
USC/ISI-TR-711 / Oct. 7, 2016

1

Middlebox Models Compatible with the Internet
Joe Touch

USC/ISI
4676 Admiralty Way

Marina del Rey, CA 90292-6695 USA
touch@isi.edu

Abstract— A hybrid model for middleboxes is presented

that describes constraints on their compatibility with the
Internet. The Internet is composed of hosts, routers, and links
that exchange messages, and these components have been
combined into hybrid models to describe tunnels and virtual
routers. This document extends these models to describe the
behavior of a variety of types of middleboxes, including
network address translators, proxies, and transparent proxies.

Keywords—Internet architecture, middlebox, NAT, proxy,
PEP, tunnel.

I. INTRODUCTION
Middleboxes are devices that bend – and sometimes

break – the network architecture in which they are deployed
[RFC3234]. They represent an intermediate between the
role of host and router, transiting traffic while also
modifying it. As a result, they can be modeled as hybrid
components in a forwarding-based architecture to better
understand their behavior and limitations.

The following is a discussion of the Internet and the role
of middleboxes therein. A simple Internet architecture is
presented, as are existing models for tunnels and
encapsulation subnets. Hybrid models of middleboxes are
introduced that explain the conditions under which these
devices can safely participate in the Internet architecture.

II. THE INTERNET ARCHIECTURE
A network architecture is an abstract description of a

distributed communications system, its components and
their relationships, the requisite properties of those
components, and the resulting properties of that system.
Such descriptions can help explain behavior, as when the
OSI seven-layer model is used as a teaching example
[Zi80]. Architectures describe capabilities – and, just as
importantly, constraints.

A network can be defined as a system of endpoints and
relays interconnected by communication paths, abstracting
away issues of naming in order to focus on message
delivery. To the extent that the Internet has a single,
coherent interpretation, its architecture is defined by its core
protocols (IP [RFC791], TCP [RFC793], UDP [RFC768])
and the concepts [ToFPN][To03] depicted in Figure 1:

• Message: variable length data labeled with
globally-unique endpoint IDs [RFC791]

• Host: a device that sources and/or sinks messages
labeled from/to its IDs [RFC1122]

• Router: a device that relays messages using
longest-prefix match of destination IDs and local
context, when possible [RFC1812]

• Link: a communication device that transfers
messages between network devices
[RFC1122][RFC1812]

Figure 1 The Internet architecture

As a network architecture, the Internet is a system of
hosts and routers interconnected by links that exchange
messages when possible. “When possible” describes the
Internet’s “best effort” principle. Hosts that are not directly
connected can communicate indirectly through a sequence
of links connected by routers, called a path. The limited role
of routers and links represents the “End-to-End Principle”
[Sa84], and longest-prefix match supports hierarchical
forwarding using efficient representations of relaying tables.

Although the definitions of host, router, and link seem
absolute, they are often viewed relative to the context of
only one OSI layer. Each OSI layer can thus be viewed as a
distinct network architecture. An Internet gateway is a Layer
3 router when it transits IP datagrams but it acts as a Layer
2 host when it sources or sinks Layer 2 messages on
attached links to accomplish this transit capability. In this
way, a single device (Internet gateway) behaves as different
components (router, host) at different layers.

Even though a single device may have multiple roles –
even concurrently – at a given layer, each role is typically
static and pre-determined. An Internet gateway always acts
as a Layer 2 host, and that behavior does not depend on
where the gateway is viewed from within Layer 2. In the
context of a single layer, a device’s behavior is modeled as a
single component from all viewpoints in that layer.

III. ARCHITECTURE EXTENSIONS
The Internet architecture can be extended to explain the

role of new devices and to understand how those devices
affect the roles of existing components. Two illustrative

Host

Router

Message

Link

USC/ISI-TR-711 / Oct. 7, 2016

2

architectural extensions that are already understood are
tunnels and encapsulation networks.

A. Tunnels as links
A tunnel can be modeled as a network that emulates a

link in another network [To03][To16]. It consists of two
devices (ingress, egress), connected by a network N, that lie
along a path within a (possibly different) network M
(shown in its entirety in Figure 2). Messages arriving at the
ingress are encapsulated to traverse network N, addressed to
the egress. The egress decapsulates those messages, which
continue on network M as if emerging from a link.

