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Defining High-speed Protocols: Five Challenges 
and an Example that Survives the Challenges 

Joseph D. Touch, Member, IEEE 

Abstract-The First IEEE Gigabit Networking (GBN) Work- 
shop defined a set of characteristics of “interesting” high-speed 
applications. The GBN criteria ensure that the application ad- 
dresses a significant problem, and that it actually requires a 
gigabit network. This paper presents five challenges that augment 
the GBN criteria. These challenges ask whether gigabit applica- 
tions require new research into different protocols, or can be 
supported by existing protocols that merely run faster. 

I.  INTRODUCTION 
T the First IEEE Gigabit Networking Workshop (GBN), A held in Toronto, Ontario, Canada, prior to IEEE Infocom 

’94, a number of gigabit applications were presented [ IO] .  
The GBN submission criteria for “gigabit applications” were 
defined in the call-for-papers by a list of characteristics that 
ensures that significant user bases exist, and that a gigabit 
network is required. 

During the past several years the networking research com- 
munity has been considering the problem of gigabit protocols, 
especially how they differ from their slower counterparts [9]. 
There are two primary issues-increased speed or performance 
of existing protocols, and domains where existing protocols 
may not suffice. This paper characterizes the latter by a list of 
challenges developed to complement the GBN criteria. 

This paper first summarizes the GBN criteria and justifies 
the need for additional challenges. The challenges are then 
presented. Finally, as a challenge unanswered is not entirely 
useful, an application is presented that survives these chal- 
lenges. This is done to open the door to broader consideration 
of some unconventional trade-offs that use bandwidth as a 
resource’ rather than as a constraint. 

A. The GBN Criteria-A Review 

The GBN criteria were described in its call-for-papers [ IO] .  
They are designed to ensure a significant user base, and that 
a gigabit network is required. They are: 
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‘ A  resource that, like any other resource, is subject only to the arguably 

external constraint of co% 

1) Realistic consumer or business application (current or 
future), 

2 )  Minimum bandwidth per user of many megabits per 
second, 

3 )  Minimum potential base of thousands of simultaneous 
users, 

4) Number of users x application bandwidth in excess of 1 
Tb/s, and 

5 )  Consumer video applications must be more sophisticated 
than broadcast or simple video-on-demand multicast. 

Criteria 1 and 3 ensure that the application addresses a 
significant user population. Although there are many interest- 
ing applications in telemedicine, distributed simulation, and 
parallel computation that require gigabits, they address too 
small a user community. An exception would be tele-stufl, of 
which telemedicine is one example, where the general class of 
applications may have a substantial user base as an aggregate. 

Criteria 2, 3, and 4 ensure that gigabit bandwidth is required, 
and is not a result of aggregation of users or groups of 
independent applications. 

The first four criteria ensure that the application addresses 
substantial user communities and requires gigabit bandwidth. 
There are many applications that satisfy these criteria but 
are considered “uninteresting,” because they can already be 
implemented with existing protocols. Criterion 5 is an attempt 
by GBN to filter some of these out. 

The GBN criteria are conditions where gigibits are use- 
ful, but not where they are necessary. Criterion 5 does not 
sufficiently exclude classes of gigabit applications for which 
solutions already exist. This is why this paper augments these 
criteria with further challenges. 

B. The Killer Application und Killer Protocol 

The goal of this discussion is to refine the GBN criteria to 
exclude cases where existing protocols suffice. The result is to 
define a set of criteria that require new protocols to use gigabit 
networking for real applications. 

The application that exhibits this goal is the World Wide 
Web (WWW) client server system [2] .  It exhibits gigabit 
requirements when real-time interactive constraints are added 

The WWW is emerging as a dominant (and thus realistic) 
consumer and business application [2].  Although originally 
developed as an interface to Internet navigation of file transfer 
clientherver systems, its current use is evolving toward a 
distributed interactive application. As such, the requirements 

~ 3 1 .  
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on response time are narrowing. As users begin to expect real- 
time interactive response, they demand response times in the 
100-200 ms range.* 

Whereas its minimum user bandwidth is not many Mb/s for 
conventional clientkerver operation, it can be for interactive 
use. Consider a 100 ms transmission and switching latency. 
That leaves around 50 ms for request creation, server parsing, 
server retrieval, and server response. Assuming that the other 
components consume a minimal 10 ms, only about 40 ms 
remain for file transmission itself. 

