
USC/ISI Technical Report ISI-TR-696 March 18, 2015

Implementation of the TCP Extended Data Offset Option
Harry Trieu, Joe Touch, Ted Faber

USC/ISI
4676 Admiralty Way, Suite 1001

Marina del Rey, CA 90292
310-822-1511

htrieu@usc.edu, touch@isi.edu, faber@isi.edu

ABSTRACT
TCP Extended Data Offset (EDO) Option extends the space
available for TCP options. The current TCP specification allows a
maximum of 40 bytes of options to be sent with each segment.
Certain use cases require a combination of options that exceed 40
bytes in total size, motivating the need to extend the space
available for options. This project explores the implementation of
TCP extended data offset option in the Linux 3.13 kernel and
testing of the implementation.

1. INTRODUCTION
TCP is a popular protocol that facilitates reliable transmission of
data between network devices. TCP is extended by options that
customize its behavior [5].
Software engineers have expressed interest in boosting the
responsiveness of their network applications through the use of
multiple, lengthy TCP options. The current specification of TCP
accounts for options using a fixed length field that is too small for
many modern applications. As a result, developers must
compromise and choose a subset of options that fit the fixed
length field. This complicates tasks that rely on the use of options
such as tuning the network performance of applications.
TCP EDO removes this limitation by extending the fixed length
field while maintaining backwards compatibility with the legacy
protocol. Furthermore, the option will increase the customizability
of TCP for current and future network application development.
The implementation of this option demonstrates that the proposed
specification can be reasonably implemented in a modern
operating system and serve as a reference for implementation in
other operating systems.
During the process of implementing this option, the implementers
developed a test harness to validate the functionality and
discovered inherent characteristics of Linux that made
implementation challenging.
This paper explores the current specification of TCP options and
its limits, the proposed Extended Data Offset (EDO) option, a
plan for implementation, issues encountered during
implementation, and the results of completed work.

2. BACKGROUND
The original TCP specification was written in 1981, and TCP
continues to be the dominant Internet protocol in use today [6].
TCP options give TCP the ability to evolve with changes in
technology. Without options, the evolution of TCP would come to
a halt and network innovation would have to take place at a
different layer of the protocol stack.

TCP is being deployed in new network environments with
increased security and performance requirements. New options

are being developed to facilitate and take advantage of these
deployments. The original TCP specification reserves a finite
amount of space for options and this space is hindering the
development of complex options. Increasing option space is
necessary to ensure the long-term viability of TCP and the
Internet.

A number of options have been introduced to make TCP viable in
the modern world. The Window Scale Option allows TCP to
function in networks with higher capacity than the original
specification intended [2]. The Authentication and MD5 Options
allows TCP to function in environments where the level of
security provided by the original specification is inadequate [1].

Increasing option space is a relatively straightforward task,
however increasing option space while maintaining backwards
compatibility with legacy implementations of TCP is challenging.
Network devices running legacy implementations of TCP are
common on the Internet. Because all options reside in the data
section of a TCP segment, a legacy implementation might
interpret the options in the EDO extension area as data and pass
the options up to a user application. This could present problems
ranging from a poorly rendered webpage to the introduction of
security vulnerabilities.

Non-experimental TCP options consist of one to three fields. The
Option-Kind field (1-byte long) is required and serves as a unique
identifier for the option. The Option-Length field (1-byte long)
indicates the length of the entire option, including the Option-
Kind and Option-Length fields, in bytes. The Option-Data field
contains data relevant to the option (if applicable) [5].

Experimental TCP options introduce an Experiment-Identifier
(ExID) field (2 or 4-bytes long), which distinguishes experiments
from one another. The ExID field immediately follows the
Option-Length field. The Option-Kind field of an Experimental
TCP option contains the experimental codepoints 253 or 254 [8].
This implementation properly uses experimental TCP option
formatting.

TCP options are stored in the data portion of a TCP segment,
reducing the amount of space available for the payload. The
standard TCP header contains a 4-bit Data Offset field. Data
Offset indicates the number of 32-bit words in the TCP header or
the offset into the segment where user data lives. The Data Offset
field can have a maximum value of 15, allowing it to account for
TCP headers up to 60 bytes in size. Because the standard TCP
header occupies 20 bytes, a maximum of 40 bytes are available to
options.

