
M I R A G E : A M O D E L F O R

L A T E N C Y IN C O M M U N I C A T I O N

Joseph Dean Touch

A DISSERTATION

IN

COMPUTER AND INFORMATION SCIENCE

Presented to the Faculties of the University of Pennsylvania in Partial Fulfillment

of the Requirements for the Degree of Doctor of Philosophy.

1992

David J. Farber

Supervisor of Dissertation

Mitchell P. Marcus

Graduate Group Chair

COPYRIGHT

Joseph Dean Touch

1992

DEDICATION iii

D E D I C A T I O N

To my parents, Ralph B. and Filomena Touch, for whom education is always first.

ACKNOWLEDGEMENTS iv

A C K N O W L E D G M E N T S

This work is supported by the Information Science and Technology Office of the

Defense Advanced Research Projects Agency, under contract NAG-2-639, and by an

AT&T Graduate Research Fellowship, grant #111349.

There are also many people who contributed to the development of this dissertation,

and without whose help it would not have been possible.

My classmates at the University of Pennsylvania Department of Computer and

Information Science provided active debates encouraged these ideas. Members of the

Distributed Systems Lab, including John Shaffer, Anand Iyengar, Ming-Chit (Ivan) Tam,

Brendan Traw, Jonathan Smith, and Amarnath Mukherjee discussed and debated these

ideas. Daniel Kulp (Univ. Penn. Materials Science) provided fertile discussions on the

physics analogs which provided the basis of Mirage (Appendix B). Other sections were

directly helped by Jon Freeman (Appendix C), Christine Nakatani (Appendix G),

Amarnath Mukherjee (branching-stream model equations, Chapter 2), Richard Gerber

(communicability and Smyth’s PowerDomains, Chapter 3), Phil Christie (Univ.

Delaware) (violation of the Liouville theorem, Appendix D), and Stuart Frieberg (Univ.

Wisconsin - Madison) (isopotency of Chapter 2).

This text was edited through the advice of many students and colleagues, including

Diana D’Angelo, Ted Faber (Univ. Wisconsin - Madison), Brendan Traw, John Shaffer,

and Nick Short, Jr. who provided extensive feedback. I owe Nick more than a few beers.

I also want to acknowledge a few of my mentors, most notably my first computer

science teacher, John Mero, who was the first to introduce me to computers, and who was

the first to give me the opportunity to study them at my own pace. I also would thank my

undergraduate advisor Dr. Jack Beidler, who gave me the resources and opportunities to

discover this science. Also, my first employer T. Russell Hsing, who is responsible for

introducing me to this research, and my Ph.D. advisor, indirectly.

ACKNOWLEDGEMENTS v

I also thank my dissertation committee members, for their participation, advice, and

comments: David Sincoskie (Bell Communications Research), Ravi Sethi (AT&T Bell

Labs), Jonathan Smith (Univ. Penn.), and the chair, Mitch Marcus (Univ. Penn.).

I want to thank my Ph.D. advisor, David Farber, for introducing me to the questions

this dissertation investigates, for giving me the unique opportunity to investigate a new

area of research on my own, and who supported this research to DARPA for a grant.

I also want to thank my friends for ‘moral’ support, including the Doctor’s Club

members Samuel Kulp D.V.M. (& Ph.D. 1993), Daniel Kulp (Ph.D. 1992), Scott Miller

M.D., David Bradin (Esq., 1994), and Stuart Miller. I thank my friends Janice Luteran,

Paula Luteran, Susan Alexander, Fran Weiss, and Nick Short, Jr., especially for

contributing to the financial development of telephone companies everywhere. I also

thank Kenneth M. Rubinstein, my first professional colleague (cartooning, 1974), and my

oldest friend.

Finally, I want to thank my family, whose help and support made this work, and all

other I may do, possible. My parents Ralph B. and Filomena Touch (yeah, yeah, 10%, I

know), my brother Ralph F. Touch, Esq., my sister Suzanne M. Touch (M.D. 1993), and

my grandparents ‘Nonni’ and ‘Pop’ Cianfrani, and ‘Nonni’ and ‘Nonno’ Touch. My

father helped edit this dissertation, which was prepared on a Mac IIsi provided by Nonni

Cianfrani (more jimmies, Nonni!).

ABSTRACT vi

A B S T R A C T

M I R A G E : A M o d e l f o r
L a t e n c y in C o m m u n i c a t i o n

A u t h o r : J o s e p h D e a n T o u c h

S u p e r v i s o r : D a v i d J . F a r b e r

Mirage is an abstract model for the design and analysis of high speed wide area network (WAN)

protocols. It examines the effects of latency on communication, and indicates that information separation is

the distinguishing characteristic of gigabit WANs. Existing protocols will exhibit performance failures due

to an inability to accommodate imprecision in the remote state. The name Mirage denotes the difficulty

with latent communication, namely nodes never really “see” each other precisely; rather, they work with

(and around) the mirages which high speed and fixed latency conjure before them.

This dissertation describes the Mirage abstract model as an extended finite state machine that

accommodates imprecision through the use of multiple simultaneous states and state space volume

transformations. We introduce guarded messages, to accommodate nondeterministic data streams, and

communicability, the upper bound on communication, given fixed latency and state predictability. Mirage

demonstrates how excess bandwidth can be used to accommodate latency, and shows the bounds on latency

constrained communication. Supplemental discussions includes consider Mirage as an extension of

Shannon’s communication theory, and compare it to physics analogs.

Mirage was applied to the Network Time Protocol (NTP), to demonstrate its use and exemplify its

abstract components. We show the equivalence between variation in state space imprecision and variation

in transmission latency. Several ‘optional’ components of the NTP specification are shown to be required,

and layering is violated in permitting sender anticipation.

To show the model’s advantages, Mirage was applied to processor - memory interaction as a

protocol, calling the result µ−Net (MicroNet). Using anticipation, we develop a novel interface which

achieves a hit rate equivalent to that of a 50K byte cache, using 400 bytes of storage. µ−Net complements

conventional cache techniques, especially where communication latency is the limiting factor in code

execution, and where excess communication bandwidth is available. Dynamic traces measured the latency

accommodation possible by the various implementation versions.

TABLE OF CONTENTS vii

T A B L E O F C O N T E N T S

Chapter 1 – Introduction .. 1

1.1. Background...2

1.2. What is a protocol? ...5

1.2.1. Communication as state concurrence...7

1.3. The need for a new model ..7

1.4. What has changed? ...9

1.4.1. Change in the use of memory ..14

1.5. Model goals ..15

1.6. Preview ...15

Chapter 2 – The Mirage model .. 17

2.1. Assumptions ...18

2.1.1. Initial description of channel utilization ..18
2.1.1.1. Phases ...19
2.1.1.2. Channel utilization: linear case...20
2.1.1.3. Channel utilization: sender-based anticipation.............................21

2.1.1.3.1. An example for illustration- the turtle..........................21
2.1.1.3.2. Branching streams utilization.......................................22

2.1.2. Conclusions of the branching model..27

2.1.3. Some reality checks ...27

2.1.4. Some common sense..29

2.2. The Mirage model...30

2.2.1. More definitions...31

TABLE OF CONTENTS viii

2.2.2. A description of the model...32
2.2.2.1. Time..34
2.2.2.2. Receive ...35
2.2.2.3. Transmit..35

2.2.3. Implications of the model ..36
2.2.3.1. Lag and stability ...36
2.2.3.2. Communicability ..37
2.2.3.3. Guarded messages ..39
2.2.3.4. Isopotent sets ..40

2.3. Discussion...41

2.3.1. A channel with imprecision ...41

2.3.2. Looking into the structure of the stream..42

2.3.3. Implementations...43
2.3.3.1. Projections ..43
2.3.3.2. Granularity..44

2.4. Insights..45

2.4.1. Kinds of information..45

2.4.2. Error and latency as conjugates ...45

2.4.3. Entropy...46

2.4.4. Constraints ...46

2.4.5. Contrasts & comparisons ...46

Chapter 3 – Prior Work.. 48

3.1. Prior models of communication..49

3.1.1. The models...49
3.1.1.1. Shannon’s model of communication ..50
3.1.1.2. Communicating finite state machines...51
3.1.1.3. Petri Nets ..51
3.1.1.4. Estelle / LOTOS ...51

3.1.2. Partitioning the state space...51
3.1.2.1. Partitions...52
3.1.2.2. Factoring...52
3.1.2.3. Projections / imaging ..53
3.1.2.4. Powerdomains...53

3.2. Protocol optimizations..53

3.2.1. Universal Receiver Protocol ..54

TABLE OF CONTENTS ix

3.2.2. VMTP...55

3.2.3. XTP..55

3.2.4. TCP ..56

3.2.5. NetBlt...56

3.2.6. ‘Cross Product Protocols’ ..57

3.2.7. Delta-t...58

3.2.8. Virtual Clock..58

3.2.9. SNR (leaky bucket)..59

3.2.10. TP++ ..60

3.3. Communicability ..61

3.3.1. Cybernetics and control theory ..61

3.3.2. Time ...62
3.3.2.1. Real time systems ...63
3.3.2.2. Aging variables...63
3.3.2.3. Timers...63

3.3.3. Constraints ...64

3.4. Anticipation ..64

3.4.1. Operating systems..65
3.4.1.1. Concurrent execution..65
3.4.1.2. Time Warp..66

3.4.2. Congestion control ...66
3.4.2.1. Anticipatory congestion control ...66
3.4.2.2. Timer-based congestion control ...67
3.4.2.3. Feedback congestion control ..67
3.4.2.4. Combination control ...68