The typical WWW HTML (hypertext-only) document is 
only around 6 kbytes, but small images can be around 60 
kbytes. Transmitting a 60-kbyte file in 40 ms requires 12 
Mb/s. As the file sizes increase to 200 kbytes (for larger still 
images), the bandwidth increases to 40 Mbls. Whereas the 
minimum bandwidth to the user is not many megabits per 
second yet, as the demand for still images and short video 
clips increases, so too do file sizes. As other latencies remain 
constant, the bandwidth requirements increase as a result. And 
the expectation of interactive response time is growing. This 
is an issue that “rides the technology curve.” 

The minimum potential base of WWW is easily millions of 
simultaneous users, and the aggregate bandwidth could be in 
excess of 1 Tb/s as well, satisfying the other GBN criteria. 

C. Other Considerations 

Consider the case where a 300 ms satellite hop is in the 
path. In this case, the response time of a direct request is 
longer than the acceptable limit. 

There are an average of 10-20 hypertext linkdpage and 6 
kbyte/file for Web pages (measured). If the user spends 20 s 
reading each page, the entire contents of every possible “next 
page” can be sent in 20 links * 6 kbytellinW20 s = 50 kb/s. If 
the user scrolls through at 1 page/s, that increases to 1 Mb/s. 

These are modest bandwidth requirements, but they increase 
where the Web pages have images, averaging 60 kbytedpage, 
or where the pages have embedded “IMG’ icons, PostScript 
(100 kbytes average), or executable binaries (200 kbytes 
average, at NCSA). Even higher bandwidth is required for 
video clips (1 Mbyte), around 160 Mb/s. When a user begins 
poking around video archives, the interaction speed increases 
to 0.2 s, resulting in a single-user bandwidth requirement of 
800 Mbls. 

Further, users currently pay for maximum bandwidth, but 
not per-packet. This should continue (the PTT’s use this as 
a design criteria). Unused bandwidth is wasted-there is not 
necessarily a need to charge for extra bandwidth. Use of this 
bandwidth to reduce the user-perceived latency is a win. 

These WWW modifications are also useful in low 
bandwidth environments, where the channel is idle in- 
between requests. The common characteristic is that of 
surplus bandwidth-delay product. In one case, the product 
is “vertical”-the increase in BW results in a “tall” pipe 
that can not be filled. In the other case, the product is 
‘‘horizontal’’-idle periods form longitudinal gaps in the 

pipe that are not filled. The solutions proposed here enable 
interactive WWW applications that require surplus band- 
width-delay product, regardless of which type. 

11. PRIMARY ISSUES 

There are two primary issues-that the protocol does not 
run fast enough, and that the bandwidth-delay product pipe is 
not full. Each has several ways of being dealt with, ways that 
determine the additional challenges. 

A. Protocol Does Not Run Fast Enough 

If the protocol does not run fast, it must be speeded up. 
Basically, the data path is too slow, the control path is too 
slow, or the latency is too large for feedback control. 

1 )  Data Path Is Not Fast: If the data path is not fast, make 
it faster. Increase the clock rate of the data, or parallelize the 
data path. 

2 )  Control Path Is Not Fast: If the control path is not fast 
enough, reduce the amount of control required. With a higher 
transmission rate, this results in the same amount of control 
for a larger amount of data [14]. Slowing the control down is 
accomplished by making the data packets larger (e.g., NetBLT 
or UltraNet), or transmitting multiple packets per control 
packet. Slower control also requires more assumptions about 
the stability of state in-between control messages, to ensure 
stability in the absence of as many control messages [ 141. 

3)  End-to-End Latency Is Too Large: In this case, the data 
can be sent quickly and the control computed quickly, but the 
end-to-end latency is causing the interaction loop to be too 
large. One solution is to relocate everything, i.e., to get rid 
of the need to communicate in the first place. Caching is one 
way to relocate, and another is to circulate the data [ I ] ,  [41. 

B. The Pipe Is Not Kept Full 

Assuming speed exists, a method is needed that keeps the 
bandwidth-delay product pipe full to achieve high throughput. 
If the bandwidth-delay product is not larger than in a current 
WAN, current protocols already suffice. That means a gigabit 
LAN is fine, but a MAN or LAN will not work, because speed 
is not the issue-keeping the pipe full is. There are two main 
problems-either the data pipelining mechanism fails, or it 
runs out of pipeline data. 