The Data Offset field becomes a limitation when a combination of
TCP options greater than 40 bytes in size needs to be used. This

1

USC/ISI Technical Report ISI-TR-696 March 18, 2015

motivates the need to develop a method to increase the space
available for options.

3. OVERVIEW OF EDO
TCP Extended Data Offset (EDO) option extends the space
available to TCP options using a Header Length field that
overrides the Data Offset field. When EDO is used, the legacy
TCP Data Offset field indicates the size of the standard 20-byte
TCP header, checksum options, and the EDO option. EDO is the
last option covered by Data Offset [9].

There are two variants of the EDO option – EDO-REQUEST and
EDO-LENGTH. EDO-REQUEST is sent with the initial SYN
segment to negotiate bidirectional support for EDO. It is 2 bytes
in length. The endpoint initiating the connection will include the
EDO-REQUEST option in the SYN segment. If the remote
endpoint supports EDO, it will respond with a SYN-ACK
segment containing a null EDO-LENGTH option.

When the endpoint that initiated the connection receives the SYN-
ACK containing a null EDO-LENGTH option, it may begin using
EDO. The endpoint that sent the SYN-ACK may begin using
EDO when it receives an ACK from the connection initiator
containing a null or non-null EDO-LENGTH option.

The EDO-LENGTH option is 4 bytes in length and contains a
Header Length field, which indicates the size of the entire TCP
header, including extended options, in 4-byte words. A null EDO-
LENGTH option has a Header Length field, which contains the
same value as the legacy Data Offset field.

EDO must maintain backwards compatibility with legacy
endpoints. This makes extending the option space in the initial
SYN difficult, as bidirectional support for EDO has yet to be
negotiated. The use of EDO in SYN segments may be explored in
the future [10].

4. PHASES AND TESTBED
TCP EDO was implemented in the Linux 3.13 kernel. It was
necessary to divide the implementation into the following five
phases to make testing of each phase possible. (1) Build support
for sending of a TCP option called JUNK in order to explicitly
surpass the 40-byte limit for options. (2) Modify iperf, a
TCP/UDP bandwidth measurement tool, to support the use of
EDO and JUNK options. Iperf was used to test the
implementation. (3) Modify TCP send routines to enable sending
of the EDO option. (4) Modify TCP receive routines to support
receiving and processing of EDO and options covered by EDO.
(5) Modify TCP handshaking code to support negotiation of EDO.

Compilation of the modified kernel and testing of EDO took place
on DETERLab,[4] a cyber-security experimentation facility. Two
DETERLab machines directly connected using a 1 Gb/s link were
used for testing. Wireshark, a modified version of iperf3, and a
simple client/server application were used for testing.

4.1 The Junk Option
Before implementing EDO, it was necessary to develop a TCP
option, coined “JUNK”, that could explicitly exceed 40 bytes in
length. This JUNK option consists of the standard Option-
Kind=253 (Experimental) and Option-Length fields, an ExID field
(0xF81B, for testing and not registered), and a payload containing
test characters.

The JUNK option is enabled on a per-connection basis using the
setsockopt system call. The length of the JUNK payload is
governed by the proc file /proc/sys/net/ipv4/tcp_junk_length. If

the JUNK option is enabled, JUNK is sent in all segments in
which available option space permits.

4.2 iperf3 Modification
iperf3 was used to test the performance and functionality of EDO.
Two command line flags were added: –E which enables EDO on
the iperf connection, and –K which enables JUNK on the iperf
connection.

4.3 EDO Send
Implementing sending of the EDO-LENGTH option was similar
to implementing sending of the JUNK option, with a few
exceptions. EDO-LENGTH contains a Header Length field that
represents the number of 4-byte words in the entire TCP header,
so Header Length needed to be calculated and written to this field
instead of the standard Data Offset field.

EDO sending can be enabled or disabled as a system-wide default
by using the proc file system to write to the file
/proc/sys/net/ipv4/tcp_edo. Setting EDO enabled as default is not
advised, as it interferes with connections to non-EDO capable
hosts. A socket option was also implemented to enable EDO on a
per-connection basis.

4.4 EDO Receive
The kernel was modified to recognize and process TCP segments
containing the EDO-LENGTH option. By default, the routines
that copy data into userspace and acknowledge segments do not
take the new header length into account. This causes options to be
copied into userspace and acknowledgements to acknowledge
both options and data.

Both issues were resolved by storing the new header length in the
TCP per-segment control block soon after it becomes known and
updating routines that refer to the old Data Offset value such that
they refer to the control block member variable.

4.5 EDO Negotiation
If a machine has /proc/sys/net/ipv4/tcp_edo set to 1, it will
respond to segments containing the EDO-REQUEST option with
a segment containing a null EDO-LENGTH option, confirming
support for EDO. The machine will not send any segments that
actually utilize EDO once the connection is established, however
it will process incoming segments containing the EDO-LENGTH
option.

If a machine is initiating the connection and EDO is enabled on
that connection and tcp_edo is enabled on that machine, the EDO-
REQUEST option will be included with the SYN. If the machine
is not initiating the connection, it will respond to segments
containing the EDO-REQUEST option with a segment containing
the null EDO-LENGTH option, confirming its support for EDO.
Regardless of whether the machine initiates a connection or
receives a connection request containing an EDO-REQUEST
option, the machine will send segments that utilize EDO on an
established connection when necessary.

5. RESULTS AND ISSUES
5.1 Basic Results
The initial tests validated that EDO-enabled hosts participate in
EDO negotiation when requested on a per-connection basis, and
that EDO-disabled hosts do not.

Throughput tests were performed using the JUNK option with a
length of 8 bytes. Generic Receive Offload (GRO), a kernel

2

USC/ISI Technical Report ISI-TR-696 March 18, 2015

feature that merges packets with nearly identical headers to reduce
the overhead of processing many small packets, was disabled
before running the test [3]. A throughput of 932 Mb/sec was
observed when EDO was enabled. By comparison, throughput
with EDO disabled, JUNK disabled, and GRO enabled was 940
Mb/sec. Throughput did not decrease significantly when EDO
was used.

Tests confirmed the maximum size of options that could fit in a
TCP segment with EDO enabled. The largest byte-aligned JUNK
payload was 248 bytes, as limited by the option length field,
ExID, and need to reserve room for the option kind and length. A
TCP segment containing 272 bytes of options yielded a
throughput of 773 Mbits/sec. The 272 byte overall total limit is
imposed by the amount of room allocated for the TCP header in
Linux (a constant called MAX_TCP_HEADER).

5.2 Issues Encountered
Leaving GRO enabled caused throughput to drop from 932
Mb/sec to 208 Mb/sec. The number of data retransmissions also
grew from 0 to over 6000. Several tests were performed in an
attempt to pinpoint the cause of GRO’s behavior. Packets must
have identical TCP timestamps in order to be considered
candidates for merging [3]. GRO does not know how to interpret
EDO so merging two packets containing the EDO-LENGTH
option will result in corrupt data. We attempted to trick GRO into
deeming two consecutive EDO packets ineligible for merging by
flipping bit 15 in the EDO header length field with each outgoing
segment on the connection. This did not cause the subpar
throughput and retransmissions to go away, leading us to believe
that GRO merges consecutive packets even if their EDO-
LENGTH option differed in value, which is inconsistent with
correct GRO operation. Additional tests varying socket buffer
sizes resulted in no retransmissions with buffers under 5191, and
significant retransmissions above that, with a peak at 16K. The
number of retransmissions received roughly corresponded to the
number of delayed selective acknowledgements sent.

Because throughput with EDO enabled and GRO disabled did not
deviate significantly from throughput with EDO disabled and
GRO enabled, it was not clear whether GRO was effectively
reducing CPU utilization. CPU usage on the receiving machine
during 5-minute iperf test runs indicated negligible differences in
CPU load. The testbed machines may be fast enough that GRO
makes a negligible impact on CPU utilization.

Generic implementation issues were also uncovered in the process
of implementing EDO. If an endpoint changes its maximum
segment size after EDO has been negotiated, this can lead to
problems. In addition, it is not clear how Linux deals with a
connection that has more options enabled than can fit (with EDO
on or off). The total size of options is calculated when a TCP
segment is being constructed, rather than when options are set
using the setsockopt system call. An error handling mechanism
may need to be implemented to deal with this problem.

5.3 Debugging
Debugging the EDO implementation required a cumbersome
combination of print statements, writing to and reading from the
proc filesystem, capturing packets using Wireshark, and observing
the output of netstat. Because Wireshark operates at the link layer
and does not know how to interpret EDO, it often considered
legitimate segments to be TCP retransmissions [5]. This is due to
the fact that Wireshark expects the sequence number of an
incoming segment to equal the sequence number plus length of

data in the last segment received. Wireshark interprets options
accounted for by EDO as data, thus it expects a larger next
sequence number.

6. CONCLUSION
Implementation of TCP EDO is feasible in a modern, widely used
operating system. The space available for options in a TCP
segment was increased from the standard 40 bytes to 272 bytes
(this includes the 8-byte EDO-LENGTH option). The 272 byte
limit is imposed by the amount of headroom allocated for the TCP
header in the Linux implementation.
Using EDO with the Generic Receive Offload (GRO) engine
enabled results in dropped packets, but the reason remains
unconfirmed. As a result, GRO should be disabled when using
EDO until an EDO-compatible version of GRO is developed.
Using EDO on a TCP connection results in a negligible
performance impact, making EDO feasible for use in high-
performance network environments.
In the future, this work may explore the 272-byte option space
limit and development of an EDO-compatible GRO engine.

7. ACKNOWLEDGMENTS
We would like to thank the DETER Project for providing the
computing resources necessary to implement TCP EDO. We
would also like to thank the USC Office of the Provost for
funding this project.

8. REFERENCES
[1] Touch, J., Mankin, A., and Bonica, R., “The TCP

Authentication Option,” RFC 5925, June 2010.
[2] Borman, D., Braden, B., Jacobson, V., and Scheffenegger, R.

(Ed.), “TCP Extensions for High Performance,” RFC 7323,
September 2014.

[3] Corbet, J. (2009, October 27). JLS2009: Generic receive
offload. Retrieved December 7, 2014, from
https://lwn.net/Articles/358910/

[4] Mirkovic, J., Benzel, T., Faber, T., Braden R., Wroclawski, J.
and Schwab, S., “The DETER Project: Advancing the
Science of Cyber Security Experimentation and Test,” in
Proceedings of the IEEE HST ’10 Conference, Waltham MA,
November 2010.

[5] Postel, J., “Transmission Control Protocol,” RFC 793,
September 1981.

[6] Reynders, D., and Wright, E. (2003). Practical TCP/IP and
Ethernet Networking for Industry. Burlington: Elsevier.

[7] Risso, F., and Degioanni, L., "An architecture for high
performance network analysis," Computers and
Communications, 2001. Proceedings. Sixth IEEE Symposium
on , vol., no., pp.686,693, 2001
doi: 10.1109/ISCC.2001.935450

[8] Touch, J., “Shared Use of Experimental TCP Options,” RFC
6994, August 2013.

[9] Touch, J., and Eddy, W., “TCP Extended Data Offset
Option,” draft-ietf-tcpm-tcp-edo-01, October 2014.

[10] Touch, J., and Faber, T., “TCP SYN Extended Option Space
Using an Out-of-Band Segment”, draft-touch-tcpm-tcp-syn-
ext-opt-01 (work in progress), September 2014.

3

https://lwn.net/Articles/358910/

USC/ISI Technical Report ISI-TR-696 March 18, 2015

4

	1. INTRODUCTION
	2. BACKGROUND
	3. OVERVIEW OF EDO
	4. PHASES AND TESTBED
	4.1 The Junk Option
	4.2 iperf3 Modification
	4.3 EDO Send
	4.4 EDO Receive
	4.5 EDO Negotiation

	5. RESULTS AND ISSUES
	5.1 Basic Results
	5.2 Issues Encountered
	5.3 Debugging

	6. CONCLUSION
	7. ACKNOWLEDGMENTS
	8. REFERENCES