3.4.3. Other forms of anticipation..68
3.4.3.1. Client / server extensions..68
3.4.3.2. Recent protocol discussions..69

3.5. Physics analogs...70

3.5.1. Truth Maintenance Systems...70

3.5.2. Physics in protocols ...70

TABLE OF CONTENTS x

Chapter 4 – A Mirage of NTP .. 72

4.1. An overview of NTP...73

4.1.1. How NTP reads a clock ...75

4.1.2. NTP background ..77

4.2. Casting NTP into Mirage..78

4.3. Resolution of domain differences...79

4.3.1. Analysis of delay and offset measurements...82

4.4. Description of NTP in Mirage ..88

4.4.1. State space..89

4.4.2. Transformations ...90
4.4.2.1. Time..90
4.4.2.2. Send ..92
4.4.2.3. Receive ...93

4.4.3. Partitioning of the state space ..96

4.4.4. NTP degenerates to a clock pulse ..97

4.4.5. Constraints ...98

4.5. Observations ...98

4.5.1. Gains ..99

4.5.2. Prior work ..100

4.5.3. Conclusions..101

Chapter 5 – µ-Net .. 102

5.1. Preface to Chapters 5 and 6 ..102

5.2. Introduction...104

5.2.1. The Domain - the processor / memory interface..106

5.2.2. Description of current architectures...106

5.2.3. Effect of latency on existing architectures...111

5.3. µ-Net...114

TABLE OF CONTENTS xi

5.3.1. Time transformations ...115

5.3.2. Receive transformations...116

5.3.3. Send transformations..116

5.3.4. Guarded messages..118

5.3.5. Partitioning the state space (stability) ..119

5.3.6. Isopotent sets..119

5.4. µ-Net - Design...120

5.4.1. The Code Pump..120

5.4.2. The Filter Cache...121

5.4.3. Degrees of design...122

5.5. Elaboration of degrees of design ..125

5.5.1. No opcodes anticipated (Null implementation) ...126

5.5.2. Unit Linear opcodes anticipated ..127

5.5.3. Linear opcodes anticipated...129

5.5.4. Recursion and Linear anticipation ...130

5.5.5. Branching and Linear anticipation...131

5.5.6. Combining Recursion and Branching anticipation135
5.5.6.1. The TreeStack...136
5.5.6.2. The Total implementation of µ-Net..137

5.6. Implications ..141

5.7. Conclusions...147

Chapter 6 – µ-Net under a µ-Scope.. 148

6.1. Performance gains ..150

6.2. On the feasibility of implementations as architectures...157

6.3. Observations ...166

6.3.1. Kinds of instructions ..166
6.3.1.1. Regular opcodes (OTHER) and JUMPs.......................................166
6.3.1.2. BRANCHES...167

TABLE OF CONTENTS xii

6.3.1.3. INDIRECT..167
6.3.1.4. CALL and RETURN..168

6.3.2. Other observations ...169

6.4. Relation to prior work...169

6.4.1. Instruction Issue Logic (Code Pumping) ...170
6.4.1.1. Fairchild F8...170
6.4.1.2. Distributed Logic Instruction Issue ..172
6.4.1.3. The Sustained Performance Architecture174

6.4.2. Cache issues ...176
6.4.2.1. Prediction/prefetching...176
6.4.2.2. Wide lines ...177
6.4.2.3. Software..177
6.4.2.4. Prefetching vs. cacheing ...178
6.4.2.5. Prefetch v.s pre-reply..179
6.4.2.6. Guarded messages ..179

6.4.3. Other related architectures ...180
6.4.3.1. IBM Stretch (7030) - one of the first prefetch..............................180
6.4.3.2. IBM 360/91 - dual prefetch ..181
6.4.3.3. Rope multiple prefetch ...182
6.4.3.4. Access / execute architectures ..183
6.4.3.5. IBM RS/6000..184

6.4.4. Remote Evaluation...184

6.4.5. Multiple alternates..185

6.5. Conclusions...185

6.5.1. Notes for designers...186

6.5.2. Notes for researchers..187
6.5.2.1. Memory management ...187
6.5.2.2. Opcode anticipation Amdahl’s Law...188
6.5.2.3. Flynn’s taxonomy...188

Chapter 7 – Conclusions ... 190

7.1. Review..190

7.1.1. New questions..191

7.1.2. The model ..191

7.1.3. Existing protocols ..192

7.1.4. New protocols ..192

TABLE OF CONTENTS xiii

7.2. Evaluation...193

7.2.1. And the answer is...193

7.2.2. Is Mirage useful?..195

7.3. Future Directions ..195

7.3.1. Abstract studies..195

7.3.2. Protocol studies (analysis) ...196

7.3.3. Implementation studies (design) ..196

Chapter 8 – Bibliography.. 197

Appendix A – Mirage & Shannon.. 207

A.1. The channel..207

A.2. State transformations ...208

A.3. Levels of communication...209

A.3.1. Extensions for time ...210

A.3.2. Time vs. error..211

A.4. Observations ..212

Appendix B – Mirage & Physics .. 213

B.1. Origins of the analogy..213

B.1.1. Field interaction as communication ..214
B.1.1.1. Four physical forces...215
B.1.1.2. Communication forces ...215

B.1.2. Further references..215

B.2. Existing analogies from physics ..216

B.2.1. Entropy ..216

B.2.2. Uncertainty ..217

B.2.3. Hamiltonian function...217

B.3. Quantum analogies...218

TABLE OF CONTENTS xiv

B.3.1. State sets / multiple worlds..218

B.3.2. State set collapse ...219

B.3.3. Virtual pairs...220

B.3.4. Feynman path integrals ...220

B.4. Observations from the analogy ..221

B.4.1. Error and latency as conjugates...221

B.4.2. Stability ...221

Appendix C – Upper Bound.. 224

Appendix D – The Liouville Theorem ... 226

Appendix E – Mirage in Set Notation.. 228

E.1. Definitions..228

E.2. Time Transform..229

E.3. Receive Transform...231

E.4. Send Transform..232

E.5. Observations...232

Appendix F – Mirage & Petri Nets .. 233

F.1. Petri Net Analogs ...233

F.1.1 Communication channel ...236
F.1.1.1 Basic block ..237
F.1.1.2 Virtual tokens ..238

F.1.2 Equivalences to Mirage transformations ..240
F.1.2.1 Time...240
F.1.2.2 Send ...241
F.1.2.3 Receive ..242

F.2. Capacity in a PN...242

TABLE OF CONTENTS xv

Appendix G – The TreeStack ... 244

G.1. Components ...244

G.2. Operations..245

G.2.1. Push...245

G.2.2. Pop...246

G.2.3. Branch ...246

G.2.4. Select subtree ..247

G.2.5. Equivalence transforms - Twinning and UnTwinning..............................248

G.2.6. Canonical forms ..248
G.2.6.1. Twinned TreeStack..249
G.2.6.2. UnTwinned TreeStack ...249

G.2.7. The Graft transform...250

Appendix H – µ-Scope Methods ... 254

H.1. Existing Tools..254

H.2. The method ..257

H.3. Observations ..259

H.4. AWK scripts and C-language code listings ...260

H.4.1. MSCOPE.h - C-language ‘include’ file ..260

H.4.2. INSERT_SYMBOLS - AWK, inserts signals in SPARC assembler........260

H.4.3. INSERT_OPCODES - AWK, signals become SPARC assembler264

H.4.4. MSCOPE.c code - output desired statistics...265

H.4.5. STATIC_COUNT - get static SPARC opcode distributions267

LIST OF TABLES xvi

L I S T O F T A B L E S

Chapter 1 – Introduction .. 1

Table 1.1: Network size and speed equivalences...12

Table 1.2: Network and node characteristics...14

Chapter 2 – The Mirage model .. 17

Chapter 3 – Prior Work.. 48

Chapter 4 – A Mirage of NTP .. 72

Table 4.1: NTP versions and components. ..78

Table 4.2: Mirage interpretation of the state variables of NTP89

Chapter 5 – µ-Net .. 102

Table 5.1: Opcode time transformations..117

Table 5.2: Degrees of implementation, and the implications of each..............................123

Table 5.3: Null Filter send actions...126

Table 5.4: Null Filter receive actions...126

Table 5.5: Null Converger actions ...127

Table 5.6: Null Diverger actions..127

Table 5.7: Unit Linear Filter send actions..128

Table 5.8: Unit Linear Diverger actions ..128

Table 5.9: Linear Filter send actions..129

Table 5.10: Linear Diverger actions ..130

Table 5.11: Recursion Filter send actions..130

Table 5.12: Recursion Diverger actions...131

LIST OF TABLES xvii

Table 5.13: Branching Filter send actions ...133

Table 5.14: Branching Filter receive actions ...133

Table 5.15: Branching Converger actions..134

Table 5.16: Branching Diverger actions ..134

Table 5.17: Total Filter send actions..138

Table 5.18: Total Filter receive actions (same as Branching filter).................................139

Table 5.19: Total Converger actions..139

Table 5.20: Total Diverger actions ..140

Table 5.21: CPI (EXEC) values of common CISC and RISC CPUs...............................146

Chapter 6 – µ-Net under a µ-Scope.. 148

Table 6.1: Approximate dynamic opcode distribution...152

Table 6.2: Approximate speedup in various degrees of implementation.........................153

Table 6.3: µ-Net implementations and cache equivalents (no branch assumption).........154

Table 6.4: µ-Net implementations & cache equivalents (equiprobable branching).........155

Table 6.5: Adjusted dynamic opcode distributions (approx. a cache miss stream).........155

Table 6.6: Performance increases where latency dominates design parameters..............156

Table 6.7: Mean and median limb lengths for µ-Nets implementing branching162

Chapter 7 – Conclusions ... 190

Chapter 8 – Bibliography.. 197

Appendix A – Mirage & Shannon.. 207

Table A.1: Weaver’s 3 levels of communication...210

Table A.2: Mirage’s 2 levels of latency...212

Appendix B – Mirage & Physics .. 213

Table B.1: Physics analogs of protocol components ...214

Appendix C – Upper Bound.. 224

LIST OF TABLES xviii

Appendix D – The Liouville Theorem ... 226

Appendix E – Mirage in Set Notation.. 228

Appendix F – Mirage & Petri Nets .. 233

Appendix G – The TreeStack ... 244

Appendix H – µ-Scope Methods ... 254

LIST OF ILLUSTRATIONS xix

L I S T O F I L L U S T R A T I O N S

Chapter 1 – Introduction .. 1

Figure 1.1: Network rate ..9

Figure 1.2: Increased rate as bit foreshortening...10

Figure 1.3: Figure 1.1, as it appears to the bits in transit ...10

Figure 1.4: Network size and speed equivalences ...12

Figure 1.5: Node buffer size (memory) vs. information separation (bit -latency)...........13

Chapter 2 – The Mirage model .. 17

Figure 2.1: Kinds of protocol lookahead / branching ..19

Figure 2.2: Utilization as latency increases (linear lookahead)20

Figure 2.3: Tree levels ...24

Figure 2.4: Utilization of branching lookahead (P=5, D=2, L=4)25

Figure 2.5: Channel utilization (relative to lnear) (P=5,D=2,L=4)..................................26

Figure 2.6: Utilization vs. branch arm length (geometric)...28

Figure 2.7: Utilization vs. branch degree (geometric) ...28

Figure 2.8: Mirage communication channel ..31

Figure 2.9: Shannon’s model ...33

Figure 2.10: Visualization of state space volume transformations34

Figure 2.11: Control space evolution...37

Figure 2.12: Entire space affected by unguarded message ..40

Figure 2.13: Guarded messages affecting partitions only..40

Figure 2.14: Bit foreshortening and its effect on lookahead / utilization42

Figure 2.15: Bit foreshortening and branching effecting utilization................................43

Chapter 3 – Prior Work.. 48

LIST OF ILLUSTRATIONS xx

Chapter 4 – A Mirage of NTP .. 72

Figure 4.1: NTP message format ...74

Figure 4.2: NTP message exchange...75

Figure 4.3: Exchange slid forward (maximum offset)...77

Figure 4.4: Exchange slid backward (minimum offset)...77

Figure 4.5: Unidirectional delay as a Poisson pdf ...80

Figure 4.6: Bidirectional delay is the convolution of unidirectional delays80

Figure 4.7: Measured offset is unidirectional delay convolved with its reverse..............80

Figure 4.8: Bidirectional delay as Erlangian (N=2)...81

Figure 4.9: Measured offset as pseudo-Gaussian...81

Figure 4.10: Probability vs. [delay, offset] pairs, density plot...81

Figure 4.11: Tuesday offset values (off-peak)...82

Figure 4.12: Friday offset values (peak) ..82

Figure 4.13: Tuesday delay values (off-peak) ...83

Figure 4.14: Friday delay values (peak)...83

Figure 4.15: Delay v.s offset, time-repetition density (off-peak)84

Figure 4.16: Delay vs. offset, time-repetition density (peak) ..84

Figure 4.17: Delay vs. offset vs. probability, time-series (off-peak)...............................85

Figure 4.18: Fixed (black) and variable (gray) delay in message exchange....................86

Figure 4.19: Exchange maximum offset, variable delay ...86

Figure 4.20: Exchange minimum offset, variable delay ..86

Figure 4.21: Delay vs. offset, entire ensemble (all strata) ...87

Figure 4.22: Stratum 1 ensemble ...88

Figure 4.23: Stratum 2 ensemble ...88

Figure 4.24: Stratum 3 ensemble ...88

Figure 4.25: Stratum 4 ensemble ...88

Figure 4.26: Clock value is a function of time...91

Figure 4.27: Clock interval as fixed expansion centered on time function......................91

Figure 4.28: Transformation of a perception due to a sent NTP message.......................92

Figure 4.29: Transformation of a perception due to a received NTP message................94

Figure 4.30: Receive transformation, accommodating transit time effects95

Figure 4.31: Representation of a Time Warp in the state space timeline95

Figure 4.32: Partitioning of the state space results in variably ‘tight’ state collapse.......96

Figure 4.33: Regular sender anticipation. ..98

LIST OF ILLUSTRATIONS xxi

Chapter 5 – µ-Net .. 102

Figure 5.1: Mirage extends the channel model to include latency...................................105

Figure 5.2: Communication channel analog of processor/memory interaction...............105

Figure 5.3: Explicit processor-memory protocol (voltage/time diagram)107

Figure 5.4: Explicit processor-memory protocol (as a protocol time line)......................107

Figure 5.5: Timer based processor-memory protocol (voltage/time diagram)108

Figure 5.6: Timer-based processor-memory protocol (as a protocol time line)108

Figure 5.7: Processor-memory interaction across a distance...109

Figure 5.8: Processor-memory interaction via a cache..109

Figure 5.9: µ-Net processor-memory interaction...110

Figure 5.10: Protocol timeline comparisons of processor-memory protocols.................110

Figure 5.11: CPU state and Memory image...114

Figure 5.12: Detail of Filter Cache and Code Pump of µ-Net...121

Figure 5.13: Null Filter Cache design..127

Figure 5.14: Null data space ..127

Figure 5.15: Unit Linear Filter Cache design ..129

Figure 5.16: Recursion data space ...131

Figure 5.17: Branching data space...133

Figure 5.18: Branching Filter Cache design ..133

Figure 5.19: Total Anticipation data space ..135

Figure 5.20: TreeStack structure..136

Figure 5.21: Total Filter Cache design...139

Chapter 6 – µ-Net under a µ-Scope.. 148

Figure 6.1: Dynamic control opcode distributions...151

Figure 6.2: Percent of CALLs occurring at or above a given depth of recursion............157

Figure 6.3: Percent of CALLS not depth-traced (system calls).......................................158

Figure 6.4: Average limb length (linearity) ...159

Figure 6.5: Percent increase in limb length (linearity), adding calls and returns160

Figure 6.6: Dhrystone limb length distribution..161

Figure 6.7: GCC (weighted) limb length distribution..161

Figure 6.8: Linpack limb length distribution ...161
Figure 6.9: TEX limb length distribution...161

LIST OF ILLUSTRATIONS xxii

Figure 6.10: Mean limb length (L = 7) hit probablity vs. BW vs. rtt...............................163

Figure 6.11: Mean limb length (L = 8) hit probablity vs. BW vs. rtt...............................163

Figure 6.12: Mean limb length (L =10) hit probablity vs. BW vs. rtt..............................163

Figure 6.12: Mean limb length rtt. vs. utilization ..164

Figure 6.13: Median limb length rtt. vs. utilization ...164

Figure 6.14: Mean relative performance..164

Figure 6.15: Median relative performance...164

Figure 6.16: Short forward branch opcode sequence...165

Chapter 7 – Conclusions ... 190

Chapter 8 – Bibliography.. 197

Appendix A – Mirage & Shannon.. 207

Figure A.1: Shannon’s communication channel..208

Figure A.2: Mirage’s communication channel ..208

Figure A.3: State space point transformation...209

Figure A.4: Visualization of state space volume transformations209

Appendix B – Mirage & Physics .. 213

Figure B.1: Mirage’s relationship to other sciences ..214

Appendix C – Upper Bound.. 224

Figure C.1: Error between upper bound and exact channel utilization............................225

Appendix D – The Liouville Theorem ... 226

Appendix E – Mirage in Set Notation.. 228

Appendix F – Mirage & Petri Nets .. 233

Figure F.1: Petri Net (unmarked)...234

Figure F.2: Petri Net markings...234

LIST OF ILLUSTRATIONS xxiii

Figure F.3: Token machine of a Petri Net..235

Figure F.4: Meta-Petri Net of a Token Machine..235

Figure F.5: Network MPN partitioned into channels and nodes......................................236

Figure F.6: Basic block ..237

Figure F.7: Token virtualization ..238

Figure F.8: Token realization...238

Figure F.9: MPN subgraph (before transform) ..239

Figure F.10: MPN subgraph (after transform)...240

Figure F.11: Sending introduces virtualization..241

Figure F.12: Reception causes realization ...242

Appendix G – The TreeStack ... 244

Figure G.1: TreeStack components..245

Figure G.2: TreeStack Push operation ...245

Figure G.3: TreeStack Pop operation...246

Figure G.4: TreeStack Branch operation ...246

Figure G.5: TreeStack Subtree Selection operation...247

Figure G.6: TreeStack Twinning and UnTwinning ...248

Figure G.7: TreeStack canonical form - maximally Twinned ...249

Figure G.8: TreeStack form - maximally UnTwinned...250

Figure G.9: Multiple Pops in max-Twinned TreeStack (before Pops)251

Figure G.10: Multiple Pops after Twinning and Pops ...251

Figure G.11: Multiple Pops after subsequent UnTwinning ...251

Figure G.12: A Graft..252

Figure G.13: A Graft Subtree Selection...253

Appendix H – µ-Scope Methods ... 254

PREFACE xxiv

P R E F A C E

The following is a section description of this dissertation. It includes the chapters,

as well as the appendices. The appendices are auxilliary discussions or digressions, which

are intended to indicate all discussions applicable to this work, regardless of development

status.

Chapter 1 — Introduction

The introduction defines the problems that Mirage addresses. The original goal was

to address anticipated protocol degradation in gigabit networks. We conclude that

existing protocols would fail only in gigabit wide area networks, and that fixed latency is

the real problem to be addressed. The protocol model developed addresses issues of

latency in communication, where latency is fixed and known, and remote state evolves

according to known state expansion functions.

Chapter 2 — The Mirage Model

The formal model based on state space subset transformations is presented. We

introduce guarded messages and communicability. The model defines communicability in

the presence of latency, and relates stability to communicability and the variability of a

remote state. A notation of these transformations based on set notation is presented in

Appendix E.

Chapter 3 — Prior Work

The discussion of prior work focuses on cybernetics and control theory, and abstract

models of communication, most notably Shannon’s theory of communication. Petri Nets,

finite state transition models, and temporal logic are also discussed. Other prior work

includes distributed systems and databases, especially common knowledge, quorum

PREFACE xxv

consensus, and client/server models. Similar protocol methods include VMTP, XTP,

NetBlt, virtual clocks, flow protocols, Delta-t, URP, and TP++.

Chapter 4 — A Mirage of the Network Time Protocol

We apply the Mirage model to an existing protocol, the Network Time Protocol, to

demonstrate the modeling method and exemplify Mirage’s abstract components. This

includes demonstrating the isomorphism between variability in state precision and

variability in transmission latency, thus extending the domain where Mirage applies. We

conclude that several ‘optional’ components of NTP are required for modeling, and thus

should be required in the protocol, e.g., the logical clock and peer dispersion and data

filter algorithms.

Chapter 5 — µ−Net

NTP was insufficient to model the unconventional aspects of Mirage, notably those

which address latency compensation. We use the Mirage model to develop a processor-

memory interface which anticipates opcode memory requests. This interface, called

µ−Net (MicroNet), extends the conventional memory interface and is compatible with

(and complementary to) a processor opcode cache. There are various degrees of

implementation of µ−Net, whose complexity increases as anticipation handles larger

subsets of opcodes. µ−Net reduces access latency across the interface, through the use of

local storage and (in some cases) higher bandwidth requirements on memory.

Chapter 6 — µ-Net under a µ-Scope

Detailed measurements of opcode executions on a SPARC CPU indicate the

effectiveness of the µ−Net designs. These measurements also specify the design

parameters and describe the feasibility of the various implementations. For example,

anticipating only fixed-jump and recursion opcodes achieves a predictive success rate

equivalent to that of a 50K byte cache, with only 100 addresses (i.e., 400 bytes) of

storage, with similar memory access load. The measurement tool, µ−Scope, is described

in Appendix H.

PREFACE xxvi

Chapter 7 — Conclusions

Our goal was to design a model for latency in communication. One initial

conclusion was that communication implies latency, and is defined as the sharing of state

between temporally separated entities. Mirage has interesting properties in itself and

elicits a novel view of existing protocols (NTP) and domains where telecommunication

protocols are not normally applied (µ−Net). Future work includes a more formal

comparison to Shannon's work (Appendix A), elaboration of the TreeStack data structure

(Appendix G), and a complete implementation of µ−Net.

Chapter 8 — Bibliography

List of references.

Appendix A — Mirage & Shannon

Mirage can also be considered a temporal extension to Shannon’s communication

theory. In Shannon’s work, encoding trades error for latency. Mirage demonstrates a

complement of this theory, trading latency for imprecision in state (error). This is a

discussion of the ways in which Mirage is an extension to Shannon’s theory, and the

ways in which it is a complement to it.

Appendix B — Mirage & Physics

Mirage is based on principles from thermodynamics, statistical physics, General

Relativity, and quantum physics. This is a discussion of some similarities noticed while

designing the model.

Appendix C — Upper bound

In the Mirage model, both discrete and continuous equations for communicability

were presented. This is a proof that the continuous equation is indeed an upper bound on

the continuous equation, as claimed in Chapter 2.

PREFACE xxvii

Appendix D — The Liouville Theorem

The thermodynamic analogs in Mirage indicate an apparent violation of the

Liouville Theorem, which restricts the extent to which state can vary over time. Here we

explain how information and the open system of Mirage permit such an apparent

contradiction.

Appendix E — Mirage in Set Notation

Mirage is described as an extension to state transition models, based on a notation

of finite state subset transformations. Bounds are described, based on these equations and

existing properties of communication.

Appendix F — Mirage & Petri Nets

Mirage is described as an extension to state transition models, but can be considered

in terms of extensions to other models as well. We applied the Mirage principles to timed

Petri Nets, and show the Petri Net transformations and equivalences of interesting

components of our model.

Appendix G — The TreeStack

The TreeStack data structure is described in detail, as are the mechanisms for

transformations required in the implementation of the Converger and Diverger

components of the Code Pump of µ−Net (Chapter 5). The TreeStack manages a state

space that permits multiple alternates and state space recursion simultaneously. It also

reduces to a simple stack if recursion is prohibited, and to a simple tree if multiple

alternates are prohibited.

Appendix H — µ−Scope Methods

Examining the feasibility of implementations and specification of the expected

speedup required detailed dynamic opcode execution measurements, which were not

possible using existing tools, such as PIXIE or SPIXTOOLS. µ−Scope (MicroScope) was

PREFACE xxviii

developed to make the required measurements on existing compiled code, with an

execution speed between 3x and 7x slower than unmeasured code.

I n R e t r o s p e c t

Part of the evaluation of the work should include a description of the changes that

would have been considered, had the conclusions been known from the beginning. As a

note of comparison, this dissertation does not substantially differ from the dissertation

proposal.

We initially intended to examine flow protocols in addition to NTP and µ-Net, but

decided that such an analysis would not assist in the description of the components of

Mirage. Future research may focus on analyses of these protocols.

The µ-Net research was originally intended to be an investigation into the Mirage

model implications on distributed shared memory. We chose processor-memory

interaction instead, noting that processor I/O requirements are large enough to require

gigabit bandwidths. Conversion of processors to optical pin-outs increases the available

bandwidth, but also increases the access latency across the inter-chip boundary, due to

the cascaded parallel-serial / serial-parallel conversions. Conventional caching collapses

in high latency situations because the cache may be off chip and would incur the same

conversion latencies as regular memory. Focusing on distributed shared code memory

also permitted the description of temporal transformations sufficient to facilitate

communicability. This focus indicates that Harvard architectures may be better suited to

anticipation than arbitrary architectures, especially those that permit self-modifying code.

Finally, we note that the µ-Net research results have implications on distributed

shared memory, in suggesting similar mechanisms for proactive distributed shared

memory. Future investigations may also examine these implications.

Chapter 1 INTRODUCTION 1

C H A P T E R 1

Introduction

Mirage is an abstract model for the design and analysis of protocols, for application

in high latency domains. The model is an extension of a finite state machine that

represents states as sets, rather than as single values. Each node of the network expresses

local state by a single point in state space and remote state (the state of a remote node) as

a set of possible states.

The model constrains the state space imprecision (i.e., set size), based on the

amount of information in transit. It also specifies conditions of stability of a system (i.e.,

permitting controlled interaction) given the latency and communication bandwidth

available.

This is a description of the abstract Mirage model using streams of information and

an extended state transition model. The model is applied to the Network Time Protocol

[Mi89a], to illustrate the abstract concepts of the model, and as an example of protocol

analysis using the model. Mirage is also applied to protocol design, using the domain of

processor-memory interaction as a protocol paradigm.

Chapter 1 INTRODUCTION 2

1 . 1 . Ba c k g r o u n d

This dissertation represents a departure from the conventional studies of high speed

protocols. An explanation of its origins and evolution into an abstract model may thus be

useful.

Various documents and individuals claim that [Gr87], [Ra87], [Po88], [Mi90a],

[Pa90a], [Pa90b]:

Protocols will fail at gigabit speeds, requiring clean-sheet approach.

This statement implies that existing protocols will ‘fail’ due to improper design, and

that a revolutionary approach will succeed, whereas evolutionary ones will not. Several

questions arise from this pronouncement:

Why will they fail? What is so special about these speeds?

How will they fail? What does failure mean?

Failure here is a performance issue. Failure is usually considered a correctness

issue, but if a protocol must achieve a certain level of throughput to be correct, then

performance is a correctness criterion [St88]. The protocol fails to achieve a required

level of performance, given the capability of the channel. There are other questions to

consider:

When do protocols fail? At what speeds will this become a problem?

Assuming a failure exists, can it be avoided?

Latency, rather than speed, is the real issue. Latency remains constant as

communication speeds increase. The result is an increase in the number of bits in transit,

i.e., bit latency, between communicating entities; bit latency is information separation.

Nodes are not separated in space; they are separated in information.

Two networks that have the same information separation, yet different operating

speeds and spatial distances, can be considered equivalent. The following question

remains:

What makes high speed protocols different from low speed protocols?

Chapter 1 INTRODUCTION 3

Nothing has changed except technology. An isomorphism exists between high

speed LANs and low speed WANs; thus newer (faster LAN) networks can use older

(slower WAN) protocols. Using this isomorphism, experimental networks without high

bit latency can yield methodologies that will not apply to WANs. This has not yet been a

problem, because the bit latency in WANs was not large if compared to node buffer size

(we will address this later).

A protocol cannot differentiate the relative spatial scales of LANs and WANs,

provided the corresponding transmission rates yield identical bit latencies. Alternately:

Is a protocol affected by the speed at which it runs?

No, except for implementation considerations1. A protocol is affected only by the

amount of data in transit; absolute speed has no other affect. Latency is the real issue, that

is as bits in transit (bit-latency), rather than in units of time or space alone. Bit-latency is

the unit measure of information separation.

This discourse leads to one final question:

How can a protocol be characterized to address these questions?

Protocols are often viewed as Petri Nets or finite state machines (FSMs). These

models are awkward and inadequate if bit-latency is the determining characteristic.

Mirage extends the FSM model to incorporate imprecision of state, thus modeling the

effects of latency.

Furthermore, current paradigms (i.e., the ISO stack) model the design structure

rather than the design space of protocols. Many protocols are designed by

implementation alone. Considering the space of all protocols, only arbitrary points in the

space (i.e., instances) are being examined. Each axis of this space is a continuum with

tradeoffs.

This space needs to be characterized, but not just for testing existing protocols; the

space could suggest new protocols, as new combinations of characteristics of existing

protocols. The characteristics of this space of all protocols is inferred by existing

instances, but the space has not been well defined. Before examining the characteristics

of such a space, there are remaining questions:

1Such implementation issues can be considerable, but are not substantial. In other

words, such issues require attention, but not necessarily new methodologies.

Chapter 1 INTRODUCTION 4

Is there a space of all possible protocols?

Is there a way of examining part of this space in a useful way?

This dissertation provides a way to look at protocols, a model with which to test,

design, and measure protocols, i.e., to examine this space in a more general fashion. We

will show the following:

1) That existing protocols can exhibit low channel utilization in high bit-latency
domains.

2) The advantages to modeling the endpoints of the link, rather than the
channel itself.

3) Why the sender should anticipate the receiver.

4) How this results in a tradeoff between error and bit-latency.

5) Why achieving increased channel utilization necessitates avoiding layered
protocols, i.e., why we need to look inside packets.

6) There is a limit to how well we can get around things, which is a function of:

a) variability in the receiver state
b) bit-latency
c) power of the sender to accommodate this variability
d) ability of the channel to accommodate this variability

We have made two other assumptions here1, that all protocols exhibit performance

failures with high information separation because they are similar, and new protocols can

exist which do not fail. To understand the reasons for this claim, and to begin to answer

the questions above, we need to start at the beginning:

What is a protocol?

1The other assumptions to this point are that bit-latency is the central issue, and that

LAN, MAN, and WAN networks are distinguished primarily by physical scale (i.e., not

topology).

Chapter 1 INTRODUCTION 5

1 . 2 . Wh a t is a pr o t o c o l ?

The term communication is not very easy to define with existing texts. Canonical

course textbooks are not helpful; [Ta88] doesn’t define it, nor does [Sh63] or [Be87]. A

particularly bad example is:

“data transmission” [Ha88a]

This implies that communication is ‘sending bits across a distance.’ Although

accurate, this doesn’t explain much. Reference texts define communication as:

“exchange of information for the purpose of cooperative action” [St87]

This definition implies that computers have no internal communication.

Furthermore, cooperative action is not strictly required; ‘Byzantine generals’ exhibit

uncooperative communication [Pe80]. Another reference lists:

“transmission of information from one point to another” [Ja84]

This definition doesn’t clarify communication either. English lexicography defines

communication as:

“a process by which meanings are exchanged between individuals through a
common system of symbols” [Go86]

“the imparting, conveying, or exchange of ideas, knowledge, information” [Si89]

These definitions are more descriptive, but not as general as we desire. Original

texts in communication theory define communication as:

“all procedures by which one (entity) can affect another” [Sh63]

This is general, but the term ‘procedures’ is undefined.

We define communication here as:

COMMUNICATION: logically shared state among entities which do not physically
share state [To90a]

Sharing of state provides all the earlier definition characteristics as consequences.

The separation of the parties is specified by the distinction between logical and physical

sharing of state. Logical separation is an abstraction, used in programming languages

Chapter 1 INTRODUCTION 6

(environment scope), whereas physical separation requires temporal separation, which

cannot be abstracted away.

Now that we have arrived at our definition of communication, we are prepared to

define a protocol. Again, a particularly bad example is:

“rules and conventions used in a layer-N to layer-N communication, or a set of
rules governing the format and meaning of the frames, packets, or messages
that are exchanged by the peer entities within a layer” [Ta88]

A better definition incorporates the notion of a protocol as a mechanism that

facilitates communication:

“a set of rules formulated to control the exchange of data between two
communicating parties” [Ha88a]

The more general definition is:

“agreement between two peer entities on the means of communication” [Sh63]

We prefer the following definition:

PROTOCOL: a method for maintaining shared state among information
separated entities[To90a]

We define communication as shared state, so that two parties communicate only if

they agree on some shared information. Conventionally this state is considered external

to the entities (i.e., it is referred to as the state of the channel) , as in Shannon’s theory of

communication [Sh63]. The shared state is a portion of the total state of each entity, so

the receiver shares the communicated component of the sender’s state. A protocol is a

mechanism for maintaining shared state. Because shared state is the basis for

communication as we define it, a protocol is thus a method for providing communication.

We make no assumptions about the communicating parties; communication is the

abstract process of two entities sharing state. We assume only that communicating

entities are necessarily separated in time or space; actually, separation in time is our only

criterion, because separation in space implies separation in time1. If two entities are not

separated in time, they are not distinct to the point of requiring communication.

Communication is required if a separation of time exists. Bandwidth is the

1Given a separation in space, we define the separation in time as the minimum time

required for interaction, which is the time it takes information to traverse the spatial

separation.

Chapter 1 INTRODUCTION 7

capacity to transfer encodings across this separation [Sh63]. Latency measures the

separation; if the latency is zero, there is no separation. Also, because physical separation

implies logical separation, we can more generally define communication as:

COMMUNICATION: logically shared state among information separated entities

We make no assumptions about the state of an entity (i.e., a node), nor about the

state that is shared. A state can be as little as the shared status of a protocol (i.e., current

window number, current connection information, etc.), or as much as the contents of an

entire file transferred. With as little as one bit of shared state maintained by a protocol,

communication is possible (e.g., by an alternating bit protocol).

1.2.1. Communication as state concurrence

Our definition of ‘communication’ is referred to elsewhere in the literature as

‘connection management’, or the shared state which governs the transfer of data. We treat

transferred data as the important component of the shared state, rather than “that which

shared state facilitates.” A protocol is a mechanism or method for maintaining

communication, so what we call a ‘protocol’ others call ‘communication’.

Algorithms and protocols are distinguished by information separation; an algorithm

does not include interaction between agents separated by information distance1. An

algorithm that spans an information partition is conventionally called ‘distributed,’ and

requires an underlying mechanism for communication among its components, thus

distinguishing between the algorithm part and the communication part [Be87]. On an

individual node, an protocol is implemented by an algorithm.

1 . 3 . Th e ne e d f o r a ne w m o d e l

One characteristic of gigabit wide-area networks that differentiates them from their

slower or more proximal counterparts is the unprecedented amount of latent data (‘in the

pipe’). We believe that fixed latency (forced by physics), combined with increasing data

1An algorithm using procedure calls is not a protocol, unless the procedure calls are

remote (separated in time from the algorithm). The global variables and passed

arguments restrict the scope visible to a procedure, but do not imply a time lag.

Chapter 1 INTRODUCTION 8

transmission rates, will result in network inefficiencies as bandwidth and network sizes

scale, due to the performance failure of existing protocols [Mi90a], [Pa90b], [Pa90a]. The

Mirage model describes the conditions of this performance failure and helps determine

the relevant issues in designing protocols for these new domains.

The name Mirage denotes the difficulty with high-speed, wide-area network

protocols, in that by the time requested information arrives, it may no longer be accurate.

Nodes in a high-speed network never really “see” each other precisely; rather, they work

with (and around) the mirages which high speed and fixed latency conjure before them.

The predicted performance failure of current protocols in the gigabit wide-area

domain has been used to justify the search for new protocol implementations. Most of

these efforts focus on the complexity of existing implementations and executing these

protocols at gigabit rates, seeking simpler protocols or more efficient implementations

(e.g., XTP [Ch88a], NetBlt [Cl87], VMTP [Ch88b]). Instead, we seek to understand the

distinguishing characteristic(s) of gigabit, wide-area networks, so protocols developed

with this model will work in these domains by design, rather than accommodation.

This research is based on some analogies from physics. Communication theory

already incorporates physics analogs, most notably that between information and

negative entropy; here we investigate other analogies as well. The Mirage model, of state

space volume transformations and guarded messages, is an attempt to incorporate the

concept of imprecision evident in quantum models into communication protocol analysis.

We need to determine the salient feature of gigabit, wide-area networks that may

prevent existing protocols from operating efficiently. The primary problem is that latency

does not scale with speed increases, causing conventional protocols to decrease effective

channel utilization, because many of these protocols were designed for file transfer based

on sliding-window flow control (e.g., TCP [Po81a], NetBlt [Cl87]). We expect channel

utilization to drop as latency increases because existing protocols will not be able to

predict the amount of data sufficient to fill the round trip delay at these rates. We will

suggest a model where data prediction permits indeterminism, where the round trip time

is used to send sets of potentially useful data, rather than only data that was explicitly

requested.

The Mirage model describes the effects of latency on communication, permitting

the analysis of gigabit wide area network protocols, and showing how increased

performance can be achieved. Mirage accounts for latency, but also includes

conventional domains as degenerate cases where latency is assumed to be insignificant.

Chapter 1 INTRODUCTION 9

One cause for the deterioration of efficiency in existing protocols is that they use a

point model of communication, based on Shannon’s communication theory [Sh63]. This

theory accounts for channel error by sequence encoding; higher channel errors requiring

encoding over longer sequences. The result is a tradeoff between error and the latency of

encoding. Mirage proposes a view where latency can be tolerated by accepting

information imprecision (a measured form of error). Information about remote nodes,

formerly precise points in state space, become imprecise volumes in state space. Mirage

defines communication operations as transformations of these state space volumes, and

incorporates the effects of time in these transformations.

1 . 4 . Wh a t ha s c h a n g e d ?

In assessing the requirements of our new model, we first examine the distinguishing

characteristics of the model’s domain. Some suggest that existing protocols and protocol

models will become inefficient as communication rates increase to gigabit rates [Mi90a],

[Pa90a]. There are implementation challenges in scaling protocol processing rate and host

bandwidth to accommodate the increased network speeds, but transmission latency does

not scale, and cannot as directly be compensated.

In high speed protocols, an ‘increase in latency’ is usually named as the problem,

although latency is a constant. For protocol operation, the important characteristic is

information distance, or how many bits separate two communicating entities (bandwidth

* delay product). We first show how a gigabit LAN is equivalent to a 400 Kilobit WAN,

provided that we treat time as relative rather than absolute.

Changes in communication rates are equivalent to certain changes in scale.

Increasing the bit rate foreshortens the bit length as it travels the wire (Figures 1.1, 1.2).

Because bits travel at a constant speed, this allows more bits to be in transit at a given

time.

Node A Node B

bit len

node separation

prop. speed

FIGURE 1.1
Network rate

Chapter 1 INTRODUCTION 10

bit len

Node A Node B

node separation

prop. speed

FIGURE 1.2
Increased rate as bit foreshortening

The foreshortening of bits is isomorphic to the original bits traveling faster, over a

correspondingly longer distance (Figure 1.3). In this latter view, “stepping on the gas”

moves the destination further away. Thus latency becomes a problem at high speeds ;

latency remains constant to external viewers, but distances (and latency) grow in the

reference frame of the bit (i.e., ‘bit times’ to the destination)1.

Node A Node B

bit len

node separation

prop. speed

FIGURE 1.3
Figure 1.1, as it appears to the bits in transit

Finally, there is no absolute time reference in these networks, because existing

protocols are independent of absolute time. There is no way to distinguish a protocol

running on a network from that same protocol running on a network that is 10x larger,

and whose data rate is 10x slower. A WAN (2500 miles) can be converted to a LAN (1

mile) by shrinking the network by 1/2500 and increasing the transmission rate

equivalently, resulting in the same scale in information distance (bits in the pipe). We can

treat a WAN running at 400 Kilobits as a LAN operating at a Gigabit, if we scale it

appropriately.

The processing in gigabit LANs is accommodated by a combination of faster

technology, increased parallelism, and more efficient algorithms2. A 400 Kilobit WAN

1This is a relativistic analogy. Information separation space dilation as transmission

speed increases is analogous to time dilation as acceleration increases in General

Relativity.
2These are order of magnitude arguments only.

Chapter 1 INTRODUCTION 11

was supported by TCP by the early 1980’s (1.5 Megabits by 1985), when processor rates

were 5 MHz, 16 bits wide. By porting TCP to a very small LAN (two back-to-back

processors), on a CRAY Y-MP (167 MHz, 64 bits), technology provided an 130x

processor speedup (increased word size and clock rates), and improved processing and

limited implementations can support an additional factor of 15x speedup. The result is a

nearly 2,000x speedup using these technology advances and optimizations alone, so that

the previous 400 Kilobit WAN protocols can be used in LANs at 800 Megabits (800

Megabit TCP has been implemented [Ni91])1.

Building gigabit LANs therefore is an issue of scaling processing speed (if

possible), not of changing protocol design, disregarding the difficult electronics

problems. Nothing has changed in that case, except the time scale relative to the distance

scale (propagation latency). Absolute transmission rates indicate little of the

characteristic of a network; information separation is a better measure of differences that

are not merely technological.

Assuming existing protocols work at current network speeds, MANs need to exceed

133 Gigabits per second, and LANs 2 Terabits per second, before either exhibits the

behavior of WANs operating at 1 Gigabit per second (Figure 1.4). A gigabit LAN is

equivalent in this sense to a 400 Kbps WAN, where NCP operated -- it is no surprise that,

in this environment, very lightweight protocols based on single packet transfer suffice, as

they are the modern analog of NCP [Ca70]. Similarly, a gigabit MAN is equivalent to a

10 Mbps WAN, where TCP operates. This assumes that, in each case, we increase the

clock rate or processor width of the MAN or LAN to accommodate the change in scale.

In these cases, nothing has changed.

Figure 1.4 compares the characteristics of LANs, MANs, and WANs. We assume

that scale does not also imply topology. Network type is denoted by vertical gray areas,

indicating approximate network scale. The dashed horizontal denotes the gigabit

threshold. Actual rates are plotted as points (), and equivalent rates are connected by

gray sloped lines. Latency determines rate equivalence; the slope indicates the contour

lines of equal latency, in information separation units (bit-latency, i.e., bandwidth * delay

product).

1Test cases were limited to 64K byte ‘network’ packets, software loopback mode

(testing the TCP implementation only, with zero latency), 1.5M byte user packets.

Chapter 1 INTRODUCTION 12

WAN speeds can be compared to those of equivalently bit-latent MANs and LANs

(Table 1.1).

LAN MAN WAN

EQUIVALENCES

1 Gbit

150 Mbit

45 Mbit

1.5 Mbit

56 Kbit

EQUIVALENT
BIT RATE

(Log base 10,
 bits per second)

NETWORK SIZE
(Log base 10, meters)

FIGURE 1.4
Network size and speed equivalences1

Year WAN
(4,000 Km)

Equiv. MAN
(30 Km)

Equiv. LAN
(2 Km)

1970 56 Kbps 7.5 Mbps 112 Mbps

1986 1.5 Mbps 200 Mbps 3 Gbps

1990 45 Mbps 6 Gbps 90 Gbps

1995 ~150 Mbps2 ~20 Gbps ~300 Gbps

2000 ~1 Gbps ~133 Gbps ~2 Tbps

TABLE 1.1
 Network size and speed equivalences

1This assumes that LAN, MAN, and WAN networks differ mainly by internodal

distance. There may be additional topological implications to these classes; they are not

considered here.
2‘~’ indicates projected estimate.

Chapter 1 INTRODUCTION 13

So, what has changed by going to 1 Gigabit per second? In the LAN and MAN

cases, relatively nothing has changed. Only in the WAN case does speed cause a relative

latency problem; there the bit latency exceeds that of any existing protocol domain, with

the possible exception of satellite networks. Unfortunately, satellite protocol models may

not be useful as WAN paradigms, because these assume topological constraints (central

routing and control) which do not apply in WANs. The real change is the amount of

information separation, and it is by this measure that protocols can be characterized, as in

Figure 1.4.

The round trip data can be compared to the average size of the node computers in a

network1. Bit-latency had previously been 1-2 orders of magnitude smaller than the node

memory, whereas proposed wide-area gigabit networks will cause this gap to narrow

considerably (Figure 1.5, from estimates in Table 1.2).

NCP TCP ?

Bits

Node Buffer Size

Bandwidth * Latency

1970 1975 1980 1985 1990 1995 2000

10 K

100 K

1 M

100 M

10 M

1 K

Year

40x

3x

FIGURE 1.5
Node buffer size (memory) vs. information separation (bit -latency)

1Again, these are order of magnitude arguments.

Chapter 1 INTRODUCTION 14

Year Bandwidth BW * Delay Typical
Node

Node
Buffer Size

Required
Buffer Size

1970 56 Kbit 1.7 Kbit PDP 11 64 Kbyte 51 Kbit

1980 -1 - VAX 1 Mbyte 800 Kbit

1986 1.5 Mbit 45 Kbit - - -

1990 45 Mbit 1.4 Mbit Sun 3/4 8 Mbyte 6.4 Mbit

1995 ~150 Mbit ~4.5 Mbit - ~20 Mbyte ~15 Mbit

2000 ~1 Gbit ~30 Mbit - ~64 Mbyte ~50 Mbit

TABLE 1.2
Network and node characteristics2

1.4.1. Change in the use of memory

The use of buffer memory has also changed with the advent of high speed

protocols. Buffer memory permits restoring altered message sequence within the

network, and temporarily archives data for lost message retransmission. In high speed

protocols, where latency is large compared to the transmitted information, buffers permit

the protocol to both ‘run ahead’ and to amortize control effort over large chunks of data.

These uses of buffers by protocols assume that communication exists to facilitate

file transfers. We are expecting a change in the use of the channel, where file transfer is

superseded by interactive communication. In this realm, buffers cannot be used by the

protocol to accommodate latency, because the protocol can no longer ‘run ahead’ in

sending data. The data will no longer be a linear stream of packets, so the protocol cannot

anticipate the data to fill the buffers, and the channel utilization plummets.

Large buffers need to be used for more than just linear sequences of data. We

extend their use to accommodate sets of data, where only one item of the set is used. In

1‘-’ indicates ‘no value’.
2Bandwidth*delay values are based on a 30ms speed-of-light propagation across the

continental United States; buffer sizes are based on 1/10 * node buffer size, converted to

bits.

Chapter 1 INTRODUCTION 15

this way, branching in the data stream, i.e., imprecision in the protocol, can be used to

increase the utilization of the channel.

The notion of a ‘channel with imprecision’ will be further elaborated when the

Mirage model is described. At this point, it is sufficient to have shown the need for a new

model, one that accommodates latency in a natural way, rather than as an extension of an

existing model.

1 . 5 . M o d e l go a l s

We have several goals for this protocol model. Before discussing them, we should

first outline our assumptions. We assume a network with no topological or routing

restrictions, and where the bit-latency is high compared to the streams of data which are

communicated. Current gigabit WANs (were one to exist) satisfy these conditions, where

communication is dominated by tightly coupled interaction of the components of the

network.

We introduce a model where the tradeoff between error and bit-latency can be

expressed. We will trade imprecision for latency, so that constraints on the

communication can be used to increase the utilization of the channel and more tightly

couple the communicating parties. We will also show the uses of the increased bandwidth

to compensate for the effects of latency, so that the detrimental effects of bit-latency

which are increased by high-speed channels can be reduced by that same high-speed. We

will also show the limitations of this compensation.

1 . 6 . P r e v i e w

Mirage is an abstract model, which can be used to understand the issues in protocol

design, or can measure the implications of a specific design decision. We will investigate

these two roles of the model in two studies presented as part of this dissertation.

First, we look at the Network Time Protocol, and examine its operation using the

Mirage model. We show how Mirage can indicate important aspects of the protocol, and

new methods that are being proposed to augment the protocol.

We also apply the Mirage model to the domain of processor/memory interaction as

a communication protocol. We show how Mirage provides a fresh view of this

Chapter 1 INTRODUCTION 16

interaction, and indicates new solutions, to which the literature has only recently alluded.

Further, Mirage shows ways to measure the various implementations indicated, from the

perspective of both channel utilization and design complexity.

We also include a description of the model as channel stream interactions, state

space transformations, and Petri Net equivalences (for those who find this more helpful).

The section on prior work has been restricted to discussions of predecessors to the

abstract model. Similar discussions on prior work in time protocols and

processor/memory interaction are included in their respective sections.

Chapter 2 MIRAGE 17

C H A P T E R 2

The Mirage model

Mirage is an abstract model that describes latency in communication [To89],

[To90a], [To91a]. The model consists of three components: a model of node state, a

model of time and communication as state transformations, and a set of constraints on

these transformations.

The model is designed to serve as a viewpoint for understanding existing protocols

and for the development of new protocols. It is based on providing an abstract model

against which protocol instances can be measured and compared. Prior work in protocol

design and analysis is based on an alchemy of examining particular protocols; this work

is designed to provide an initial framework for treating protocol research as a science.

Current research in gigabit wide area network protocols suggests a “clean sheet”

approach is indicated. The transition from evolutionary design to needed new

(revolutionary) protocols will provide a fresh opportunity for introspection into the

mechanism of protocol models. Before suggesting new protocol designs, we consider

how the problem of communication has changed, and develop a new model that

incorporates these changes from the start. Mirage is an attempt to characterize the

tradeoffs that emerge in the new domain of gigabit WANs.

Chapter 2 MIRAGE 18

2 . 1 . A s s u m p t i o n s

As communication rate increases, fixed latency increases the amount of information

in transit between interacting nodes. Increases in information separation alter the

assumptions of the limiting factor in communication. We have already presented, in

Chapter 1, our definition of a protocol and communication. We also assume a domain

where latency is large, relative to the bandwidth of communication.

2.1.1. Initial description of channel utilization

Initially, Mirage can be described in terms of channel utilization. This describes the

indeterminism of the model and provides a real performance measure that Mirage is

intended to enhance.

Information in the channel can be modeled as a stream of data. In a transaction

protocol, this stream consists of a single message, whereas, in a file transfer protocol, it

consists of a linear sequence of characters. A linear stream can be extended to

accommodate alternate possible streams; the stream of composite linear components is a

branching stream.

Branching streams are common in interactive systems, where initial data messages

indicate subsequent choices to be made by the receiver, which guides subsequent

messages. The stream can be represented by a tree structure, where the limbs represent

linear streams of data (similar to file transfer), and the bifurcations indicate choices

among alternate streams (to be made by the receiver).

This work assumes that the latency is large compared to the bandwidth, such that

the bandwidth delay product is large relative to the local storage available at nodes in the

network. For current networks, this means a bandwidth-delay product in the order of tens

of megabytes.

A minimum delay between participants in the protocol is also assumed, which in

most cases is the propagation delay. For most equations, a fixed delay is assumed,

although we show later (Chapter 4) how a variable delay can be accommodated.

To some extent, messages are assumed not to be lost, or, if they are, retransmission

is required as in any existing protocol. We assume, as concluded earlier, that the

limitations of existing protocols in this domain will be their inability to predict

sufficiently enough information to occupy the round trip latency. Finally, Mirage shows

Chapter 2 MIRAGE 19

how these limitations can be circumnavigated, given enough information about the

branching stream of data. This has important implications on the limitation of layering in

protocols and abstraction in the layers of a protocol.

2.1.1.1. Phases

There have been three phases of network protocol design (Figure 2.1). In the first

phase, characterized by the Network Control Protocol (NCP) [Ca70] (used in the

ARPAnet at 56 Kbps), the information sent is treated as an unstructured block of data.

This method sufficed where the partitioning of the data served no purpose; because NCP

assumes lossless, ordered transmission, this was a reasonable design. NCP is a sufficient

model for request/response protocols.

Sliding window protocols, e.g., TCP (used in the Internet at rates of 56 Kbps-45

Mbps), extended this view by partitioning the message stream into multiple blocks. The

partitioning can be thought of as a lookahead into a time-ordered list of NCP block

entities – individual bits in a block are assumed to be lossless and ordered, but the block

unit may be lost or resequenced as a whole. In NCP only one block is sent at a time,

whereas TCP looks multiple blocks ahead into the time-ordered list of NCP-like blocks.

This linear lookahead permits TCP to accommodate latency (and introduces

resequencing problems due to multiple outstanding packets), provided the delay

associated with either is limited to that which can be accommodated by the lookahead.

?

NCP TCP / IP ?
Uniform Linear Branched

?

FIGURE 2.1
Kinds of protocol lookahead / branching

Chapter 2 MIRAGE 20

In the case of high bandwidth-delay product, linear lookahead will be insufficient to

‘fill the pipe’ with information, and thus utilize the channel efficiently. As the network bit

rate increases, there is a point at which the data required by the receiving end cannot

deterministically be predicted and thus a TCP-like protocol will exhibit performance

failure. The time-ordered list of data blocks is limited to the amount of data that can be

deterministically predicted to be required at the receiving end. This is where Mirage

helps, by modeling the portion beyond the linear lookahead as branching (the tree in

Figure 2.1). Mirage suggests transmission not only what is known to be needed, but also

what might be needed.

2.1.1.2. Channel utilization: linear case

We define the efficiency of a protocol to be the ratio of communicated information

to the channel bandwidth (percent utilization of the channel). Protocols are maximally

efficient when the node buffer size1 is less than the bandwidth-delay product (Equation

2.1). The formula is linear in the number of buffers, but inverse in the round trip time, so

increases in latency may have severe effects on channel efficiency [Ta88]. There is a

point at which the linear lookahead fails (i.e., cannot further anticipate the data stream

required by the receiver), and utilization diminishes (Figure 2.2).

Channel
Utilization

Latency (in packet times)
(for a given, fixed number of packet buffers)

FIGURE 2.2
Utilization as latency increases (linear lookahead)

1Node buffer size is defined as the total size of the state space of the communicating

entity.

Chapter 2 MIRAGE 21

Equation 2.1: %util =

B
R

 where R > B

1 where R ≤ B









where B = number of buffers in sliding window protocol
R = bandwidth * round_ trip_ time = buffers used in one round trip

2.1.1.3. Channel utilization: sender-based anticipation

We will now demonstrate how a branching stream can increase the utilization of a

channel in the presence of latency. Assuming that such branching is characteristic of the

data stream being communicated, Mirage suggests a protocol that is capable of

supporting labeling in the data stream. We call this labeling guarded messages, which

will be described in greater detail later in this chapter.

Guarded messages are labels on communication stream components, so that the

sender can indicate the desired state of the receiver for a given message to be accepted. A

set of messages with suitable guards can permit branching in communication stream.

Branching of the stream permits the sender to ‘run ahead’ of a known (single) receiver

state, into a set of receiver states, accommodating latency in the resolution of that state.

2.1.1.3.1. An example for illustration- the turtle

Consider a turtle moving on a two-dimensional map. The turtle moves at 5 spaces

per minute. A message that directs the turtle takes 1 second to send (bandwidth), and the

messages take 1 second for delivery (latency). In this case, traditional request/response

communication suffices to direct the turtle and confine it to within 1 space.

If the messages are delivered with higher latency (e.g., 50 seconds, ~1 minute), or

take less time to send (20 milliseconds), the turtle cannot be confined so precisely. The

latency implies an error of at least 5 spaces in the turtle’s location.

Guarded messages permit use of the ‘possible messages in transit’ before

knowledge of the receiver’s state is known. At most 50 messages can be sent in the

latency. We send 1 message labeled with each of 50 points around the last known turtle

location. Each message redirects the turtle to the desired goal of the communication,

given each possible current turtle location.

Note that in this case, guarded messages accommodate the imprecision induced by

latency, since an error of spaces of movement indicates an area of 50 spaces in a two-

Chapter 2 MIRAGE 22

dimensional grid1. Unfortunately, guards consume communication bandwidth, so that less

than 50 messages are possible in the given latency. Further constraint of the turtle’s

movement would be required to guarantee that a message would be received at each

possible location. These constraints necessitate grouping locations (coarse partitioning of

the turtle’s location space), or restricting the turtle’s movement so that less than 50 spaces

are possible. These will be discussed later in this chapter as well.

2.1.1.3.2. Branching streams utilization

In branching streams, only part of the anticipated stream is actually used at the

receiver. The revised channel utilization formula must account for the differences

between sent data (multiple streams) and utilized data (a single stream). For channel

utilization to increase, two forms of prediction are necessary – predict enough data to

send, and ensure the utilization of enough of the predicted data.

If communication is limited to the linear portion of the predicted data, channel

utilization will decrease as the latency increases (as before, in Figure 2.2). As latency

increases, there is a point at which the amount of linear lookahead is insufficient to

occupy the channel during the round trip time. In current protocols, as bandwidth

increases there is often insufficient buffer space to accommodate further linear

lookahead. As buffer space increases (i.e., as memory becomes cheaper and larger buffers

can be accommodated), this will cease to be a primary issue; the linear portion will, at

some point, no longer suffice to fill the buffers. The problem is a failure to predict which

data stream to send, after an initial period of success. The lack of buffer space is a short

term issue; in the longer term, we expect the indeterminism of the data stream to

 dominate the problem .

A simple model of the indeterminism of the data stream following some linear

prefix assumes that the branching stream has finite branch degree (branching factor) and

finite linearity before branching recurs (limb length, to extend the ‘tree’ analogy).

Members of a branch are assumed to be isopotent, which we define to mean

“information redundant.” Redundancy usually refers to duplicate data used to protect

against corruption. Isopotency indicates that members of a set affect the node similarly,

and that only one member of the set has any effect.

1If the turtle can move 5 spaces, then it can move 3 spaces left and 2 spaces up on

the grid, for example. The total area is 10 by 10 on the diagonal, or 50 possible spaces.

Chapter 2 MIRAGE 23

For an example of isopotency, consider the set of messages that directs a turtle to

the center of a grid without its knowing that goal (this is a relative of the earlier turtle of

Section 2.1.1.3.1.). Assume that the turtle can determine its own grid position, it goes 5

grid units in a unit time, and messages are delayed by 2 units of time. The turtle enters the

grid from the north-west, at some distance.

The message “go south-east” can be sent for some time, but only until the turtle is

within 10 units of the center. Any fixed messages sent can be incorrect in their

assumption of the turtle’s current position. Instead, sets of messages are sent, guarded (in

Dijkstra’s sense of guarded commands [Di76]) for each quadrant of the area around the

center. These messages constrain the turtle to smaller and smaller areas, where it finally

rests on the center. The messages are distinct, but the set of messages together has the

same net effect, of directing the turtle towards the center of the grid. This is isopotency.

Stated another way, the remote node is in some known set of states. The guards

partition this set, and a message affects only the states within its indicated partition. After

the set of messages has been received, the remote node is in some other set of states (the

union of the original partitions, transformed by the messages), regardless of the original

state. The guards all have the same effect (i.e., are isopotent) – ensuring subsequent

membership in this set, even though the messages are distinct.

Channel utilization is defined here as the percent usable messages per unit time,

where all messages are of uniform length, time units are normalized at one message per

unit time, both branch degree (D) and limb length (L) are fixed and finite, and that the

branch alternates are equiprobable. The model for the exact formula of channel utilization

accommodating branching is described here, under these assumptions.

The branching stream forms a tree, where the trunk represents the linear lookahead,

the branch degree is the tree degree, and the limb length is the distance in messages

between levels (Figure 2.3). The set of messages used by the receiver are the sum of the

linear lookahead (all of which are used by the receiver), the number of full tree levels

(because one path through these levels must be useful), and the probability of utilizing

the number of leaves at the last, partially unfilled level (Equation 2.2).

Equation 2.2: %util =
P + L * full_ tree_ depth + extra_ leaves * prob_ leaves

rtt

Chapter 2 MIRAGE 24

Partial Level

Full Tree Levels

Linear Prefix

FIGURE 2.3
Tree levels

In a given round trip time (rtt), the sent messages include the linear prefix (P), some

number of messages corresponding to the filled tree levels (full_tree_depth), and some

remainder of leaf messages at the last level (extra_leaves) (Eq. 2.3). The number of

messages in the filled tree levels requires knowledge of the branch degree of the tree (D)

and the limb length (L). Using this and the identity of a summation of a power (Eq. 2.4),

Eq. 2.3 can be rewritten as Eq. 2.5. Eq. 2.5) can be solved for full_tree_depth (Eq. 2.6).

Equation 2.3: number_ sent = rtt = P + Di

i=1

full _ tree_ depth

∑ * L + extra_ leaves

where P = linear lookahead length
L = limb length (number of messages between branchings)
D = branch degree (used in later equations for full_tree_depth, etc.)
rtt = round trip time

Equation 2.4: xi

i=1

n

∑ =
x * xn −1()

x −1

Equation 2.5: number_ sent = P +
D * D full _ tree_ depth −1()

D −1
* L + extra_ leaves

Chapter 2 MIRAGE 25

Equation 2.6: full_ tree_ depth = tree_ depth  = logD

rtt − P() * D −1()
L * D

+ 1

















where tree_ depth = logD

rtt − P() * D −1()
L * D

+ 1







Similarly, the number of leaves remaining in the partially filled level can be

represented (Eq. 2.7), and using the identities in Eqs. 2.8, 2.9 and the notation of

‘fractional part’ in Eq. 2.10) a more simplified overall utilization formula is derived (Eq.

2.11).

Equation 2.7: extra_ leaves * prob_ leaves =
(rtt − P) −

D * D full _ tree_ depth −1()
D −1

* L

D full _ tree_ depth + 1

Equation 2.8: rtt − L =
D * D full _ tree−depth * DF tree_ depth[] −1() * L

D −1

Equation 2.9: extra_ leaves * prob_ leaves =
DF tree_ depth[] −1

D −1
* D

Equation 2.10: F x[] = x − x 

Latency (in packet times)
(fixed linear prefix, finite branching)

Channel
Utilization

Upper
Bound

Exact

Without
prediction

FIGURE 2.4
Utilization of branching lookahead (P=5, D=2, L=4)

Chapter 2 MIRAGE 26

Equation 2.11: %util =
L + L * tree_ depth  +

DF tree_ depth[] −1
D −1

* L

rtt

Equation 2.12: %util =
P + tree_ depth * L

rtt

Equation 2.11 is a discontinuous curve (Figure 2.4, Exact). The upper bound of this

curve uses tree-level in its original (continuous) form, rather than its discontinuous floor

function (Eq. 2.12, Figure 2.4, Upper Bound) (see also Appendix C). Comparing the

linear stream curve to the branching stream exact curve and branching stream upper

bound, a utilization increase is shown, due to anticipation of receiver requests which

branching stream alternates permit. The utilization of the channel, relative to using linear

lookahead only, increases without bound (logarithmically) (Figure 2.5). The decrease in

channel utilization is due to indeterminism in the data; the channel is full of data, but not

all the data sent is actually useful. For a given limb length and branch degree, this is an

upper bound on channel utilization, given limited prediction capability (i.e., limited to the

linear lookahead).

Exact

Latency (in packet times)
(fixed linear prefix, finite branching)

Channel
Utilization
(relative to

linear lookahead)

Upper
Bound

FIGURE 2.5
Channel utilization (relative to lnear) (P=5,D=2,L=4)

Chapter 2 MIRAGE 27

2.1.2. Conclusions of the branching model

The previous discussion describes how a branching stream model of

communication can permit increased utilization of the channel in the presence of latency.

Branching streams presented thus far are a simple model in which a state space evolves

according to static, context independent rules. A more complete model includes context

sensitivity, so that the branching and limb lengths are irregular; this model is provided by

Mirage in Section 2.2. of this chapter.

In the case where branching is regular and context independent, the channel

utilization increases logarithmically with an increase in its bit-latency. These results are

verified in a real example in Chapter 5, in which this model is applied to processor-

memory interaction as a communication protocol. Measurements indicating the real

values of the branching and limb lengths are presented in Chapter 6, in the analysis of the

feasibility of the implementation of the designs suggested by this application of Mirage’s

principles.

Before proceeding, some tests can be done to verify the reality of the branching

stream model. These include tests of the limiting cases, i.e., considering the boundary

conditions of the equations.

2.1.3. Some reality checks

Given the above model for a channel with imprecision, consider the characteristics

of these formulae as various parameters are taken to their limits. These limiting

characterizations should match their real-world counterparts.

As limb lengths increase, the indeterminism of the receiver is postponed at each

decision. There is less indeterminism in the stream (Figure 2.6), and thus communication

holds to the limb paths longer. For example, on the first branch, as the arm length

increases, the utilization approaches 1/branch-degree, because utilization is dominated by

the first choice in the branching stream. In the case where branching is binary, the limit of

the utilization as the branch lengths approach infinity is 50%.

A linear stream exhibits determinism during the linearity, and complete

indeterminism thereafter; an infinite limb length stream has a linear portion followed by a

single branch point. The communication after the branch point dominates the channel

Chapter 2 MIRAGE 28

utilization, and the branching never recurs, both due to the extreme length of the limb. In

other words, a linear stream exhibits no choices (complete determinism), whereas a

branching stream with an infinite limb length exhibits one choice among branch-degree

alternates.

1

4
2

1008 06 04 02 00
0.0

0.2

0.4

0.6

0.8

1.0

R T T

Utilization
infinity
64
32
16

FIGURE 2.6
Utilization vs. branch arm length (geometric)

As the branch degree increases, utilization approaches the linear stream case

(Figure 2.7). Sender anticipation is increased when behavior of the receiver is

predictable, i.e., when the branch degree is minimal. A larger branch degree represents

mode indeterminism in the branching stream. As the branch degree approaches infinity,

the linear stream case results, because a linear stream consists of a fixed linear lookahead

followed by infinite indeterminism, i.e., no prediction of data subsequent to the known

lookahead.

1008 06 04 02 00
0.0

0.2

0.4

0.6

0.8

1.0

R T T

Utilization

2
4

infinity

FIGURE 2.7
Utilization vs. branch degree (geometric)

Chapter 2 MIRAGE 29

A conventional TCP-like stream is the result of a limb length or branch degree of

zero, (i.e., no tree beyond the linear lookahead), where the utilization is 1 whenever the

buffers can accommodate the round trip latency via linear lookahead.

These examinations are the effect of varying limb length and branch degree, and

consider the consequences in the resulting channel utilization. Limb length and branch

degree are characteristics of the communication stream, determined by the nature of the

communication and the protocol facilitating that communication. They represent the

indeterminism in the communication, and are modeled by discrete finite indeterminism

increases (branching degree) recurring at known intervals (limb length).

2.1.4. