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Abstract— A hybrid model for middleboxes is presented 

that describes constraints on their compatibility with the 
Internet. The Internet is composed of hosts, routers, and links 
that exchange messages, and these components have been 
combined into hybrid models to describe tunnels and virtual 
routers. This document extends these models to describe the 
behavior of a variety of types of middleboxes, including 
network address translators, proxies, and transparent proxies. 
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I. INTRODUCTION 
Middleboxes are devices that bend – and sometimes 

break – the network architecture in which they are deployed 
[RFC3234]. They represent an intermediate between the 
role of host and router, transiting traffic while also 
modifying it. As a result, they can be modeled as hybrid 
components in a forwarding-based architecture to better 
understand their behavior and limitations. 

The following is a discussion of the Internet and the role 
of middleboxes therein. A simple Internet architecture is 
presented, as are existing models for tunnels and 
encapsulation subnets. Hybrid models of middleboxes are 
introduced that explain the conditions under which these 
devices can safely participate in the Internet architecture. 

II. THE INTERNET ARCHIECTURE 
A network architecture is an abstract description of a 

distributed communications system, its components and 
their relationships, the requisite properties of those 
components, and the resulting properties of that system. 
Such descriptions can help explain behavior, as when the 
OSI seven-layer model is used as a teaching example 
[Zi80]. Architectures describe capabilities – and, just as 
importantly, constraints. 

A network can be defined as a system of endpoints and 
relays interconnected by communication paths, abstracting 
away issues of naming in order to focus on message 
delivery. To the extent that the Internet has a single, 
coherent interpretation, its architecture is defined by its core 
protocols (IP [RFC791], TCP [RFC793], UDP [RFC768]) 
and the concepts [ToFPN][To03] depicted in Figure 1: 

• Message: variable length data labeled with 
globally-unique endpoint IDs [RFC791]  

• Host: a device that sources and/or sinks messages 
labeled from/to its IDs [RFC1122] 

• Router: a device that relays messages using 
longest-prefix match of destination IDs and local 
context, when possible [RFC1812] 

• Link: a communication device that transfers 
messages between network devices 
[RFC1122][RFC1812] 

 
Figure 1 The Internet architecture 

As a network architecture, the Internet is a system of 
hosts and routers interconnected by links that exchange 
messages when possible. “When possible” describes the 
Internet’s “best effort” principle. Hosts that are not directly 
connected can communicate indirectly through a sequence 
of links connected by routers, called a path. The limited role 
of routers and links represents the “End-to-End Principle” 
[Sa84], and longest-prefix match supports hierarchical 
forwarding using efficient representations of relaying tables.  

Although the definitions of host, router, and link seem 
absolute, they are often viewed relative to the context of 
only one OSI layer. Each OSI layer can thus be viewed as a 
distinct network architecture. An Internet gateway is a Layer 
3 router when it transits IP datagrams but it acts as a Layer 
2 host when it sources or sinks Layer 2 messages on 
attached links to accomplish this transit capability. In this 
way, a single device (Internet gateway) behaves as different 
components (router, host) at different layers. 

Even though a single device may have multiple roles – 
even concurrently – at a given layer, each role is typically 
static and pre-determined. An Internet gateway always acts 
as a Layer 2 host, and that behavior does not depend on 
where the gateway is viewed from within Layer 2. In the 
context of a single layer, a device’s behavior is modeled as a 
single component from all viewpoints in that layer. 

III.  ARCHITECTURE EXTENSIONS 
The Internet architecture can be extended to explain the 

role of new devices and to understand how those devices 
affect the roles of existing components. Two illustrative 
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architectural extensions that are already understood are 
tunnels and encapsulation networks.  

A. Tunnels as links 
A tunnel can be modeled as a network that emulates a 

link in another network [To03][To16]. It consists of two 
devices (ingress, egress), connected by a network N, that lie 
along a path within a (possibly different) network M 
(shown in its entirety in Figure 2). Messages arriving at the 
ingress are encapsulated to traverse network N, addressed to 
the egress. The egress decapsulates those messages, which 
continue on network M as if emerging from a link. 

 
Figure 2 A tunnel – the big picture 

Within network N, i.e., from inside the tunnel itself, the 
ingress is a source and the egress is a sink – both are 
effectively hosts on network N (Figure 3). From outside the 
tunnel, to network M, the entire tunnel acts as a single link 
in network M (Figure 4). As with any other type of link, a 
tunnel thus begins and ends at a network interface – i.e., the 
ingress and egress are more specifically the network 
interfaces inside routers in network M (even though we use 
the terms ingress/egress to also refer to the nodes where 
they are located). The model of each component (ingress, 
egress) and the entire system (tunnel) depends on the layer 
from which you view the tunnel. 