I )  The Pipe Is Empty Because the Window Is Small: In this 
case, there is a flaw in the implementation. There is nothing 
about sliding-windows protocols that necessitates a particular 
window size or window granularity, only the implementation 
has these properties. Increase the number of bits for the 
window sequence or “count” over larger window components 
[51-[71. 

2) Even with Large Windows, There I s  Not Enough Stuff: 
Even if the windowing mechanism allows large amounts of 
pipelining, there may not be enough data with which to fill the 
pipe. A gigabit WAN has 30-100 Mb in the pipe4-I2 Mbytes. 
That is more RAM than many systems have, and certainly 
larger than most messages an application has to transmit. 

2The 100-ZOO ms number is well-established in the human.factors and One solution is to use multiplexing to share the channel 
user-interface community, although the specific value is debated. among user processes 181. This is a parallel of process- 
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swapping in OS-when one process runs out of data to send, 
another is activated. This works, provided that the process 
activation is deterministic, i.e., that the other side of the 
channel knows what the process activation order is [ l  11. 
This is also tantamount to not having a gigabit application 
protocol+ach application does not use a gigabit channel, so 
bandwidth needs to be aggregated over a set of multiplexed 
applications. 

The case where the application order is not predictable is 
more interesting, as will be discussed later. 

111. FIVE CHALLENGES 

There are five challenges for gigabit protocols. The main 

Why are these challenges challenging? 
They distinguish between incremental performance in- 

creases and places where current kinds of protocols are not 
useful, regardless of how well-engineered. 

The questions this paper addresses are: 
Do gigabit networks NEED new protocols? 
Are any new protocols really NEW? 

One reason gigabit systems have low performance is that 
applications “run out of stuff to fill the pipe with.” Some 
believe this problem will disappear, but other investigations 
indicate it will not [ l l ] ,  [12]. The transient environment has 
already been observed-when files were much larger than the 
bandwidth-delay product. The current ratios are not transient, 
but will continue. It is now recognized that bandwidth needs 
to keep pace with processing and storage evolution. 

question is probably: 

A. Challenge #I-Increase the Clock Rate 

One easy way to increase the speed of a protocol is to 
increase the clock rate of the processor, interface, and trans- 
mission lines. If the protocol is slow because you are using 
CMOS processors, it might work fine in ECL technology. 

There are a few issues here. First, fast protocols require fast 
operating systems, fast interfaces, fast transmission lines, fast 
memory, fast disks, and fast everything else. If the problem is 
completely solved by speeding up the clock rate of the system, 
then this is not a protocol issue. It is a clock rate issue. 

Also consider the fact that fast TCP code relies on pre- 
compiled branch prediction (so-called “fast-path”), a very 
old and well-known optimization technique. Some of the 
other protocol stack optimizations are just recognition that 
general interfaces are slow, and specific interfaces can be 
optimized, also a well-known trade-off. None of these change 
the protocol-they are implementation enhancements. 

There is a need to distinguish between protocol issues and 
issues of overall speed. If the protocol itself is not keeping 
up with the speeds of the rest of the system, then protocol 
issues are indeed involved. Parallelization addresses this case, 
but does not always help [14]. 

In general, data path parallelization works well, but control 
path parallelization is, by definition, poor. Control paths can 
not be factored efficiently without synchronization between 

components, which adds overhead that defeats the paralleliza- 
tion. 

Data path parallelization is a way to speed the “clock 
rate” of the data. Control parallelization works where packets 
are unrelated+.g., UDP, but not for TCP-like protocols 
[ 141. In the latter case, regardless of partitioning (per packet, 
per function, etc.), the parallelism is limited to about five 
processors per connection. 

The real issue is that of “protocol relativity” [12]. A protocol 
does not know the clock rate-only the number of bits in 
transit between components. Protocol speedup is a control and 
feedback issue, sensitive to the bandwidth-delay product only. 

B. Challenge #2--Multiplux (Determinisfic) 

Multiplexing has been proposed as a solution to the “do not 
have enough stuff to send” issue, as mentioned before [SI. This 
is equivalent to not having a gigabit application-the gigabits 
are shared among a set of applications on a workstation. Using 
multiple hosts, users, or processes are all ways of providing 
aggregate gigabits only. 

