
828 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS. VOL. 13. NO 5. JUNE 1995

Defining High-speed Protocols: Five Challenges
and an Example that Survives the Challenges

Joseph D. Touch, Member, IEEE

Abstract-The First IEEE Gigabit Networking (GBN) Work-
shop defined a set of characteristics of “interesting” high-speed
applications. The GBN criteria ensure that the application ad-
dresses a significant problem, and that it actually requires a
gigabit network. This paper presents five challenges that augment
the GBN criteria. These challenges ask whether gigabit applica-
tions require new research into different protocols, or can be
supported by existing protocols that merely run faster.

I. INTRODUCTION
T the First IEEE Gigabit Networking Workshop (GBN), A held in Toronto, Ontario, Canada, prior to IEEE Infocom

’94, a number of gigabit applications were presented [IO] .
The GBN submission criteria for “gigabit applications” were
defined in the call-for-papers by a list of characteristics that
ensures that significant user bases exist, and that a gigabit
network is required.

During the past several years the networking research com-
munity has been considering the problem of gigabit protocols,
especially how they differ from their slower counterparts [9].
There are two primary issues-increased speed or performance
of existing protocols, and domains where existing protocols
may not suffice. This paper characterizes the latter by a list of
challenges developed to complement the GBN criteria.

This paper first summarizes the GBN criteria and justifies
the need for additional challenges. The challenges are then
presented. Finally, as a challenge unanswered is not entirely
useful, an application is presented that survives these chal-
lenges. This is done to open the door to broader consideration
of some unconventional trade-offs that use bandwidth as a
resource’ rather than as a constraint.

A. The GBN Criteria-A Review

The GBN criteria were described in its call-for-papers [IO] .
They are designed to ensure a significant user base, and that
a gigabit network is required. They are:

Manuscript received June 12, 1994; revised January 17, 1995. This work
was supported in part by the Advanced Research Projects Agency through
Fort Huachuca Contract DABT63-91-C-0001, The views and conclusions
contained in this document are those of the authors and should not be
interpreted as representing the official policies, either expressed or implied, of
the Department of the Army, the Advanced Research Projects Agency, or the
U.S. Government. This paper was presented in part at the First IEEE Gigabit
Networking Workshop, Toronto, Ontario, Canada, May 1994.

The author is with the USCflnformation Science Institute, Marina del Rey,
CA 90292 USA.

IEEE Log Number 9410352.
‘ A resource that, like any other resource, is subject only to the arguably

external constraint of co%

1) Realistic consumer or business application (current or
future),

2) Minimum bandwidth per user of many megabits per
second,

3) Minimum potential base of thousands of simultaneous
users,

4) Number of users x application bandwidth in excess of 1
Tb/s, and

5) Consumer video applications must be more sophisticated
than broadcast or simple video-on-demand multicast.

Criteria 1 and 3 ensure that the application addresses a
significant user population. Although there are many interest-
ing applications in telemedicine, distributed simulation, and
parallel computation that require gigabits, they address too
small a user community. An exception would be tele-stufl, of
which telemedicine is one example, where the general class of
applications may have a substantial user base as an aggregate.

Criteria 2, 3, and 4 ensure that gigabit bandwidth is required,
and is not a result of aggregation of users or groups of
independent applications.

The first four criteria ensure that the application addresses
substantial user communities and requires gigabit bandwidth.
There are many applications that satisfy these criteria but
are considered “uninteresting,” because they can already be
implemented with existing protocols. Criterion 5 is an attempt
by GBN to filter some of these out.

The GBN criteria are conditions where gigibits are use-
ful, but not where they are necessary. Criterion 5 does not
sufficiently exclude classes of gigabit applications for which
solutions already exist. This is why this paper augments these
criteria with further challenges.

B. The Killer Application und Killer Protocol

The goal of this discussion is to refine the GBN criteria to
exclude cases where existing protocols suffice. The result is to
define a set of criteria that require new protocols to use gigabit
networking for real applications.

The application that exhibits this goal is the World Wide
Web (WWW) client server system [2] . It exhibits gigabit
requirements when real-time interactive constraints are added

The WWW is emerging as a dominant (and thus realistic)
consumer and business application [2]. Although originally
developed as an interface to Internet navigation of file transfer
clientherver systems, its current use is evolving toward a
distributed interactive application. As such, the requirements

~ 3 1 .

