using a
1×N unbuffered optical switch that is equipped with optical
header processors, subcarrier multiplexing, or separating the
header and payload on separate wavelengths [2]. The goal of
this work is designing and evaluating the architecture;
therefore, the detail on how to implement optical header
processing is beyond our current scope.

The output traffic mux can be implemented optically using
an N×1 unbuffered optical coupler preceded by a set of VSC
queues. The VSC queues enable packets that cannot be shifted
to continue travelling until they come to the mux, where they
are dropped when contention exists.

Figure 2 shows a complete 3×3 switch based on these basic
components.

Figure 2: 3×3 Tetris switch architecture 

 
Figure 3: Implementation of a Variable Speed Conveyor 

(VSC) queue. The upper shaded line is the slowpath and the 
bottom shaded line is the fastpath.  

The VSC queue delay has two internal paths, each with a
different propagation speed. The first one is the slow-path
consisting of slow-light buffers or electronic shifts. The second
one is the fast-path consisting of fiber lines or electronic wires
without delay. Shifted packets travel the fast-path while the
other packets travel the slow-path. The VSC queue is illustrated
in Figure 3. The slow-path is the default path until the VSC
queue controller decides to shift the packets. Once the packets

have been shifted, they stay on the fast-path until they arrive at
the mux input.

The VSC queue controller has two phases: look-ahead and
shift. In the look-ahead phase, it keeps track of the information
about the packets in the set of VSC queues associated with a
single output port. The collecting starts when the first packet
enters the VSC queue. In the shift phase, the controller
accelerates the packets forward. We can shift those packets
because a VSC queue contains only in-flight packets from a
single input port to a single output port.

Both phases correspond to regions of the VSC queue. The
total delay in the VSC queue is divided into two equal-sized
regions: the look-ahead region and the Tetris region. The look-
ahead region is where the VSC delay controller examines the
packet headers, determines what shifting is desired, and
initiates shifting. The Tetris region is where the accelerated
packets are shifted into, allowing packets to line up properly
for the mux.

Packet scheduling in the VSCs occurs in rounds or batches,
where there are gaps between the rounds. Each round is
scheduled separately, and this reduces the complexity of the
VSC delay controller. When a packet is still in the look-ahead
region it initially travels the slow-path. Once the first packet
arrives at the end of the look-ahead region, the controller shifts
all look-ahead packets to the fast-path. This includes other
packets that are still in the middle of the look-ahead region, and
this operation shifts packets into the head of the input line to
the mux. The available space for shifting is the Tetris region.
Figure 4 shows both look-ahead and shift phase in separate
diagrams. The top diagram shows the collecting period where
packets destined to output port 1 are collected. In this example,
packet A is the first to arrive at the end of the look-ahead
region. This triggers the shifting operation. The bottom
diagram shows the regions after shifting. The look-ahead
region is freed (i.e., containing no or fewer packets), and that
region then becomes the next Tetris region if there is no spill
and there is a packet that arrives at t15.

Figure 4: The two regions and phases of the switch 

scheduler. 

Aug 7, 2009 ISI‐TR‐662

3

This shifting algorithm is earliest fit first. It is defined in

more detail as follows:

1. The controller keeps information on packets in the look-
ahead region as an ordered set, sorted by arrival time.
There is one in each controller, i.e., one set per output
port.

2. If the packet is first in the set, initialize the free space
(FS) to the size of the Tetris region in bytes. The number
of bytes in the free space can be calculated from the
delay (region size) and the port speed. Initialize the
shifted time (T) to now + look-ahead time. This
commences the operation of a round or batch of
processing.

3. At time T:
3.a. Initialize FT to “now”, i.e., the time when the

shifted packet will hit the switch port.
3.b. Pick a packet from the set with the earliest arrival

time.
3.c. If the packet does not have any direct predecessor

(i.e., an earlier packet with the same input and
output port that is still in the buffer) then:
3.c.i. If the packet fits into FS, shift the packet to

FT and subtract the length of the packet from
FS. Set FT to the tail of this shifted packet.

3.c.ii. Else (the packet does not fit), pick the next
packet (if any) and repeat step 3.c.

3.d. Else (there is a previous packet):
3.d.i. Check if the tail of the previous packet is

earlier than FT (i.e., the earlier packet is not
blocking this packet). If yes, then go to step
3.c.i.

3.d.ii. Else, pick the next packet, if any, and repeat
step 3.c.

4. If there are still any packets in the set, drop those packets
with arrival time less than the FT. This happens to
packets that arrive just before the end of the last shifted
packet.

5. If there are still any packets in the set, re-initialize FS and
schedule another shifting operation (step 3) at time T
(now + look-ahead time). The remaining packets in the
set will be shifted along with other packets that may
arrive between now and T.

6. If there isn’t space to shift the packet forward, let the
packet arrive at the mux at its usual time. It will be
contending with the shifted packet, and one of them
(randomly selected) will succeed.

We expect this switch can deliver close to 100% throughput
in a uniform switching matrix regardless of the packet size
distribution, provided the distribution of packets is similar
across all input and output ports. For an N×N switch, the load
from an input to an output port is 1/N. The look-ahead delay is
D bytes. The expected number of bytes from one input port to
an output port is D/N. The expected total number of bytes
destined to an output port from all input ports is D/N bytes × N

ports = D bytes, which is also the Tetris region size. Thus the
switch should not fall behind and will deliver close to 100%
throughput.

There will be short-term variations in the input load that
translate into the number of bytes from an input port to an
output port being greater than D/N. The spill steps 4 and 5
handle this case by dropping the packets that miss the
opportunity to shift and by reducing the size of the next (i.e.,
subsequent) Tetris region. The number of bytes on the same
input and output port pair will eventually be less than D/N. In
the long term, close to 100% throughput should be achievable.

III. PERFORMANCE EVALUATION
We developed a simulator to validate the performance of

the Tetris switch, and our analyses focus on the result of a
32×32 switch under both quasipoisson (non bursty) and pareto
on/off (bursty) arrivals. Quasipoisson is a modified poisson
arrival process that will not put overlapping packets on the
same input port, and is thus more appropriate for switch
analysis. Pareto on/off arrivals have been used to simulate higly
variable arrival processes, including Web traffic [3]. The shape
parameter α is set to 1.2 according to these findings. The mean
burst size is 12500 bytes, the same burst size used for
performance evaluation of optical burst switching [4].

Three packet length distributions are examined: fixed,
exponential, and bimodal. For bimodal, 80% of the packets are
40 bytes long and the rest are 1500 bytes, based on recent
observations [5]. The results presented in this section are
mainly for the more realistic bimodal packet size distributions.
Different packet size distributions will be noted explicitly when
discussed.

The output port selection for quasipoisson arrivals is
configured to be uniformly distributed. For pareto arrivals two
variants are examined. In the first variant, called pareto-n, the
output port is uniformly selected at the start of each burst and
stays the same until the burst ends. For the second variant,
called pareto-r, the output port is uniformly selected anew for
each packet. From an output port point of view, pareto-n is
more bursty.

The look-ahead and Tetris regions are each initially set to
500,000 bytes or 4 megabits (Mb), given the simulator
configuration of 1 Gb/s per port. This is higher than the
currently recommended router buffer size of 2.5 Mb, based on
the switch size and speed being simulated [6]. For comparison,
the performance of an unbuffered switch is shown in the same
plot.

The simulator uses the standard Unix library drand48()
function as its pseudorandom number generator. We run each
simulation multiple times to achieve 95% confidence level with
accuracy of 1% of the average. The number of runs, n, is
determined using the following formula [7]:

where z is 1.96 from the normal probability distribution table, s
and x are the standard deviation and the average from

Aug 7, 2009 ISI‐TR‐662

4

preliminary runs, and r is the desired accuracy, which is 1% or
0.01. The numbers plotted here are the averages from those
runs; the confidence intervals are omitted in the graphs because
they are negligible. Each run lasts for 1 s of simulated packet
processing time. To validate the parameters of our simulator,
we ran a well-known input buffered switch architecture [8] for
the same duration and checked the output of the simulator. Our
simulator reported the same 58.6% throughput.

For a region size of 4 Mb and quasipoisson arrivals, the
Tetris switch achieves close to 100% throughput for all the
packet length distributions evaluated. For brevity, only the
bimodal packet sizes are shown (Figure 5a). Packet drops do
occur, but at a very low level. The result for pareto-r arrivals
and bimodal packet sizes shows that the Tetris switch also
provides noteworthy improvement over an unbuffered switch
(Figure 5b). The result is similar to that of quasipoisson. Even
though the traffic is bursty on the link, it is not bursty from an
output port viewpoint. This is due to the uniform selection of
output port for every packet in the burst in a pareto-r
distribution.

In contrast, the result for pareto-n arrivals (also with
bimodal packet sizes) shows that the Tetris switch does not
achieve the desired near-100% throughput. It achieves only
83% throughput under 100% input load (Figure 5c). The
throughput eventually goes to over 90% when the region sizes
are increased to 64 Mb each. The decreased throughput (or,
alternately, need for larger region sizes) is expected, however,
because this traffic is bursty from an output port point of view.

Burstiness also affects the performance of an unbuffered
switch. Figure 5c shows that pareto-n performs better on
unbuffered switches than quasipoisson (Figure 5a) or pareto-r
(Figure 5b). This is attributed to using a single output port for
every packet in a burst. When an input port sends a burst to an
output port, it does not send each packet to a different output
port. In effect, this reduces the chance of having multiple input
ports send to the same output port at the same time. Hence, the
throughput of the unbuffered switch is improved for this kind
of traffic.

Short-term variations in load do not have much effect on
any of the throughputs indicated in Figure 5 because the Tetris
region is far larger than the packets. Even with a uniform
switching matrix, short-term variations of input load can cause
the number of bytes destined to an output port to be greater
than the number of bytes available in the Tetris region. This
causes the Tetris switch to execute the spill steps and drop
packets. The effect is more significant as the size of the regions
decreases. Lowering the region sizes to 1 kilobit (kb) illustrates
this effect (Figure 6).

The Tetris switch throughput still is above 90% for
quasipoisson arrivals even for a small delay for the packet
length distributions considered (50 kb per region, i.e., 6250
bytes or four 1500-byte packets). The performance level for
bursty traffic is also lowered due to the prolonged variation of
input load. For quasipoisson arrivals, the throughput drops
significantly when the regions are smaller than 25 kb, or two
1500 byte packets (Figure 6a). A steep shift in the graph, or
“cliff”, is observed for both exponential and bimodal packet

lengths. This is expected because there isn’t any space to hold
bigger packets, or smaller packets when a bigger packet
occupies the Tetris region. The cliff shows a drop to the
performance level of an unbuffered switch. Pareto-n arrivals,
however, do not exhibit the same level of drop (Figure 6b).

An interesting small jump is observed for variable size
packets when the region size is lowered from 10 kb to 5 kb or 2
kb. This is due to Step 6 in the algorithm. To maximize
throughput when the region size is small, unshifted packets
continue to propagate toward the mux (as per a conveyor
queue, i.e., the conveyors keep moving). When the mux is idle,
the packet will be forwarded directly to the output port. When
the mux is busy (i.e.¸forwarding a different packet), the packet
arriving at the mux will be dropped. The same operation is
applied to shifted packets as well. Thus, when a large packet is
being considered for shifting, smaller regions cause it to be
unshiftable more often. The shifted packets are more often the
smaller packets. The more unshifted packets hit the mux, the
more they will be successfully forwarded. The shifted packets,
which have smaller sizes, therefore, are more likely to be
dropped. Thus, their throughput is slightly increased. When the
regions are set to 1 kb, the mix of unshifted packets changes.
There are more small packets that are unshiftable. This lessens
the effect of unshifted packets monopolizing the mux.

It is important to note that results in Figure 5 and Figure 6
are obtained by simulating the shifting of packets at arbitrary
times. This is not realistic given the design of the VSC queue
shown in Figure 3. However, placing the selector element at
every smallest packet size interval should emulate shifting at
arbitrary times. This was validated by simulating the discrete
shifting points at every 320 bits (equivalent to one 40-byte
minimal IPv4 packet) and 640 bits (two such packets) for equal
region sizes of 50 kb.

The throughput drops from 92% to 88% to 85% for
quasipoisson arrivals as the shifting point is changed
(correspondingly) from continuous to 320 bits to 640 bits
(Figure 7). The simulation output shows that the drop for
pareto-n is also not severe, i.e., from 68% to 66% to 65% for
the same shifting points. Placing the selector element at larger
intervals causes some voids in the VSC queues. Unlike some
switches [9, 10], Tetris does not include void filling, thus the
resulting throughput decreases.

We also want to compare the performance of the Tetris
switch to a conventional electronic switch, a VOQ switch with
Parallel Iterative Matching (PIM) scheduling algorithm,
modified so that it works on packets instead of fixed-size cells
[11]. Figure 7 shows that the Tetris switch does perform
similarly to the VOQ-PIM with 50 kb worth of buffering per
virtual queue. The VOQ buffer size is selected to match the 50
kb Tetris region. To clarify the performance difference, the
relative throughput of the Tetris switch is shown as a ratio to
VOQ-PIM throughput in Figure 8. For bimodal packet sizes,
the Tetris switch performs at 87 to 95% of the VOQ-PIM
switch for quasipoisson arrivals and 93 to 98% for pareto-n
arrivals.

Aug 7, 2009 ISI‐TR‐662

5

(a)

(b)

(c) 

Figure 5: Throughput of a 32×32 Tetris switch for (a) 
quasipoisson, (b) paretor and (c) pareton arrivals. Look

ahead and Tetris region are each 4 Mb. 

(a)

(b)

Figure 6: The throughput of a 32×32 Tetris switch as the 

lookahead and Tetris region sizes get smaller at 100% input 
load. Both regions have equal size. The arrival processes are 

(a) quasipoisson and (b) pareton. 

The Tetris switch does perform better than VOQ in terms of
the average delay experienced by a packet especially at higher
input loads (Figure 9). There is an interesting side effect in the
delay experienced by a packet in a Tetris switch. For
quasipoisson arrival and bimodal packet sizes, the delay drops
when the input load increases from 0% to 10%. It then
increases as the input load increases further. This is due to the
shifting algorithm, which operates in batches. Step 1 in the
algorithm collects packets in the look-ahead region until time
T, which is the time when the first packet is at the start of the
Tetris (or shifting) region. Step 3, the shifting operation, then
starts working at time T. This step tries to shift all packets that
are collected while the first packet is propagating through the
look-ahead region. The first packet then experiences the whole
delay incurred by the look-ahead region. Subsequent packets,
however, do not incur the full amount because they are

Aug 7, 2009 ISI‐TR‐662

6

starting to shift in the middle of the look-ahead region. This
operation is a batch shifting operation. Thus, the more packets
there are in the look-ahead region, the less is the delay. Hence,
the average delay experienced decreases as load increases until
the delay in the Tetris region becomes dominant. At that point,
the average delay increases with the input load as expected.

Figure 7: The throughput of a 32×32 Tetris switch with equal 
lookahead and Tetris region sizes of 50 kb compared to 

VOQPIM. Tetris throughputs are for continuous and discrete 
shifting points (every 320 and 640 bits). 

IV. TETRIS VARIANTS
The shifting concept used in the optical version of the

Tetris switch can be applied to electronic switches as well.
Instead of using slow light buffers as the delay component, the
switch can use an analog delay line such as Bucket Brigade
Device (BBD) [12]. Conventional electronic shift registers
could also be used, but they use more transistors than BBDs. A
recent development in non-volatile memory called racetrack
memory supports the shifting concept, i.e., moving the data
through a medium [13]. An early example of this concept is the
mercury delay line from the 1940s, in which data was
represented as sound pulses moving through mercury confined
to a metal tube [14]. The concept of moving a packet at
variable speed through a medium, whether it is optical,
electronic, or even mechanical, is the main working assumption
in the Tetris switch. Thus, it is expected that the design is easily
applicable to the electronic domain as well. Our future work
includes a more detailed comparison of the Tetris switch with
current electronic switches. We currently only compare it to
VOQ with the PIM scheduling algorithm.

The combination of VSC queues with a mux and a
scheduling mechanism is the core of the Tetris switch, and can
be useful separately. We call this a Tetris mux, and it can be
beneficial in so-called ‘access’ networks, i.e., networks used to
aggregate traffic from a large number of lower-speed networks
to a higher-speed core link.

 

(a)

 

(b)
Figure 8: Throughput of a Tetris switch in Figure 7 shown as 

relative to the VOQ throughput using PIM scheduling 
algorithm: (a) quasipoisson and (b) pareton. 