In the deterministic multiplexer case, this avoids the domain 
examined here [ 1 11. In the nondeterministic case, the problem 
has just moved down a level in the protocol stack. In the 
original case, there was not enough data to send, primarily 
because data was sent to be sufficient for the current state of 
the other end of the channel, and not any possible subsequent 
states. If there were enough for subsequent states, that data 
would have been sent too, and so on, increasing the amount 
of data available to send ad infinitum. This is how sliding 
windows works-by predicting subsequent states, in a linear 
manner. 

If the subsequent state is not predictable, neither is the 
subsequent data [12]. It does not matter whether it is the 
application state, or the multiplexer state. Nondeterminis- 
tic multiplexing moves the state prediction problem to the 
multiplexer-synchronization level, i.e., lower in the protocol 
stack. 

C. Challenge #.?-Use Large Payloads 

Using large payloads is another way to shut off the protocol, 
and increase the effective speed of the control protocol [13]. 
Versions of TCP run at 1 Gb/s by using 64-kbyte packets, i.e., 
by this technique (e.g., UltraNet). 

Using large payloads slows down the control protocol. 
Header frequency determines the rate of the protocol. The ratio 
of header to payload determines the stability of the protocol 

Large payloads are also an attempt to amortize the cost of 
context switches. Increased payload transfers between the host 
and network reduce the effective overhead of the transfer setup 
costs. This is an attempt to overcome an existing problem in 
the host-if context switches are this costly, making network 
I/O faster is the least of the worries. 

~ 4 1 .  

D. Challenge #4--lncrease Window Size 

As mentioned before, increasing the window size increases 
the amount of information an implementation of a sliding- 
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windows protocol can pipeline. This helps fill the pipe only 
if the application has sufficient data to supply. It addresses 
an implementation deficiency only. The main difficulties are 
backward compatibility and acquiring the consensus of stan- 
dards bodies [5]-[7]. 

The window size parameter is also an example of a compile- 
or run-time parameter that is unfortunately treated as a specifi- 
cation constant. There are several such parameters-maximum 
protocol data unit, timeout values, window granularity and 
range, etc. The constancy of these parameters is a limitation 
of implementations only. 

as clientherver interfaces, where response time tolerance is 
high. Casual users have come to begin to expect a level of real- 
time interaction that does not match the clientkerver design 
of the system. 

In addition, HTML (the document notation language of the 
WWW) has come to be an effective high-level application 
language. Systems use WWW to drive bulletin-board services, 
interactive query systems, on-line forms systems, etc. This 
further drives the expectation of interactive response time from 
these WWW interactive applications (WWWia’s). 

V. DEFINING CHARACTERISTICS 
E. Challenge #S-Relocate Everything 

This section lists a set of characteristics that helps define 
applications that are capable of using gigabit networks and 
keeping the “pipe” full of data sufficient to reduce perceived 
latency, 

If the data can be copied or cached, i.e., if it is stable enough 
that there is no need for separating it from the application, then 
a copy can be put near the application via a low-speed channel 
to avoid the need for high-speed communication altogether. -~ 

A protocol is not needed if there is no communication, or 
more precisely, if there is no feedback of state between two 
separated entities. 

Another way to relocate data is to circulate it among 
the nodes of a protocol [4]. Variants of this protocol rely 
on predictive behavior of data reuse to govern caching [l] .  
These are useful techniques, but are protocol extrapolations of 
previously known methods. 

IV. WWW INTERACTIVE APPLICATIONS 

Although it is useful to eliminate domains where gigabit 
protocols are not needed, it begs the question of where they 
are. 

One application that requires a gigabit protocol is an interac- 
tive clientherver system with real-time response. Several years 
ago when the problem of latency and high speed protocols was 
analyzed, the conditions were specified under which bandwidth 
and bandwidth-delay product could be used to compensate for 
latency. The goal is to reduce the perceived latency, to give 
the illusion of low latency. This work began as “Mirage” (a 
model) and continues as “Parallel Communication” (a protocol 
based on Mirage) [ 121. 

Latency compensation is possible using source-based an- 
ticipation (presending). The composition of two presending 
channels (back-to-back) is the more common receiver-based 
anticipation, i.e., prefetching. Presending differs because i t  is 
source-based. 

There are several advantages of presending over prefetching. 
Presending distributes the computational effort between source 
and receiver. It also avoids unnecessary prefetch messages 
from the receiver, allowing better use of asymmetric com- 
munications channels (e.g., satellite, cable-TV, or high-speed 
digital telephone with dial-up feedback). 