0733-87 16/95$04.OO 0 1995 IEEE

TOUCH: DEFINING HIGH-SPEED PROTOCOLS 829

on response time are narrowing. As users begin to expect real-
time interactive response, they demand response times in the
100-200 ms range.*

Whereas its minimum user bandwidth is not many Mb/s for
conventional clientkerver operation, it can be for interactive
use. Consider a 100 ms transmission and switching latency.
That leaves around 50 ms for request creation, server parsing,
server retrieval, and server response. Assuming that the other
components consume a minimal 10 ms, only about 40 ms
remain for file transmission itself.

The typical WWW HTML (hypertext-only) document is
only around 6 kbytes, but small images can be around 60
kbytes. Transmitting a 60-kbyte file in 40 ms requires 12
Mb/s. As the file sizes increase to 200 kbytes (for larger still
images), the bandwidth increases to 40 Mbls. Whereas the
minimum bandwidth to the user is not many megabits per
second yet, as the demand for still images and short video
clips increases, so too do file sizes. As other latencies remain
constant, the bandwidth requirements increase as a result. And
the expectation of interactive response time is growing. This
is an issue that “rides the technology curve.”

The minimum potential base of WWW is easily millions of
simultaneous users, and the aggregate bandwidth could be in
excess of 1 Tb/s as well, satisfying the other GBN criteria.

C. Other Considerations

Consider the case where a 300 ms satellite hop is in the
path. In this case, the response time of a direct request is
longer than the acceptable limit.

There are an average of 10-20 hypertext linkdpage and 6
kbyte/file for Web pages (measured). If the user spends 20 s
reading each page, the entire contents of every possible “next
page” can be sent in 20 links * 6 kbytellinW20 s = 50 kb/s. If
the user scrolls through at 1 page/s, that increases to 1 Mb/s.

These are modest bandwidth requirements, but they increase
where the Web pages have images, averaging 60 kbytedpage,
or where the pages have embedded “IMG’ icons, PostScript
(100 kbytes average), or executable binaries (200 kbytes
average, at NCSA). Even higher bandwidth is required for
video clips (1 Mbyte), around 160 Mb/s. When a user begins
poking around video archives, the interaction speed increases
to 0.2 s, resulting in a single-user bandwidth requirement of
800 Mbls.

Further, users currently pay for maximum bandwidth, but
not per-packet. This should continue (the PTT’s use this as
a design criteria). Unused bandwidth is wasted-there is not
necessarily a need to charge for extra bandwidth. Use of this
bandwidth to reduce the user-perceived latency is a win.

These WWW modifications are also useful in low
bandwidth environments, where the channel is idle in-
between requests. The common characteristic is that of
surplus bandwidth-delay product. In one case, the product
is “vertical”-the increase in BW results in a “tall” pipe
that can not be filled. In the other case, the product is
‘‘horizontal’’-idle periods form longitudinal gaps in the

pipe that are not filled. The solutions proposed here enable
interactive WWW applications that require surplus band-
width-delay product, regardless of which type.

11. PRIMARY ISSUES

There are two primary issues-that the protocol does not
run fast enough, and that the bandwidth-delay product pipe is
not full. Each has several ways of being dealt with, ways that
determine the additional challenges.

A. Protocol Does Not Run Fast Enough

If the protocol does not run fast, it must be speeded up.
Basically, the data path is too slow, the control path is too
slow, or the latency is too large for feedback control.

1) Data Path Is Not Fast: If the data path is not fast, make
it faster. Increase the clock rate of the data, or parallelize the
data path.

2) Control Path Is Not Fast: If the control path is not fast
enough, reduce the amount of control required. With a higher
transmission rate, this results in the same amount of control
for a larger amount of data [14]. Slowing the control down is
accomplished by making the data packets larger (e.g., NetBLT
or UltraNet), or transmitting multiple packets per control
packet. Slower control also requires more assumptions about
the stability of state in-between control messages, to ensure
stability in the absence of as many control messages [141.

3) End-to-End Latency Is Too Large: In this case, the data
can be sent quickly and the control computed quickly, but the
end-to-end latency is causing the interaction loop to be too
large. One solution is to relocate everything, i.e., to get rid
of the need to communicate in the first place. Caching is one
way to relocate, and another is to circulate the data [I] , [41.