V. PRIOR WORK
Electronic switches have been studied extensively. The

well-know relevant results are:

• Head-of-the-line (HOL) blocking limits the throughput of
electronic switches to 59% [8].

• Virtual output queuing (VOQ) eliminates HOL blocking
and achieves near-100% throughput [15].

These two results are for fixed packet sizes and a uniform
switching matrix. They inspire and inform the basic design of
the Tetris switch architecture.

In an earlier work we analyzed and simulated an un-buffered
switch for variable length packets, whose achievable
throughput is only 50% [16]. This forms the baseline of the
throughput gap between the optical (unbuffered) and the
electronic (buffered) switches. We also simulated a switch that

Aug 7, 2009 ISI‐TR‐662

7

is capable of looking ahead beyond HOL packets, called the
precognition switch. This switch selects packets that maximize
the number of bytes transferred. Disappointingly, this switch
improves performance by only a few percent [16]. This
highlights that the improvement achieved by the Tetris switch
is the result of the shifting operation, not just the ability to
look ahead in the arriving packet stream and optimally select
drops as done in the precognition switch.

Figure 9: Average delay of a Tetris switch compared to VOQ 
PIM algorithm for quasipoisson and pareton arrivals. The 
Tetris switch is using lookahead and Tetris region sizes of 
50 kb each. VOQ switch buffer is 50 kb per virtual queue. 

This paper focuses on switch designs capable of optical
implementations. There are multiple approaches to contention
resolution in optical packet switches. The most prevalent
approach is a buffering scheme called switched delay lines
(SDL) [17, 18]. SDLs use fiber delay lines (FDLs) as the delay
component in the buffer. However, FDLs are not practical
because of the length of fiber required to implement even a
very small delay. For example, a 100 ns delay requires 20
meters of fiber [19]. Recent developments in the area of slow
light optical buffering are promising because they require only
50 cm2 for 400 kb buffering [20]. It is expected that a capacity
of 1 megabit (Mb) can be easily supported. The optical version
of the Tetris switch would be expected to use SDLs and slow
light buffers as its delay elements.

The Staggering switch [21] is an example of a switch that
uses FDLs for buffering. A 32×32 staggering switch achieves
97% throughput under 100% input load. However, it assumes
that the packets are fixed size and packet arrivals are
synchronized. We want to deduce its performance for variable
length packets by looking at the results for bursty cell traffic.
Unfortunately, results are provided for only a 4×4 switch.
Although this shows 97% throughput, a 32×32 switch is
expected to have much lower performance. Our simulation
shows that increasing switch size lowers throughput, in general.
Others have reported the same observation [8, 15]. The Tetris
switch performance evaluation herein uses variable length
packets (bursty and non-bursty) and asynchronous packet
arrivals. These two operating conditions increase the

probability of collision beyond what was considered for the
staggering switch.

Slow light buffers are also being considered in a combined
input and output buffered optical switch [22]. Instead of using
the buffer as a bit-delay element, whole packets are buffered.
The simulation results of this switch show good performance
even with bursty traffic. However, the switch uses multiple
wavelengths and was evaluated for only a 4×4 configuration.
An optical Tetris, on the other hand, could use fixed-delay slow
light buffers and does not rely on wavelength division
multiplexing.

The switch with large optical buffer (SLOB) architecture
extends the idea of the staggering switch to create a
significantly larger buffer [23]. FDLs of multiple lengths are
used to form its delay, from zero delay to a delay of m-1 time
slots. This first stage of configurable delay cascades to a
subsequent stage where the delay starts from m to (m-1)m time
slots. The following stage starts from m2 to (m-1)m2. These
cascaded stages are used as the output queues for a cell-based
switch. Tetris uses VSC queues as delay, and can use the
SLOB approach when a longer delay is necessary. The notable
difference is that in SLOB, a packet can go through a delayed
path then a non-delayed path and come back to the delayed
path. In the Tetris switch, once the packet enters a non-delayed
path, it stays in that path until it is muxed (or dropped), and as a
result its packet switching latency is lower than in SLOB.

A paper by Shiramizu et al. [24] describes a buffering
architecture in which each input has a dedicated buffer in the
output. In a sense, this is an optical VOQ. Each buffer is
equipped with multiple FDLs. The number of parallel FDLs is
the capacity of the buffer in terms of the number of storable
packets. Different from a VOQ, each output has a FIFO buffer
manager that arbitrates the packets in the optical domain. When
there is a packet being transmitted to an output port, other
packets that reach the end of the FIFO are recirculated back.
Thus, a packet can potentially be recycled and delayed for an
arbitrary amount of time.

Our approach is similar to Shiramizu’s because the Tetris
switch also uses the concept of VOQs. However, the Tetris
switch senses potential collision while the packets are still in
flight and time-shifts the packets to avoid collision, instead of
relying on parallel FDLs and recirculation. Tetris switch VSC
scheduling takes into account the time of arrival of packets,
which thus requires an electronic controller.

Asynchronous optical packet switches with variable length
and bursty traffic also have been studied [9, 10]. They use the
same traffic model shown herein (pareto on/off) with similar
parameters except for the mean burst size. Their approaches
rely on multiple wavelengths for contention resolution, which
yields good performance. The studies also explore a utilization
problem created by the discrete nature of FDLs. This is solved
by a technique called void filling, which allows the next packet
on the input port that is destined to the same output port to be
scheduled behind the previous packet even though there is
another packet on a different input port that arrives earlier than
that next packet. As noted earlier, the Tetris switch does not

Aug 7, 2009 ISI‐TR‐662

8

currently rely on this mechanism, and operates on a single
wavelength.

A recent study by Appenzeller et al. [6] shows that the
buffering requirement for an IP router is RTT / √n where RTT is
the average round trip time of a flow passing the link and n is
the number of flows carried by the link. In our scenario the
typical value of RTT is 250 ms and the number of flows is
10,000. So, the buffering requirement can be as low as 2.5 ms.
On a 1 Gb/s link, this translates to 2.5 Mb. We thus use this
number as a starting point for our performance evaluation and
then also consider lower values that would be more practical
for slow light buffers.

Optical burst switching (OBS) is another relevant approach
to optical packet switching [4]. Like OBS, the Tetris switch
also relies on a time offset between the arrival of the packets
and the arrival of the control signals in asimilar manner to
OBS. OBS uses this offset to avoid buffering (by deflecting the
bursts) and to reserve switch connections along the path of a
burst through a switch. The Tetris switch uses the time offset to
determine which packets to shift forward. Another difference is
that OBS focuses on the performance of an optical network
with multiple wavelengths, whereas the optical Tetris switch is
intended to support packets on just a single wavelength, i.e., the
Tetris switch enables true optical packet switching, and does
not rely on wavelength switching for its performance.
Enhancing OBS with FDLs is a viable alternative to resolving
output port contention solely with wavelengths [25, 26]. The
latter study employs tunable FDLs to accommodate diverted
bursts, possibly for several recirculations. The Tetris switch
avoids recirculation and does not have to calculate complicated
schedules that allow packets to emerge from the FDL at just the
right time.

VI. CONCLUDING REMARKS
The Tetris switch provides a promising approach to optical

packet switching, and can also support electronic switching,
using a new mechanism for packet multiplexing using variable
speed conveyor queues. It achieves high performance for
uniformly distributed traffic with a simple scheduling
algorithm. This performance can be maintained with as little as
50 kb of delay on each region (a total of 100 kb of delay) for
non-bursty traffic. With 50 kb region sizes, the use of slow
light buffers are feasible For both bursty and non-bursty traffic,
the Tetris switch enjoys most of the benefit of VOQ without
the need for random-access memory, which has proven
extremely difficult to implement with optical technology.

REFERENCES
[1] Coffman, E.G., Jr., E. Gelenbe, and E.N. Gilbert.

Analysis of a conveyor queue in a flexible
manufacturing system. In ACM SIGMETRICS Perform.
Eval. Rev., 14(1): 204-223, 1986.

[2] Papadimitriou, G.I., C. Papazoglou, and A.S.
Pomportsis. Optical switching: switch fabrics,
techniques, and architectures. In J. of Lightwave
Technology, 21(2): 384-405, 2003.

[3] Crovella, M.E., M.S. Taqqu, and A. Bestavros. Heavy-
tailed Probability Distributions in the World Wide Web.
Chapman and Hall, 1998.

[4] Qiao, C. and M. Yoo. Optical Burst Switching (OBS) -
A New Paradigm for an Optical Internet. J. of High
Speed Networks, 8(1): 69-84, 1999.

[5] Sinha, R., C. Papadopoulos, and J. Heidemann. Internet
Packet Size Distributions: Some Observations. USC/ISI
Tech Report 643, 2007.

[6] Appenzeller, G., I. Keslassy, and N. McKeown. Sizing
Router Buffers. In ACM SIGCOMM 2004. Portland,
Oregon, pp. 281-292.

[7] Jain, R. The Art of Computer Systems Performance
Analysis: Techniques for Experimental Design,
Measurement, Simulation, and Modeling: John Wiley &
Sons, 1991.

[8] Karol, M.J., M.G. Hluchyj, and S.P. Morgan. Input
Versus Output Queueing on a Space-Division Packet
Switch. IEEE Trans. on Communications, COM-35(12):
1347-1356, 1987.

[9] Hunter, D.K. and I. Andonovic. Approaches to Optical
Internet Packet Switching, IEEE Communications
Magazine. 38(9): 116-122, 2000.

[10] Tancevski, L., et al. A new scheduling algorithm for
asynchronous variable length IP traffic incorporating
void filling. In Optical Fiber Communication
Conference and International Conference on Integrated
Optics and Optical Fiber Communication OFC/IOOC.
3:180-182, 1999.

[11] Ge, N., M. Hamdi, and K.B. Letaief. Efficient
scheduling of variable-length IP packets on high-speed
switches. In GLOBECOM, 2: 1407-1411, 1999.

[12] Analog Delay Devices. Available from:
http://mysite.du.edu/~etuttle/electron/elect39.htm.

[13] Parkin, S.S.P. Racetrack Memory: The Future Third
Dimension of Data Storage. Scientific American. 2009.

[14] Eckert, J.P., Jr. A survey of digital computer memory
systems. IEEE Annals of the History of Computing,
20(4): 15-28, 1998.

[15] McKeown, N.W. Scheduling Algorithms for Input-
Queued Cell Switches. Ph.D. Dissertation,University of
California at Berkeley, 1995.

[16] Suryaputra, S., J. Touch, and J. Bannister. The Case of a
Precognition Optical Packet Switch, In IEEE INFOCOM
Workshop on High Speed Networks, pp. 1-6, 2009.

[17] Chlamtac, I. and A. Fumagalli. An Optical Switch
Architecture for Manhattan Networks. IEEE J. on
Selected Areas in Communications, 11(4): 550-559,
1993.

[18] Yao, S., B. Mukherjee, and S. Dixit. Advances in
Photonic Packet Switching: An Overview. IEEE
Communications Magazine. 2000.

[19] Tucker, R.S., P.-C. Ku, and C.J. Chang-Hasnain. Slow-
Light Optical Buffers: Capabilities and Fundamental
Limitations. J. of Lightwave Technology, 22(12): 4046-
4066, 2005.

Aug 7, 2009 ISI‐TR‐662

9

[20] Tucker, R.S. The Role of Optics and Electronics in
High-Capacity Routers. J. of Lightwave Technology,
24(12): 4655-4672, 2006.

[21] Haas, Z. The'Staggering Switch': An Electronically
Controlled Optical Packet Switch. J. of Lightwave
Technology, 11(5/6): 925-926, 1993.

[22] Haijun, Y. and S.J.B. Yoo. Combined input and output
all-optical variable buffered switch architecture for
future optical routers. IEEE Photonics Technology
Letters, 17(6): 1292-1294, 2005.

[23] Hunter, D.K., et al. SLOB: a switch with large optical
buffers for packet switching. J. of Lightwave
Technology, 16(10): 1725-1736, 1998.

[24] Shiramizu, Y., J. Oda, and N. Goto. All-optical
autonomous first-in--first-out buffer managed with
carrier sensing of output packets. Optical Engineering,
47(8): 085006-8, 2008.

[25] Gauger, G. Dimensioning FDL buffers for optical burst
switching nodes. In Optical Network Design and
Modeling. pp. 117-132, 2002.

[26] Merchant, K., et al. Analysis of an optical burst
switching router with tunable multiwavelength
recirculating buffers. J. of Lightwave Technology.
23(10): 3302-3312, 2005.