Figure 2 A tunnel – the big picture

Within network N, i.e., from inside the tunnel itself, the
ingress is a source and the egress is a sink – both are
effectively hosts on network N (Figure 3). From outside the
tunnel, to network M, the entire tunnel acts as a single link
in network M (Figure 4). As with any other type of link, a
tunnel thus begins and ends at a network interface – i.e., the
ingress and egress are more specifically the network
interfaces inside routers in network M (even though we use
the terms ingress/egress to also refer to the nodes where
they are located). The model of each component (ingress,
egress) and the entire system (tunnel) depends on the layer
from which you view the tunnel.

Figure 3 A tunnel as viewed from within the tunnel

Figure 4 A tunnel, as viewed from the outside

This approach thus highlights a few key features of a
tunnel as a network architecture construct:

• Tunnels create a direct link from existing
connectivity, i.e., from one or more existing links or
paths

• Tunnels rely on devices along that path to act as
hosts, to source and sink messages over the path

• A link is a tunnel whose ingress/egress are directly
connected by a communication channel [ToFPN]

This model of a tunnel can be used to infer constraints.
Because the entire tunnel acts as a link, its ingress and
egress should not act directly as either routers or hosts on
network M. If the egress is down, an ICMP “host not
found” inside the tunnel should be translated as “link down”
(or interface down) outside the tunnel, and the router
attached to the tunnel should react accordingly. This is why
the ingress and egress are typically integrated as virtual
interfaces within routers in network M.

This model also highlights how tunnels challenge some
of the prevalent assumptions of the Internet architecture.
Internet links are generally assumed to have a static MTU,
but tunnel MTUs can depend on the path taken in network
N. As a result, a tunnel is a link with a variable MTU in
network M, and thus network M needs to accommodate
links (not just paths) with varying MTUs. This complicates
path MTU discovery.

Networking requirements (such as MTU) and signals
(such as ICMP messages) need to be translated from one
layer to the other whenever they encounter an ingress or
egress. Correctly translating and relaying these properties
and behaviors between the layers is as important as properly
encapsulating or decapsulating messages at the ingress and
egress, and often defines the robustness and completeness of
a tunnel solution.

B. Encapsulation nets as virtual routers
An encapsulation network is the network equivalent of a

multipoint tunnel; messages of network M are tunneled over
network N, using multiple ingresses and egresses.

The Internet has two such models of multipoint tunnels:
a Layer 2 subnet (a multipoint link) and a virtual router.
Layer 2 subnets (i.e., link layers), are links with more than
two endpoints. The Internet assumes Layer 2 subnets
support broadcast, e.g,, for endpoint name translation (e.g.,
ARP) or multicast. When broadcast is missing, it needs to
be emulated (e.g., LANE [RFC1577] and MARS
[RFC2022]).

A more recent model is the virtual router, first proposed
in virtual networks (X-Bone vrouter [To98][To03]) and
later in the IETF at both Layer 2 (rbridges/TRILL
[Pe04][RFC5556]) and Layer 3 (LISP [RFC6830]). The X-
Bone first proposed that these devices be modeled as a
single router. Figure 5 shows such a system, in which
network M devices traverse a network N subnet (shaded) via
encapsulation.

Tunnel

Network M

Network N

Ingress Egress

Network N

Network M

USC/ISI-TR-711 / Oct. 7, 2016

3

Figure 5 A virtual router – the big picture

Viewed from the outside (in the context of network M),
the ingresses and egresses act as virtual network interfaces
of the virtual router (Figure 6). Whatever forwarding is
required inside the virtual router is hidden from the outside
network (M). Viewed from inside the virtual router, the
ingresses and egresses are hosts in network N (Figure 7).

Figure 6 A virtual router viewed from the outside

Figure 7 A virtual router viewed from within

Tunnels combine devices to create a virtual link out of a
path and virtual routers combine devices to create a router
out of a set of paths. Both models assume that network N
can forward messages between ingress and egress using
network N’s pre-existing routing.

Using this model, the benefit of virtual routers is clear:
they isolate the structure of network M from network N,
i.e., network M is invisible from within network N.

The virtual router model can be used to resolve protocol
issues. A TRILL encapsulation network (“campus”) can be
modeled as a single, virtual Layer 2 route, i.e., an Ethernet
bridge. By that model, bridge discovery (BPDU) messages

should be processed by a campus as if by a single bridge;
that interpretation would have simplified the TRILL
specifications (this was proposed but rejected by the IETF
working group and has resulted in substantial and
unnecessarily complex BPDU handling rules).

Again, as with tunnels, a virtual router can be viewed as
different network architecture components depending on
viewpoint. From inside the virtual router, the ingresses and
egresses act as hosts and the transits act as routers. From
outside the virtual router, the entire system acts as a single
router that relays messages between its inputs and outputs.
From either viewpoint – inside or outside – the virtual router
construct and its components behave consistently with
respect to the current Internet architecture.