 
Figure 3 A tunnel as viewed from within the tunnel 

 
Figure 4 A tunnel, as viewed from the outside  

This approach thus highlights a few key features of a 
tunnel as a network architecture construct: 

• Tunnels create a direct link from existing 
connectivity, i.e., from one or more existing links or 
paths 

• Tunnels rely on devices along that path to act as 
hosts, to source and sink messages over the path 

• A link is a tunnel whose ingress/egress are directly 
connected by a communication channel [ToFPN] 

This model of a tunnel can be used to infer constraints. 
Because the entire tunnel acts as a link, its ingress and 
egress should not act directly as either routers or hosts on 
network M. If the egress is down, an ICMP “host not 
found” inside the tunnel should be translated as “link down” 
(or interface down) outside the tunnel, and the router 
attached to the tunnel should react accordingly. This is why 
the ingress and egress are typically integrated as virtual 
interfaces within routers in network M. 

This model also highlights how tunnels challenge some 
of the prevalent assumptions of the Internet architecture. 
Internet links are generally assumed to have a static MTU, 
but tunnel MTUs can depend on the path taken in network 
N. As a result, a tunnel is a link with a variable MTU in 
network M, and thus network M needs to accommodate 
links (not just paths) with varying MTUs. This complicates 
path MTU discovery.  

Networking requirements (such as MTU) and signals 
(such as ICMP messages) need to be translated from one 
layer to the other whenever they encounter an ingress or 
egress. Correctly translating and relaying these properties 
and behaviors between the layers is as important as properly 
encapsulating or decapsulating messages at the ingress and 
egress, and often defines the robustness and completeness of 
a tunnel solution. 

B. Encapsulation nets as virtual routers  
An encapsulation network is the network equivalent of a 

multipoint tunnel; messages of network M are tunneled over 
network N, using multiple ingresses and egresses.  

The Internet has two such models of multipoint tunnels: 
a Layer 2 subnet (a multipoint link) and a virtual router. 
Layer 2 subnets (i.e., link layers), are links with more than 
two endpoints. The Internet assumes Layer 2 subnets 
support broadcast, e.g,, for endpoint name translation (e.g., 
ARP) or multicast. When broadcast is missing, it needs to 
be emulated (e.g., LANE [RFC1577] and MARS 
[RFC2022]). 

A more recent model is the virtual router, first proposed 
in virtual networks (X-Bone vrouter [To98][To03]) and 
later in the IETF at both Layer 2 (rbridges/TRILL 
[Pe04][RFC5556]) and Layer 3 (LISP [RFC6830]). The X-
Bone first proposed that these devices be modeled as a 
single router. Figure 5 shows such a system, in which 
network M devices traverse a network N subnet (shaded) via 
encapsulation.  
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Figure 5 A virtual router – the big picture 

Viewed from the outside (in the context of network M), 
the ingresses and egresses act as virtual network interfaces 
of the virtual router (Figure 6). Whatever forwarding is 
required inside the virtual router is hidden from the outside 
network (M). Viewed from inside the virtual router, the 
ingresses and egresses are hosts in network N (Figure 7). 

 
Figure 6 A virtual router viewed from the outside 

 
Figure 7 A virtual router viewed from within 

Tunnels combine devices to create a virtual link out of a 
path and virtual routers combine devices to create a router 
out of a set of paths. Both models assume that network N 
can forward messages between ingress and egress using 
network N’s pre-existing routing.  

Using this model, the benefit of virtual routers is clear: 
they isolate the structure of network M from network N, 
i.e., network M is invisible from within network N.  

The virtual router model can be used to resolve protocol 
issues. A TRILL encapsulation network (“campus”) can be 
modeled as a single, virtual Layer 2 route, i.e., an Ethernet 
bridge. By that model, bridge discovery (BPDU) messages 

should be processed by a campus as if by a single bridge; 
that interpretation would have simplified the TRILL 
specifications (this was proposed but rejected by the IETF 
working group and has resulted in substantial and 
unnecessarily complex BPDU handling rules). 

Again, as with tunnels, a virtual router can be viewed as 
different network architecture components depending on 
viewpoint. From inside the virtual router, the ingresses and 
egresses act as hosts and the transits act as routers. From 
outside the virtual router, the entire system acts as a single 
router that relays messages between its inputs and outputs. 
From either viewpoint – inside or outside – the virtual router 
construct and its components behave consistently with 
respect to the current Internet architecture.  

Also, as with tunnels, translating and potentially relaying 
the requirements and behaviors between the inside and 
outside views is critical. Again, the translation between 
inside and outside is a translation between layers, where the 
internal network N of the virtual router acts like a lower 
layer to network transiting the external network M. 

C. Multipoint tunnels vs. virtual routers 
The tunnels in the figures shown in Figure 2, Figure 3, 

and Figure 4 are point-to-point, but tunnels can also be 
multipoint (Figure 8). A multipoint tunnel is a tunnel with 
more than two ingress/egress locations. 

 
Figure 8 A multipoint tunnel – the big picture 

A multipoint link (i.e., a conventional Layer 2 multipoint 
subnet, e.g., Ethernet), a multipoint tunnel, and a virtual 
router all require address resolution to provide the 
information needed for ingress encapsulation. When 
messages arrive at the ingress of a point-to-point link or 
tunnel, the egress is always known – there is only one. 
When a message arrives at the ingress of a multipoint link, 
multipoint tunnel, or a virtual router, the egress can vary. 
All three thus require a way to determine the appropriate 
egress in order to properly encapsulate the message for 
traversal over network N. For IP messages traversing an 
Ethernet multipoint link, this egress resolution mechanism 
provided by ARP.  

Just as a point-to-point link is a tunnel whose 
ingress/egress are connected by a point-to-point 
communication channel, a multipoint link is a tunnel whose 
ingresses/egresses are connected by a multi-access 
communication channel. A multipoint tunnel and a virtual 
router have one important distinction – they differ in where 
the encapsulation occurs. A multipoint tunnel encapsulates 
at virtual interfaces in the “outside” network M, whereas a 
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virtual router encapsulates using virtual interfaces that 
belong to the virtual router. Another way of viewing this is 
that multipoint tunnels interconnect hosts, whereas virtual 
routers interconnect links or tunnels. 

IV. HYBRID MODELS FOR MIDDLEBOXES 
Middleboxes include a wide variety of non-router, non-

link devices inside a network, including NATs, traditional 
proxies, and “transparent” proxies [RFC3234]. Like routers 
and links, they transit messages – but unlike routers and 
links, they modify those messages. They cannot be modeled 
as any single Internet component when viewed from the 
perspective of a single layer. 

A middlebox can be defined as a network device that 
deliberately modifies the semantics of messages in transit or 
that sources or sinks messages that mimic the behavior of 
the endpoints of a message’s path. 

Although there are a wide variety of middelbox 
behaviors, they generally fall into three distinct classes: 

• NAT: a network transit device that modifies 
messages by translating network layer addresses 
and/or transport layer port numbers. 

• Traditional proxy: (or just “proxy”) a transport-
layer destination host that relays content by acting 
as a source host 

• Transparent proxy: a middlebox that is not solely 
a NAT or traditional proxy, often combining the 
capabilities of the two or modifying messages in 
transit other than just the network address and 
transport port number. 

Just as a tunnel and encapsulation subnet can be 
described using these hybrid models, the following hybrid 
models for various middlebox types are proposed:  

• NAT: viewed as a router or link to devices on the 
private side, but a host on the public side 
[RFC3022] 

• Proxy: viewed as different hosts on each side 
[Sh86] 

• Transparent proxy: viewed, together with the 
source, as a single host to the sink but invisible to 
the source on both sides; these are sometimes 
called “performance-enhancing proxies” (PEP) 
[RFC3135] 

Unlike our tunnel and virtual router models, these 
models are not layer-dependent but they are dependent on 
the location of the viewpoint within the layer. A NAT looks 
like a router or link on one side and a host on the other, but 
both views are within the network and transport layers 
(which, in the Internet, are intertwined). From the link layer, 
a NAT looks like a host, as would both conventional hosts 
and network routers. 

A. The View of a NAT 
A NAT is modeled as a host on the public side because 

there it sources and sinks messages with its address (Figure 
9, right). It is modeled as a router or link to the private side 
because it the private-side device thinks the NAT is 
transiting its traffic (Figure 9, left shaded). It is modeled as a 
router when its private side is connected to a link; it is 
modeled as a link when its private side is integrated within a 
router or host, such that there is no separate link connection. 

 
Figure 9 A NAT – the big picture 

When viewed from the private side, the NAT is just a 
router along a path that goes all the way to the public sink 
host (Figure 10). The NAT is thus either a router or a link 
(depending on details, as noted before). The host thinks the 
entire network is homogenous and goes all the way to the 
destination. This is why a private host can trace the entire 
path, including routers on the private side and public side, 
all the way to the public destination host. 

 
Figure 10 A NAT viewed from the private side 

When viewed from the public side, the private source 
isn’t even part of the network (Figure 11). The entire system 
begins at the NAT and the NAT is a host on the public 
network. This is why the destination cannot trace back into 
the private network, and this is also what makes the private 
side “private”. 

 
Figure 11 A NAT as viewed from the pubic (Internet) side 

This hybrid model of NATs highlights the key challenge of 
integrating them with the Internet architecture. From the 
private viewpoint they act as routers along a path, but from 
the public viewpoint they act as hosts. Within a single 
network layer they act as two different devices. 
Requirements (e.g., MTU) and signals (e.g., ICMP) 
between the two sides need to be translated and potentially 
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relayed. Additionally, any message terminated on the 
public side of the NAT might also create a signal or new 
message to relay to the private side. 

B. The View of a Conventional Proxy 
A (conventional) proxy acts as different hosts on both sides 
(Figure 12). On both sides, it sources and sinks messages 
with its address. Although it transits information between 
its two sides, neither side knows. 

 
Figure 12 A proxy – the big picture 

As a result, from the source side, the sink side does not 
exist (Figure 13), and from the sink side, the source side 
does not exist (Figure 14). Messages received by the proxy 
from either direction can cause new messages to be 
generated on the other side – this includes not only data 
that is relayed, but also signals. Requirements of the two 
different sides, such as MTU limits, can be isolated 
somewhat, depending on how the proxy is implemented. 

 
Figure 13 A proxy as viewed from the source side 

 
Figure 14 A proxy as viewed from the sink side 

The concept of a proxy is not new to the Internet 
architecture. Layer 3 relays act as Layer 2 proxies, 
terminating Layer 2 communication on one side and 
originating it on the other. As such, the behavior of 
conventional proxies is already part of the current Internet. 

C. The View of a Transparent Proxy 
Like a conventional proxy, a transparent proxy is 

modeled as different hosts on both sides (Figure 15). 
Conventional proxies separate the two sides, which act 
largely independently at the layer where the proxy is 
deployed. Transparent proxies mix things up a bit more. 

 
Figure 15 A transparent proxy – the big picture 

From the source side, the proxy and sink act as a single 
host (Figure 16). The behavior of the proxy/sink pair is the 
device that interacts with the source and the source-side 
routers and links. 

 
Figure 16 A transparent proxy as viewed from the source 

Similarly, from the sink side, the source and the proxy 
act as a single source (Figure 17). The sink side interacts 
with the proxy/source pair. 

 
Figure 17 A Transparent proxy as viewed from the sink 

A conventional proxy is a simple degenerate case of a 
transparent proxy, where the contribution of the “foreign” 
element (the source on the sink side, or the sink on the 
source side) is eliminated. For example, Figure 17 becomes 
identical to Figure 14 when the contribution of the source is 
eliminated. In the conventional case, the proxy is wholly 
responsible for independent behavior on its two sides. 

 
Figure 18 A NAT modeled as a transparent proxy 

A NAT is complex degenerate case of a transparent 
proxy, where the proxy allows the entirety of the public 
network to be emulated (by the proxy) to the private side 
(Figure 18). The private-side host functions are now empty, 
and the only function of the box is to emulate the public 
network.  
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In each case, a middlebox is modeled by multiple 
components within the same network, a viewpoint that 
varies based on location. This is the defining property of a 
middlebox – and perhaps justification for using “middle” in 
its name: its architectural role depends on the location from 
which it is viewed, not merely the layer. This represents a 
significant departure from the simple behavior of 
conventional network components. 

V. THE IMPACT OF THE MIDDLEBOX MODELS 
These three distinct middlebox models imply the 

following common constraints, which are required to ensure 
compatibility with the Internet architecture: 

• Middleboxes always emulate a host, 
independently or in concert with the source, from 
at least one side’s viewpoint  

• Middleboxes act as different components from 
different directions within the same layer, either 
distinct components or different instances of one  

Both of these rules imply that middleboxes cannot be 
deployed without consequence for the endpoints with which 
they interact, nor can they be implemented as simple, dumb 
translation devices. In specific, a middlebox can modify 
messages only when it knows it can correctly emulate the 
intended host, either in solo (for a NAT or proxy) or in 
tandem with the origin host (for a transparent proxy). When 
the middlebox lacks that certainty, it must not modify 
transited messages. 

For example, a transparent proxy might want to split or 
coalesce messages, to more efficiently match MTUs on 
different links. This is valid only when it knows it can 
coordinate both directions, e.g., using TCP MSS. A proxy 
can ignore unknown TCP options only when it acts as if it 
terminates the connection, e.g., emulating a host in both 
directions. Middleboxes cannot simply copy unknown 
options during message modification because they cannot 
know whether the options interact with the modifications. 

To the extent that middleboxes coexist with the Internet, 
they already obey these rules. The Internet is already 
experiencing examples where extensions to end-to-end 
protocols or middlebox capabilities do not comply with 
these rules and cause problems that might not be resolvable 
without substantial revision to the Internet architecture. 

A. Summary 
Hybrid models for NAT, proxy, and transparent proxy 

middleboxes highlight how middlebox behavior is viewed 
differently from various locations in the same network, but 
how they always emulate a host from at least one side’s 
viewpoint. The models also indicate constraints that are 
necessary to ensure middlebox consistency with the Internet 
architecture, especially when the middlebox is not certain it 
can accurately perform host emulation. Middleboxes can 
and sometimes do coexist with the Internet only when used 
consistent with these constraints. 
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