This solution requires knowledge of the state space evolu- 
tion of the other end of the channel, where the state evolution 

A. Char. #I-Requires Feedback 

Non-interactive applications, i.e., those that pipeline data 
to fill the bandwidth-delay product, can be accommodated 
with existing transport protocols. These include streaming 
data applications, such as digital audio or video, as used in 
teleconferencing. 

WWWia’s require feedback between the client and server. 
Even though the servers are stateless, they keep soft-state that 
helps govern source-based anticipation. 

Although there are caching proxies for WWW servers, they 
will not help for the first-use of documents. If the response 
time is very large, even for some small percentage of the time, 
the interactive nature of the WWWias will be defeated. Also, 
the WWW drives the interaction toward first-use, because the 
clients themselves have caches. 

B. Char. #2- “Nonlinear” Communication 

The feedback needs to be nondeterministic. Otherwise sim- 
ple pipelining again works fine, as in the case of sending a 
very large file or database in total [ l ] ,  [4]. 

WWWia’s have a branching control structure with recur- 
sion, as indicated by the URL links and the “history” of the 
browser (user interface). 

Large windows or packets help only during the transmission 
of a branch item. The branching structure cannot be accommo- 
dated by current sliding-windows protocols, and inhibits use 
of large linear windows or large packets [ 121. 

The combination of feedback and nonlinear communication 
defines a rich control structure. It is this structure that the 
source uses to guide its presending. Making the data chunks 
larger reduces the richness of the control. WWWia’s are rea- 
sonably rich, because the branching of the control is reasonably 
large (7-10 linkdpage), even though the data chunk is small 
(6 kbytes for HTML text). 

has moderately-constrained branching properties. The domain 
was described where source-anticipation would help, specifi- 
cally distributed hypermedia navigation [ 121, [ 131. 

This describes the WWW, used as a real-time interactive 
distributed system [2]. The WWW browsers are currently used 

c. #3--“We11-Defined” App.-App. BW 

This characteristic helps determine that the data can not 
be moved, and that the distributed application has not been 
broken in a particularly bad place (for high bandwidth) with 
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Latent-WWW no other justification. The system should not require dissection 
or detailed constraints to evidence the application-application 
bandwidth. WWWia’s are well-defined-the server is one side, 
the browser is the other. 

Existing www 
SERVER 

VI. AN EXAMPLE THAT SURVIVES THE CHALLENGES 

This section explains how WWWia survives the challenges 
(and exhibits the characteristics). Specifically, it describes 
WWWia’s modified with server-based preloading of the 
browser cache [13]. 

A.  Survival 

FILTER The WWWia’s survive the five challenges as follows: 
Increase the clock rate: Current WWW would just get 
each hypertext page faster. It would still take a 100400 
ms latency hit each time you clicked on an item, 
defeating its interactive nature. 
Use deterministic multiplexing: This effectively reduces 
the per-user bandwidth, increasing the user-perceived 
latency. As noted before, it reduces the per-application 
bandwidth below gigabits. 
Use large payloads: Even if each WWW page is one 
packet, performance is not helped in the case where 
propagation latency is larger than 200 ms. In the case 
where propagation latency is smaller, the bandwidth 
required for a direct response is determined by the 
amount of time left (200 ms prop. latency), and the size 
of the response (4 kbytes, 60 kbytes, 200 kbytes, etc.). 
Speed TCP codehcrease TCP windows: Same as 
#3-WWW files are too small to matter with even 
existing TCP window size. 
Requires feedback: WWW is an “interactive” sys- 
tem-more so as it  evolves. 

B. Exhibits Characteristics 

The WWWia’s also exhibit the three main characteristics: 
1)  Requires feedback: WWWia’s require feedback-files 

from the server, and “next request” from the browser. 
2) “Nonlinear ’’ communication: WWWia’s have a branch- 

ing set of possible next requests from the browser. The 
stream of requests is nonlinear. 

The control is reasonably rich with respect to the 
packet stream. The data chunks are large (30-60 kbytes), 
but the control is much richer than “buffer empty/full” 
as in current protocols-it specifies a unique file on the 
server. 

3) “ Well-dejned” app. -app. bandwidth: Server to browser, 
browser to server. 

VII. WWWIA’S ARCHITECTURE 

The design for a WWWia architecture augments the existing 
WWW clientkerver with a presending pump and browserfilter 
(Figs. 1 and 2) 1131. The pump and filter are supported by 
either the existing transport protocols or their more recent 
extensions [3], or by an augmented transport protocol [ 121. The 

I I 
I I 

Fig. I .  
jilter. 

Implementation of the WWW intermediaries called the pump and 

Uses client-initiated enca sulation to redirect 
requests througR a proxy 

Preloader 

Preloads are dropped if not used. 
Updates are dropped if not used. 

“Pings” on update/preload channels disable effort (“liveness”). 

Fig. 2. 
it were a proxy cache. 

Design of the pump and filter appears to the server and client as if 

pump and filter implement the Web-equivalent of the Parallel 
Communication protocol [ 121. 

The pump acts as a proxy for the browser at the server. 
It keeps soft state indicating the last request received from 
the browser, and peeks into the data stream to find URL’s 
embedded in replies from the server. The pump then makes 
requests for URL’s on the same server to be forwarded to the 
filter. The pump and filter together appear as a proxy cache 
to the client and server (Fig. 2). The protocol is outlined in 
Figs. 3 and 4. 

The pump permits two kinds of HTML replies to be sent to 
the browserdirect  replies, and present replies. The present 
replies are tagged to be saved on the disk by the filter. In a 
high bandwidth-delay product network, these tags may not be 
necessary, because the present documents amve just as they 
are needed at the browser. The most disk space required is the 
larger of the bandwidth-delay product and the bandwidth-“idle- 



TOUCH: DEFINING HIGH-SPEED PROTOCOLS 

Server PUMP Browser 

833 

Server & Pump FILTER Browser 

URL 
4 Resolve soft-state. 

If URL already present, 
do not forward to server. 
Otherwise, forward to server. 

HTML Doc. 
Look for URLs in any response. 
For each URL in response - 

Request URL from server. 
Tag HTML response as “present”. 
Augment soft-state. 

rn FILTER 
2 
2 
2 

HTML Doc.+ “filter” tag 

+ FILTER HTML Doc.+ “filter” tag 

b FILTER HTML Doc.+ “filter” tag 

Fig. 3. Pump operation 

time” product. If there is some upper-bound on reasonable disk 
usage for the filter to cache present data, that can be indicated 
to the pump, to avoid wasted effort. 

The filter stores forwarded server replies to the disk. It also 
intercepts URL requests from the browser. If the URL is on 
the disk, the filter responds with the request and forwards the 
URL to the pump (not to be forwarded to the server). If the 
URL is not on the disk, the request is sent to the pump to be 
forwarded to the server (Fig. 3). 

Note that in either case, the URL is sent to the pump. This 
provides feedback to the pump. In the case where the file has 
not yet been sent, it indicates a corrective action to the pump. 
In the case where the pump has already sent the file to the 
disk, it indicates which file was used, and permits the pump 
to focus further preloading. 

The branching-TCP extensions support the tags indicated in 
the figures and provide application-layer signalling of excess 
bandwidth that can be used for latency reduction. 

The pump manages the sending of all possible next requests, 
and manages the possible states of the client. The pump uses 
the server-side TCP signal of excess bandwidth to initiate 
presending, and the branching window allows the pump to 
send alternate streams of messages to the client. As the pump 
emits these messages, the branching in the server-side TCP 
increases. 

The filter allows the browser to receive only those messages 
that correspond to a particular state. This client-side TCP also 
indicates branch selections to the server-side TCP, to perform 
state resolution. 

i 
51 

I 

Fig. 4. Filter operation 

URL 
’UMPr Send URL to server/pump 

for state resolution. 

If URL is already on disk, 
send disk copy of HTML. c 
L 

HTML Doc 

HTML Doc.+ “filter” tag - 
When “tagged” HTML arrives 
save it to the local disk. 

HTML Doc. 
b 

When untagged HTML arrives 
send it  on to the browser. 

Bandwidth Available 
(bits per second) 

RESPONSE TIME 
-0.1 seconds - 0.1 seconds (WITH PRELOADING) 

Fig. 5.  
increases. 

Response time (probability of a 0.1 s response) as bandwidth 

VIII. OBSERVATIONS 

Some measurements have been taken to indicate the ef- 
fectiveness of this mechanism. These measurements were 
performed on existing Web servers, so reflect current Web 
design, which revolves around formatted text (average page 
size of 6 kbytes). As available bandwidth increases, servers 
are expected to more fully utilize embedded icons, images, 
and video clips, increasing the required bandwidth by a factor 
of 100. 

One observation is that current Web cannot be supported 
interactively by ISDN lines (14% hit rate within 0.1 s). 
By augmenting the protocol to support server preloading of 
receiver caches, the same bandwidth can support 0.1 s response 
83% of the time (Fig. 5) .  
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only, and all). 

Number of hypertext links (HREF’s) per page in the web (local 
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Amount of additional BW required (ratio to current page) 

Fig. 7. 
page). 

Amount of additional bandwidth required (relative Io the current 

The bandwidth required for source preloading of receiver 
caches in the Web has also been measured. Specifically, 
number of links per page (Fig. 6) and the amount of bandwidth 
for general preloading (Fig. 7) were measured. The links per 
page is measured both in general terms, as well as local to 
the server (where preloading is possible). The bandwidth is 
a comparison of the bytes per page versus the total bytes 
required for the files pointed to by the links on that page. 

A. Performance 

The performance of this mechanism can be evaluated rel- 
ative to several metrics-channel utilization, effective band- 
width, effective latency, and overall cost. The goal of this 
mechanism is reduced latency, and it assumes an acceptable 
increase in bandwidth used. 

The channel utilization can be measured, where the goal 
is a load of 100%. Conventional requesthesponse systems 
achieve loads near 50%, because the response channel is 
idle in-between and during requests. The goal is to keep the 
server-to-client channel busy 100% of the time. 

The bandwidth of the messages that are actually received 
(effective bandwidth) can also be measured. This will al- 
ways be at least as large as the effective bandwidth of a 
requesthesponse system, because guessed messages are not 

counted, and because a direct request always overrides this 
protocol. 

Similarly, the effective latency is always reduced relative to 
a conventional protocol. Responses that are anticipated reduce 
the measured latency, and responses not anticipated cost the 
same as in the conventional case. 

The overall cost is difficult to measure without externally 
imposed network cost functions. The cost can be expressed in 
terms of the bandwidth used, but it is of little meaning due 
to the number of variables. The real result is that a set of 
conditions must exist. 

bandwidth must be available in excess of that required 

the expense of the excess bandwidth must be acceptable, 
by the conventional protocol 

i.e.: 
--external cost is perceived acceptable 
-latency reduction is not feasible by any other method, 

so any cost is acceptable. 

B. Bandwidth Requirements 

Available bandwidth implies a high peak-rate allocation 
in guaranteed-bandwidth systems, or that the server pump 
subjects itself to feedback from a rate- or burst-limiting 
mechanism, and avoids preloading that violates the rate or 
burstiness guarantees. Server preload messages should be 
tagged as “droppable available-bit-rate’’ traffic. In this way, 
bandwidth in excess allocation can be used when available, and 
shared among preloading sources. “Droppable” ABR traffic 
assumes a mechanism that provides bandwidth and latency 
performance to untagged traffic equivalent to the case where 
no droppable ABR traffic exists, i.e., a preemptive packet 
scheduler. 

C. Other Requirements 

The feasibility of this mechanism also implies the avail- 
ability of sufficient cache storage at the receiver and server 
capability. The amount of cache storage required is one 
bandwidth-delay product, where delay is the time between user 
requests, due to either round trip latency or idle user activity. 
The server must also be able to supply anticipatory information 
at the channel bandwidth; if the server is already loaded, or 
if its internal bandwidth is the bottleneck, performance will 
be compromised. Note that in the case where cache space is 
limited, or where the server is loaded or has insufficient band- 
width, the mechanism degenerates to its existing performance 
with conventional protocols. 

This discussion also assumes the availability of sufficient 
information (i.e., hypermedia links) to support server-based 
preloading. There need not be a correlation between users 
(ensemble) or a repeated history of a single user’s actions 
(temporal); the requested item need only be from among the 
links on a page, rather than overridden by typing in an arbitrary 
URL. The URL’s within links on a page are information 
the server can use to optimize the response latency; arbitrary 
URL’s are (by nature) unpredictable, and will require a con- 
ventional cliendserver interaction (and its associated latency). 
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IX. CONCLUSION 
This paper has discussed five challenges for gigabit ap- 

plications that indicate where existing protocols may not 
work, and where new protocols are required. It has shown 
a class of applications-interactive distributed multimedia, 
namely interactive real-time WWW access-that survive the 
challenges. It has also shown how source presending is a way 
to use excess bandwidth-delay product to reduce the browser 
response time, and how this is one example of a truly gigabit 
protocol. 
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