Also, as with tunnels, translating and potentially relaying
the requirements and behaviors between the inside and
outside views is critical. Again, the translation between
inside and outside is a translation between layers, where the
internal network N of the virtual router acts like a lower
layer to network transiting the external network M.

C. Multipoint tunnels vs. virtual routers
The tunnels in the figures shown in Figure 2, Figure 3,

and Figure 4 are point-to-point, but tunnels can also be
multipoint (Figure 8). A multipoint tunnel is a tunnel with
more than two ingress/egress locations.

Figure 8 A multipoint tunnel – the big picture

A multipoint link (i.e., a conventional Layer 2 multipoint
subnet, e.g., Ethernet), a multipoint tunnel, and a virtual
router all require address resolution to provide the
information needed for ingress encapsulation. When
messages arrive at the ingress of a point-to-point link or
tunnel, the egress is always known – there is only one.
When a message arrives at the ingress of a multipoint link,
multipoint tunnel, or a virtual router, the egress can vary.
All three thus require a way to determine the appropriate
egress in order to properly encapsulate the message for
traversal over network N. For IP messages traversing an
Ethernet multipoint link, this egress resolution mechanism
provided by ARP.

Just as a point-to-point link is a tunnel whose
ingress/egress are connected by a point-to-point
communication channel, a multipoint link is a tunnel whose
ingresses/egresses are connected by a multi-access
communication channel. A multipoint tunnel and a virtual
router have one important distinction – they differ in where
the encapsulation occurs. A multipoint tunnel encapsulates
at virtual interfaces in the “outside” network M, whereas a

Virtual router

Network M Network N

Network M

Network N

Network M
Network N

USC/ISI-TR-711 / Oct. 7, 2016

4

virtual router encapsulates using virtual interfaces that
belong to the virtual router. Another way of viewing this is
that multipoint tunnels interconnect hosts, whereas virtual
routers interconnect links or tunnels.

IV. HYBRID MODELS FOR MIDDLEBOXES
Middleboxes include a wide variety of non-router, non-

link devices inside a network, including NATs, traditional
proxies, and “transparent” proxies [RFC3234]. Like routers
and links, they transit messages – but unlike routers and
links, they modify those messages. They cannot be modeled
as any single Internet component when viewed from the
perspective of a single layer.

A middlebox can be defined as a network device that
deliberately modifies the semantics of messages in transit or
that sources or sinks messages that mimic the behavior of
the endpoints of a message’s path.

Although there are a wide variety of middelbox
behaviors, they generally fall into three distinct classes:

• NAT: a network transit device that modifies
messages by translating network layer addresses
and/or transport layer port numbers.

• Traditional proxy: (or just “proxy”) a transport-
layer destination host that relays content by acting
as a source host

• Transparent proxy: a middlebox that is not solely
a NAT or traditional proxy, often combining the
capabilities of the two or modifying messages in
transit other than just the network address and
transport port number.

Just as a tunnel and encapsulation subnet can be
described using these hybrid models, the following hybrid
models for various middlebox types are proposed:

• NAT: viewed as a router or link to devices on the
private side, but a host on the public side
[RFC3022]

• Proxy: viewed as different hosts on each side
[Sh86]

• Transparent proxy: viewed, together with the
source, as a single host to the sink but invisible to
the source on both sides; these are sometimes
called “performance-enhancing proxies” (PEP)
[RFC3135]

Unlike our tunnel and virtual router models, these
models are not layer-dependent but they are dependent on
the location of the viewpoint within the layer. A NAT looks
like a router or link on one side and a host on the other, but
both views are within the network and transport layers
(which, in the Internet, are intertwined). From the link layer,
a NAT looks like a host, as would both conventional hosts
and network routers.

A. The View of a NAT
A NAT is modeled as a host on the public side because

there it sources and sinks messages with its address (Figure
9, right). It is modeled as a router or link to the private side
because it the private-side device thinks the NAT is
transiting its traffic (Figure 9, left shaded). It is modeled as a
router when its private side is connected to a link; it is
modeled as a link when its private side is integrated within a
router or host, such that there is no separate link connection.

Figure 9 A NAT – the big picture

When viewed from the private side, the NAT is just a
router along a path that goes all the way to the public sink
host (Figure 10). The NAT is thus either a router or a link
(depending on details, as noted before). The host thinks the
entire network is homogenous and goes all the way to the
destination. This is why a private host can trace the entire
path, including routers on the private side and public side,
all the way to the public destination host.