B. The Pipe Is Not Kept Full

Assuming speed exists, a method is needed that keeps the
bandwidth-delay product pipe full to achieve high throughput.
If the bandwidth-delay product is not larger than in a current
WAN, current protocols already suffice. That means a gigabit
LAN is fine, but a MAN or LAN will not work, because speed
is not the issue-keeping the pipe full is. There are two main
problems-either the data pipelining mechanism fails, or it
runs out of pipeline data.

I) The Pipe Is Empty Because the Window Is Small: In this
case, there is a flaw in the implementation. There is nothing
about sliding-windows protocols that necessitates a particular
window size or window granularity, only the implementation
has these properties. Increase the number of bits for the
window sequence or “count” over larger window components
[51-[71.

2) Even with Large Windows, There I s Not Enough Stuff:
Even if the windowing mechanism allows large amounts of
pipelining, there may not be enough data with which to fill the
pipe. A gigabit WAN has 30-100 Mb in the pipe4-I2 Mbytes.
That is more RAM than many systems have, and certainly
larger than most messages an application has to transmit.

2The 100-ZOO ms number is well-established in the human.factors and One solution is to use multiplexing to share the channel
user-interface community, although the specific value is debated. among user processes 181. This is a parallel of process-

830 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS. VOL. 13. NO. 5 . JUNE 1995

swapping in OS-when one process runs out of data to send,
another is activated. This works, provided that the process
activation is deterministic, i.e., that the other side of the
channel knows what the process activation order is [l 11.
This is also tantamount to not having a gigabit application
protocol+ach application does not use a gigabit channel, so
bandwidth needs to be aggregated over a set of multiplexed
applications.

The case where the application order is not predictable is
more interesting, as will be discussed later.

111. FIVE CHALLENGES

There are five challenges for gigabit protocols. The main

Why are these challenges challenging?
They distinguish between incremental performance in-

creases and places where current kinds of protocols are not
useful, regardless of how well-engineered.

The questions this paper addresses are:
Do gigabit networks NEED new protocols?
Are any new protocols really NEW?

One reason gigabit systems have low performance is that
applications “run out of stuff to fill the pipe with.” Some
believe this problem will disappear, but other investigations
indicate it will not [l l] , [12]. The transient environment has
already been observed-when files were much larger than the
bandwidth-delay product. The current ratios are not transient,
but will continue. It is now recognized that bandwidth needs
to keep pace with processing and storage evolution.

question is probably:

A. Challenge #I-Increase the Clock Rate

One easy way to increase the speed of a protocol is to
increase the clock rate of the processor, interface, and trans-
mission lines. If the protocol is slow because you are using
CMOS processors, it might work fine in ECL technology.

There are a few issues here. First, fast protocols require fast
operating systems, fast interfaces, fast transmission lines, fast
memory, fast disks, and fast everything else. If the problem is
completely solved by speeding up the clock rate of the system,
then this is not a protocol issue. It is a clock rate issue.

Also consider the fact that fast TCP code relies on pre-
compiled branch prediction (so-called “fast-path”), a very
old and well-known optimization technique. Some of the
other protocol stack optimizations are just recognition that
general interfaces are slow, and specific interfaces can be
optimized, also a well-known trade-off. None of these change
the protocol-they are implementation enhancements.

There is a need to distinguish between protocol issues and
issues of overall speed. If the protocol itself is not keeping
up with the speeds of the rest of the system, then protocol
issues are indeed involved. Parallelization addresses this case,
but does not always help [14].

In general, data path parallelization works well, but control
path parallelization is, by definition, poor. Control paths can
not be factored efficiently without synchronization between

components, which adds overhead that defeats the paralleliza-
tion.

Data path parallelization is a way to speed the “clock
rate” of the data. Control parallelization works where packets
are unrelated+.g., UDP, but not for TCP-like protocols
[141. In the latter case, regardless of partitioning (per packet,
per function, etc.), the parallelism is limited to about five
processors per connection.

The real issue is that of “protocol relativity” [12]. A protocol
does not know the clock rate-only the number of bits in
transit between components. Protocol speedup is a control and
feedback issue, sensitive to the bandwidth-delay product only.

B. Challenge #2--Multiplux (Determinisfic)

Multiplexing has been proposed as a solution to the “do not
have enough stuff to send” issue, as mentioned before [SI. This
is equivalent to not having a gigabit application-the gigabits
are shared among a set of applications on a workstation. Using
multiple hosts, users, or processes are all ways of providing
aggregate gigabits only.

In the deterministic multiplexer case, this avoids the domain
examined here [1 11. In the nondeterministic case, the problem
has just moved down a level in the protocol stack. In the
original case, there was not enough data to send, primarily
because data was sent to be sufficient for the current state of
the other end of the channel, and not any possible subsequent
states. If there were enough for subsequent states, that data
would have been sent too, and so on, increasing the amount
of data available to send ad infinitum. This is how sliding
windows works-by predicting subsequent states, in a linear
manner.

If the subsequent state is not predictable, neither is the
subsequent data [12]. It does not matter whether it is the
application state, or the multiplexer state. Nondeterminis-
tic multiplexing moves the state prediction problem to the
multiplexer-synchronization level, i.e., lower in the protocol
stack.

C. Challenge #.?-Use Large Payloads

Using large payloads is another way to shut off the protocol,
and increase the effective speed of the control protocol [13].
Versions of TCP run at 1 Gb/s by using 64-kbyte packets, i.e.,
by this technique (e.g., UltraNet).

Using large payloads slows down the control protocol.
Header frequency determines the rate of the protocol. The ratio
of header to payload determines the stability of the protocol

Large payloads are also an attempt to amortize the cost of
context switches. Increased payload transfers between the host
and network reduce the effective overhead of the transfer setup
costs. This is an attempt to overcome an existing problem in
the host-if context switches are this costly, making network
I/O faster is the least of the worries.

~ 4 1 .

D. Challenge #4--lncrease Window Size

As mentioned before, increasing the window size increases
the amount of information an implementation of a sliding-

TOUCH: DEFINING HIGH-SPEED PROTOCOLS X3 I

windows protocol can pipeline. This helps fill the pipe only
if the application has sufficient data to supply. It addresses
an implementation deficiency only. The main difficulties are
backward compatibility and acquiring the consensus of stan-
dards bodies [5]-[7].

The window size parameter is also an example of a compile-
or run-time parameter that is unfortunately treated as a specifi-
cation constant. There are several such parameters-maximum
protocol data unit, timeout values, window granularity and
range, etc. The constancy of these parameters is a limitation
of implementations only.

as clientherver interfaces, where response time tolerance is
high. Casual users have come to begin to expect a level of real-
time interaction that does not match the clientkerver design
of the system.

In addition, HTML (the document notation language of the
WWW) has come to be an effective high-level application
language. Systems use WWW to drive bulletin-board services,
interactive query systems, on-line forms systems, etc. This
further drives the expectation of interactive response time from
these WWW interactive applications (WWWia’s).

V. DEFINING CHARACTERISTICS
E. Challenge #S-Relocate Everything

This section lists a set of characteristics that helps define
applications that are capable of using gigabit networks and
keeping the “pipe” full of data sufficient to reduce perceived
latency,

If the data can be copied or cached, i.e., if it is stable enough
that there is no need for separating it from the application, then
a copy can be put near the application via a low-speed channel
to avoid the need for high-speed communication altogether. -~

A protocol is not needed if there is no communication, or
more precisely, if there is no feedback of state between two
separated entities.

Another way to relocate data is to circulate it among
the nodes of a protocol [4]. Variants of this protocol rely
on predictive behavior of data reuse to govern caching [l] .
These are useful techniques, but are protocol extrapolations of
previously known methods.

IV. WWW INTERACTIVE APPLICATIONS

Although it is useful to eliminate domains where gigabit
protocols are not needed, it begs the question of where they
are.

One application that requires a gigabit protocol is an interac-
tive clientherver system with real-time response. Several years
ago when the problem of latency and high speed protocols was
analyzed, the conditions were specified under which bandwidth
and bandwidth-delay product could be used to compensate for
latency. The goal is to reduce the perceived latency, to give
the illusion of low latency. This work began as “Mirage” (a
model) and continues as “Parallel Communication” (a protocol
based on Mirage) [121.

Latency compensation is possible using source-based an-
ticipation (presending). The composition of two presending
channels (back-to-back) is the more common receiver-based
anticipation, i.e., prefetching. Presending differs because i t is
source-based.

There are several advantages of presending over prefetching.
Presending distributes the computational effort between source
and receiver. It also avoids unnecessary prefetch messages
from the receiver, allowing better use of asymmetric com-
munications channels (e.g., satellite, cable-TV, or high-speed
digital telephone with dial-up feedback).

This solution requires knowledge of the state space evolu-
tion of the other end of the channel, where the state evolution

A. Char. #I-Requires Feedback

Non-interactive applications, i.e., those that pipeline data
to fill the bandwidth-delay product, can be accommodated
with existing transport protocols. These include streaming
data applications, such as digital audio or video, as used in
teleconferencing.

WWWia’s require feedback between the client and server.
Even though the servers are stateless, they keep soft-state that
helps govern source-based anticipation.

Although there are caching proxies for WWW servers, they
will not help for the first-use of documents. If the response
time is very large, even for some small percentage of the time,
the interactive nature of the WWWias will be defeated. Also,
the WWW drives the interaction toward first-use, because the
clients themselves have caches.

B. Char. #2- “Nonlinear” Communication

The feedback needs to be nondeterministic. Otherwise sim-
ple pipelining again works fine, as in the case of sending a
very large file or database in total [l] , [4].

WWWia’s have a branching control structure with recur-
sion, as indicated by the URL links and the “history” of the
browser (user interface).

Large windows or packets help only during the transmission
of a branch item. The branching structure cannot be accommo-
dated by current sliding-windows protocols, and inhibits use
of large linear windows or large packets [121.

The combination of feedback and nonlinear communication
defines a rich control structure. It is this structure that the
source uses to guide its presending. Making the data chunks
larger reduces the richness of the control. WWWia’s are rea-
sonably rich, because the branching of the control is reasonably
large (7-10 linkdpage), even though the data chunk is small
(6 kbytes for HTML text).

has moderately-constrained branching properties. The domain
was described where source-anticipation would help, specifi-
cally distributed hypermedia navigation [121, [131.

This describes the WWW, used as a real-time interactive
distributed system [2]. The WWW browsers are currently used

c. #3--“We11-Defined” App.-App. BW

This characteristic helps determine that the data can not
be moved, and that the distributed application has not been
broken in a particularly bad place (for high bandwidth) with

832 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 13. NO. 5, JUNE 1995

Latent-WWW no other justification. The system should not require dissection
or detailed constraints to evidence the application-application
bandwidth. WWWia’s are well-defined-the server is one side,
the browser is the other.

Existing www
SERVER

VI. AN EXAMPLE THAT SURVIVES THE CHALLENGES

This section explains how WWWia survives the challenges
(and exhibits the characteristics). Specifically, it describes
WWWia’s modified with server-based preloading of the
browser cache [13].

A. Survival

FILTER The WWWia’s survive the five challenges as follows:
Increase the clock rate: Current WWW would just get
each hypertext page faster. It would still take a 100400
ms latency hit each time you clicked on an item,
defeating its interactive nature.
Use deterministic multiplexing: This effectively reduces
the per-user bandwidth, increasing the user-perceived
latency. As noted before, it reduces the per-application
bandwidth below gigabits.
Use large payloads: Even if each WWW page is one
packet, performance is not helped in the case where
propagation latency is larger than 200 ms. In the case
where propagation latency is smaller, the bandwidth
required for a direct response is determined by the
amount of time left (200 ms prop. latency), and the size
of the response (4 kbytes, 60 kbytes, 200 kbytes, etc.).
Speed TCP codehcrease TCP windows: Same as
#3-WWW files are too small to matter with even
existing TCP window size.
Requires feedback: WWW is an “interactive” sys-
tem-more so as it evolves.

B. Exhibits Characteristics

The WWWia’s also exhibit the three main characteristics:
1) Requires feedback: WWWia’s require feedback-files

from the server, and “next request” from the browser.
2) “Nonlinear ’’ communication: WWWia’s have a branch-

ing set of possible next requests from the browser. The
stream of requests is nonlinear.

The control is reasonably rich with respect to the
packet stream. The data chunks are large (30-60 kbytes),
but the control is much richer than “buffer empty/full”
as in current protocols-it specifies a unique file on the
server.

3) “ Well-dejned” app. -app. bandwidth: Server to browser,
browser to server.

VII. WWWIA’S ARCHITECTURE

The design for a WWWia architecture augments the existing
WWW clientkerver with a presending pump and browserfilter
(Figs. 1 and 2) 1131. The pump and filter are supported by
either the existing transport protocols or their more recent
extensions [3], or by an augmented transport protocol [121. The

I I
I I

Fig. I .
jilter.

Implementation of the WWW intermediaries called the pump and

Uses client-initiated enca sulation to redirect
requests througR a proxy

Preloader

Preloads are dropped if not used.
Updates are dropped if not used.

“Pings” on update/preload channels disable effort (“liveness”).

Fig. 2.
it were a proxy cache.

Design of the pump and filter appears to the server and client as if

pump and filter implement the Web-equivalent of the Parallel
Communication protocol [121.

The pump acts as a proxy for the browser at the server.
It keeps soft state indicating the last request received from
the browser, and peeks into the data stream to find URL’s
embedded in replies from the server. The pump then makes
requests for URL’s on the same server to be forwarded to the
filter. The pump and filter together appear as a proxy cache
to the client and server (Fig. 2). The protocol is outlined in
Figs. 3 and 4.

The pump permits two kinds of HTML replies to be sent to
the browserdirect replies, and present replies. The present
replies are tagged to be saved on the disk by the filter. In a
high bandwidth-delay product network, these tags may not be
necessary, because the present documents amve just as they
are needed at the browser. The most disk space required is the
larger of the bandwidth-delay product and the bandwidth-“idle-

TOUCH: DEFINING HIGH-SPEED PROTOCOLS

Server PUMP Browser

833

Server & Pump FILTER Browser

URL
4 Resolve soft-state.

If URL already present,
do not forward to server.
Otherwise, forward to server.

HTML Doc.
Look for URLs in any response.
For each URL in response -

Request URL from server.
Tag HTML response as “present”.
Augment soft-state.

rn FILTER
2
2
2

HTML Doc.+ “filter” tag

+ FILTER HTML Doc.+ “filter” tag

b FILTER HTML Doc.+ “filter” tag

Fig. 3. Pump operation

time” product. If there is some upper-bound on reasonable disk
usage for the filter to cache present data, that can be indicated
to the pump, to avoid wasted effort.

The filter stores forwarded server replies to the disk. It also
intercepts URL requests from the browser. If the URL is on
the disk, the filter responds with the request and forwards the
URL to the pump (not to be forwarded to the server). If the
URL is not on the disk, the request is sent to the pump to be
forwarded to the server (Fig. 3).

Note that in either case, the URL is sent to the pump. This
provides feedback to the pump. In the case where the file has
not yet been sent, it indicates a corrective action to the pump.
In the case where the pump has already sent the file to the
disk, it indicates which file was used, and permits the pump
to focus further preloading.

The branching-TCP extensions support the tags indicated in
the figures and provide application-layer signalling of excess
bandwidth that can be used for latency reduction.

The pump manages the sending of all possible next requests,
and manages the possible states of the client. The pump uses
the server-side TCP signal of excess bandwidth to initiate
presending, and the branching window allows the pump to
send alternate streams of messages to the client. As the pump
emits these messages, the branching in the server-side TCP
increases.

The filter allows the browser to receive only those messages
that correspond to a particular state. This client-side TCP also
indicates branch selections to the server-side TCP, to perform
state resolution.

i
51

I

Fig. 4. Filter operation

URL
’UMPr Send URL to server/pump

for state resolution.

If URL is already on disk,
send disk copy of HTML. c
L

HTML Doc

HTML Doc.+ “filter” tag -
When “tagged” HTML arrives
save it to the local disk.

HTML Doc.
b

When untagged HTML arrives
send it on to the browser.

Bandwidth Available
(bits per second)

RESPONSE TIME
-0.1 seconds - 0.1 seconds (WITH PRELOADING)

Fig. 5.
increases.

Response time (probability of a 0.1 s response) as bandwidth

VIII. OBSERVATIONS

Some measurements have been taken to indicate the ef-
fectiveness of this mechanism. These measurements were
performed on existing Web servers, so reflect current Web
design, which revolves around formatted text (average page
size of 6 kbytes). As available bandwidth increases, servers
are expected to more fully utilize embedded icons, images,
and video clips, increasing the required bandwidth by a factor
of 100.

One observation is that current Web cannot be supported
interactively by ISDN lines (14% hit rate within 0.1 s).
By augmenting the protocol to support server preloading of
receiver caches, the same bandwidth can support 0.1 s response
83% of the time (Fig. 5) .

834 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS. VOL. 13. NO. S, JUNE 1995

25

0

Percent of
HTML pages

Fig. 6.
only, and all).

Number of hypertext links (HREF’s) per page in the web (local

0.1 1 10 100 1000
Amount of additional BW required (ratio to current page)

Fig. 7.
page).

Amount of additional bandwidth required (relative Io the current

The bandwidth required for source preloading of receiver
caches in the Web has also been measured. Specifically,
number of links per page (Fig. 6) and the amount of bandwidth
for general preloading (Fig. 7) were measured. The links per
page is measured both in general terms, as well as local to
the server (where preloading is possible). The bandwidth is
a comparison of the bytes per page versus the total bytes
required for the files pointed to by the links on that page.

A. Performance

The performance of this mechanism can be evaluated rel-
ative to several metrics-channel utilization, effective band-
width, effective latency, and overall cost. The goal of this
mechanism is reduced latency, and it assumes an acceptable
increase in bandwidth used.

The channel utilization can be measured, where the goal
is a load of 100%. Conventional requesthesponse systems
achieve loads near 50%, because the response channel is
idle in-between and during requests. The goal is to keep the
server-to-client channel busy 100% of the time.

The bandwidth of the messages that are actually received
(effective bandwidth) can also be measured. This will al-
ways be at least as large as the effective bandwidth of a
requesthesponse system, because guessed messages are not

counted, and because a direct request always overrides this
protocol.

Similarly, the effective latency is always reduced relative to
a conventional protocol. Responses that are anticipated reduce
the measured latency, and responses not anticipated cost the
same as in the conventional case.

The overall cost is difficult to measure without externally
imposed network cost functions. The cost can be expressed in
terms of the bandwidth used, but it is of little meaning due
to the number of variables. The real result is that a set of
conditions must exist.

bandwidth must be available in excess of that required

the expense of the excess bandwidth must be acceptable,
by the conventional protocol

i.e.:
--external cost is perceived acceptable
-latency reduction is not feasible by any other method,

so any cost is acceptable.

B. Bandwidth Requirements

Available bandwidth implies a high peak-rate allocation
in guaranteed-bandwidth systems, or that the server pump
subjects itself to feedback from a rate- or burst-limiting
mechanism, and avoids preloading that violates the rate or
burstiness guarantees. Server preload messages should be
tagged as “droppable available-bit-rate’’ traffic. In this way,
bandwidth in excess allocation can be used when available, and
shared among preloading sources. “Droppable” ABR traffic
assumes a mechanism that provides bandwidth and latency
performance to untagged traffic equivalent to the case where
no droppable ABR traffic exists, i.e., a preemptive packet
scheduler.

C. Other Requirements

The feasibility of this mechanism also implies the avail-
ability of sufficient cache storage at the receiver and server
capability. The amount of cache storage required is one
bandwidth-delay product, where delay is the time between user
requests, due to either round trip latency or idle user activity.
The server must also be able to supply anticipatory information
at the channel bandwidth; if the server is already loaded, or
if its internal bandwidth is the bottleneck, performance will
be compromised. Note that in the case where cache space is
limited, or where the server is loaded or has insufficient band-
width, the mechanism degenerates to its existing performance
with conventional protocols.

This discussion also assumes the availability of sufficient
information (i.e., hypermedia links) to support server-based
preloading. There need not be a correlation between users
(ensemble) or a repeated history of a single user’s actions
(temporal); the requested item need only be from among the
links on a page, rather than overridden by typing in an arbitrary
URL. The URL’s within links on a page are information
the server can use to optimize the response latency; arbitrary
URL’s are (by nature) unpredictable, and will require a con-
ventional cliendserver interaction (and its associated latency).

TOUCH: DEFINING HIGH-SPEED PROTOCOLS 835

IX. CONCLUSION
This paper has discussed five challenges for gigabit ap-

plications that indicate where existing protocols may not
work, and where new protocols are required. It has shown
a class of applications-interactive distributed multimedia,
namely interactive real-time WWW access-that survive the
challenges. It has also shown how source presending is a way
to use excess bandwidth-delay product to reduce the browser
response time, and how this is one example of a truly gigabit
protocol.

ACKNOWLEDGMENT

This paper is the result of discussions with and feedback
of J. Sterbenz of GTE Labs, Waltham, MA, J . Poste1 and
S. Hotz of USCASI, Marina del Rey, CA, G. Woodruff at
the University of Toronto, Toronto, Ontario, Canada, and S.
Banerjee at University of Pittsburgh, Pittsburgh, PA, as well
as the other participants of the IEEE Gigabit Networking
Workshop held in Toronto, Ontario, Canada, May 1994.

REFERENCES

S. Banerjee, V. 0. Li, and C. Wang, “Distributed database systems in
high-speed wide-area networks,” IEEE J. Select. Areas Commun., vol.
1 I , no. 4, May 1993, pp. 617-630.
T. J. Berners-Lee, R. Cailliau, J.-F. Groff, and B. Pollermann, “World-
wide web: The information universe,” Electronic Nemorking; Research,
Applications cmd Policj.
R. Braden, “Extending TCP for transactions-Concepts,” RFC- 1379,
USCflnform. Sci. Inst., Nov. 1992.
G. Herman, G. Copal, K. Lee, and A. Weinrib, “The data-cycle
architecture for very high throughput database systems,” in Proc. ACM
SIGMOD CO$, 1987, pp. 97-103.
V. Jacobson and R. Braden, “TCP extensions for long-delay paths,”
RFC-1072, LBL and USCflnform. Sci. Inst., Oct. 1988.
V. Jacobson, R. Braden and L. Zhang, “TCP extensions for high-speed

Westport, CT: Meckler, pp. 52-58.

paths,” RFC-I 185, LBL and USC/Inform. Sci. Inst., Oct. 1990.

V. Jacobson, R. Braden, and D. Borman, “TCP extensions for high
performance,” RFC-1323, LBL, USC/lnform. Sci. Inst., and Cray Res.,
May 1992.
L. Kleinrock, “The latencyhandwidth tradeoff in gigabit networks,”
IEEE Commun. Mag., vol. 30, no. 4, pp. 3640, Apr. 1992.
“Research priorities in networking and communications,” NSF Rep.
92-109, Oct. 1992.
J. Sterbenz et al., Gigcrhit Neworking Workshop ’94,
<http:// info.gte.com/ieee-tcgn/conference/gbn94>.
J. D. Touch and D. Farber, “Reducing latency in communication,” IEEE
Commun. Mug., vol. 31, no. 2, pp. 8-9, Feb. 1993.
J. D. Touch, “Parallel communication,” in Proc. IEEE Infocom, Mar.
1993, pp. 505-512.
J. D. Touch and D. Farber, “An experiment in latency reduction,” in
Proc. IEEE Infocom, May 1994, pp. 175-181.
J. D. Touch, “Protocol parallelization,” Protocol.\ f o r High-Speed Net-
works 111. Amsterdam, The Netherlands: Elsevier, 1994.

Joseph D. Touch (S’83-M’92) received the B.S.
(Hons.) degree in biophysics and computer science
from the University of Scranton, Scranton, PA, in
1985, the M.S. degree from Cornell University,
Ithaca, NY, in 1988, and the Ph.D. degree from the
University of Pennsylvania, Philadelphia, in 1992,
both in computer science.

He joined USCnnformation Sciences Institute,
Manna del Rey, in 1992, and is currently a
Project Leader in the High Performance Computing
and Communications Division there, directing the

ATOMIC-2 and PC-ATOMIC tasks. He is also a Research Assistant Professor
in the Department of Computer Science, University of Southern California,
Los Angeles, where he teaches Advanced Operating Systems. Since 1988, he
has been addressing issues of latency and source-anticipative protocols. In
1994, he received a U.S. patent for a device for latency-reducing processor-
memory interface. He is also interested in issues of telecommuting and on-line
city services and in response-time reducing extensions to the World-Wide
Web.

Dr. Touch is a member of the program committees of IEEE Infocom ’94
and ’95, Protocols for High Speed Networks ’94, and Physcomp ’94. He is
a member of Sigma Xi.