Figure 10 A NAT viewed from the private side

When viewed from the public side, the private source
isn’t even part of the network (Figure 11). The entire system
begins at the NAT and the NAT is a host on the public
network. This is why the destination cannot trace back into
the private network, and this is also what makes the private
side “private”.

Figure 11 A NAT as viewed from the pubic (Internet) side

This hybrid model of NATs highlights the key challenge of
integrating them with the Internet architecture. From the
private viewpoint they act as routers along a path, but from
the public viewpoint they act as hosts. Within a single
network layer they act as two different devices.
Requirements (e.g., MTU) and signals (e.g., ICMP)
between the two sides need to be translated and potentially

NAT

Public side

Private side

USC/ISI-TR-711 / Oct. 7, 2016

5

relayed. Additionally, any message terminated on the
public side of the NAT might also create a signal or new
message to relay to the private side.

B. The View of a Conventional Proxy
A (conventional) proxy acts as different hosts on both sides
(Figure 12). On both sides, it sources and sinks messages
with its address. Although it transits information between
its two sides, neither side knows.

Figure 12 A proxy – the big picture

As a result, from the source side, the sink side does not
exist (Figure 13), and from the sink side, the source side
does not exist (Figure 14). Messages received by the proxy
from either direction can cause new messages to be
generated on the other side – this includes not only data
that is relayed, but also signals. Requirements of the two
different sides, such as MTU limits, can be isolated
somewhat, depending on how the proxy is implemented.

Figure 13 A proxy as viewed from the source side

Figure 14 A proxy as viewed from the sink side

The concept of a proxy is not new to the Internet
architecture. Layer 3 relays act as Layer 2 proxies,
terminating Layer 2 communication on one side and
originating it on the other. As such, the behavior of
conventional proxies is already part of the current Internet.

C. The View of a Transparent Proxy
Like a conventional proxy, a transparent proxy is

modeled as different hosts on both sides (Figure 15).
Conventional proxies separate the two sides, which act
largely independently at the layer where the proxy is
deployed. Transparent proxies mix things up a bit more.

Figure 15 A transparent proxy – the big picture

From the source side, the proxy and sink act as a single
host (Figure 16). The behavior of the proxy/sink pair is the
device that interacts with the source and the source-side
routers and links.

Figure 16 A transparent proxy as viewed from the source

Similarly, from the sink side, the source and the proxy
act as a single source (Figure 17). The sink side interacts
with the proxy/source pair.

Figure 17 A Transparent proxy as viewed from the sink

A conventional proxy is a simple degenerate case of a
transparent proxy, where the contribution of the “foreign”
element (the source on the sink side, or the sink on the
source side) is eliminated. For example, Figure 17 becomes
identical to Figure 14 when the contribution of the source is
eliminated. In the conventional case, the proxy is wholly
responsible for independent behavior on its two sides.

Figure 18 A NAT modeled as a transparent proxy

A NAT is complex degenerate case of a transparent
proxy, where the proxy allows the entirety of the public
network to be emulated (by the proxy) to the private side
(Figure 18). The private-side host functions are now empty,
and the only function of the box is to emulate the public
network.

Proxy

Sink side

Source side

Source

Sink side

Proxy

Sink

Source side

Source

Sink side

Private side

USC/ISI-TR-711 / Oct. 7, 2016

6

In each case, a middlebox is modeled by multiple
components within the same network, a viewpoint that
varies based on location. This is the defining property of a
middlebox – and perhaps justification for using “middle” in
its name: its architectural role depends on the location from
which it is viewed, not merely the layer. This represents a
significant departure from the simple behavior of
conventional network components.

V. THE IMPACT OF THE MIDDLEBOX MODELS
These three distinct middlebox models imply the

following common constraints, which are required to ensure
compatibility with the Internet architecture:

• Middleboxes always emulate a host,
independently or in concert with the source, from
at least one side’s viewpoint

• Middleboxes act as different components from
different directions within the same layer, either
distinct components or different instances of one

Both of these rules imply that middleboxes cannot be
deployed without consequence for the endpoints with which
they interact, nor can they be implemented as simple, dumb
translation devices. In specific, a middlebox can modify
messages only when it knows it can correctly emulate the
intended host, either in solo (for a NAT or proxy) or in
tandem with the origin host (for a transparent proxy). When
the middlebox lacks that certainty, it must not modify
transited messages.

For example, a transparent proxy might want to split or
coalesce messages, to more efficiently match MTUs on
different links. This is valid only when it knows it can
coordinate both directions, e.g., using TCP MSS. A proxy
can ignore unknown TCP options only when it acts as if it
terminates the connection, e.g., emulating a host in both
directions. Middleboxes cannot simply copy unknown
options during message modification because they cannot
know whether the options interact with the modifications.

To the extent that middleboxes coexist with the Internet,
they already obey these rules. The Internet is already
experiencing examples where extensions to end-to-end
protocols or middlebox capabilities do not comply with
these rules and cause problems that might not be resolvable
without substantial revision to the Internet architecture.

A. Summary
Hybrid models for NAT, proxy, and transparent proxy

middleboxes highlight how middlebox behavior is viewed
differently from various locations in the same network, but
how they always emulate a host from at least one side’s
viewpoint. The models also indicate constraints that are
necessary to ensure middlebox consistency with the Internet
architecture, especially when the middlebox is not certain it
can accurately perform host emulation. Middleboxes can
and sometimes do coexist with the Internet only when used
consistent with these constraints.

ACKNOWLEDGMENTS
The author would like to thank Ted Faber for his

detailed feedback. This work is partly supported by
USC/ISI’s Postel Center.

REFERENCES
[Pe04] Perlman, R., “RBridges: Transparent Routing,” Proc.

Infocom 2005, Mar. 2004.
[RFC768] Postel, J, “User Datagram Protocol,” RFC 768, Aug.

1980.
[RFC791] Postel, J, “Internet Protocol,” RFC 791, Sept. 1981.
[RFC793] Postel, J, “Transmission Control Protocol,” RFC 793,

Sept. 1981.
[RFC1122] Braden, R., (Ed.), “Requirements for Internet Hosts --

Communication Layers,” RFC 1122, Oct. 1989.
[RFC1577] Laubach, M., “Classical IP and ARP over ATM,”

RFC 1577, Jan. 1994.
[RFC1812] Baker, F., “Requirements for IP Version 4 Routers,”

RFC 1812, June 1995.
[RFC2022] Armitage, G., “Support for Multicast over UNI

3.0/3.1 based ATM Networks,” RFC 2022, Nov.
1996.

[RFC3022] Srisuresh, P., K. Egevang, “Traditional IP Network
Address Translator,” RFC 3022, Jan. 2001.

[RFC3135] Border, J., M. Kojo, J. Griner, G. Montenegro, Z.
Shelby, “Performance Enhancing Proxies Intended to
Mitigate Link-Related Degradations,” RFC 3135, Jun.
2001.

[RFC3234] Carpenter, B., S. Brim, “Middleboxes: Taxonomy
and Issues,” RFC 3234, Feb. 2002.

[RFC5556] Touch, J., R. Perlman, “Transparently
Interconnecting Lots of Links (TRILL): Problem and
Applicability Statement,” RFC 5556, May 2009.

[RFC6830] Farinacci, D., V. Fuller, D. Meyer, D. Lewis, “The
Locator/ID Separation Protocol,” RFC 6830, Jan.
2013.

[Sa84] Saltzer, J., D. Reed, D. Clark, “End-to-end arguments
in system design,” ACM Trans. on Computing
Systems, Nov. 1984.

[Sh86] Shapiro M., “Structure and Encapsulation in
Distributed Systems: the Proxy Principle,” Int. Conf.
on Dist. Comp. Sys. (ICDCS), May 1986

[To98] Touch, J., S. Hotz, “The X-Bone,” in Proc. Third
Global Internet Mini-Conference, Proc.
Globecom ’98, Sydney, Australia Nov. 1998.

 [To03] Touch, J., Y. Wang, L. Eggert, G. Finn, “Virtual
Internet Architecture,” USC/ISI Tech. Report 570,
Aug. 2003.

[To16] Touch, J., M. Townsley, “Tunnels in the Internet
Architecture,” draft-ietf-intarea-tunnels (work in
progress), July 2016.

[ToFPN] Touch, J., A First-Principles Approach to Computer
Networking, (in preparation).

[Zi80] Zimmermann, H., “OSI Reference Model – The ISO
Model of Architecture for Open Systems
Interconnection,” IEEE Trans. on Comm., Apr. 1980.

	I. Introduction
	II. THE INTERNET ARCHIECTURE
	III. Architecture Extensions
	A. Tunnels as links
	B. Encapsulation nets as virtual routers
	C. Multipoint tunnels vs. virtual routers

	IV. Hybrid Models for Middleboxes
	A. The View of a NAT
	B. The View of a Conventional Proxy
	C. The View of a Transparent Proxy

	V. The Impact of the Middlebox Models
	A. Summary

	ACKNOWLEDGMENTS
	REFERENCES

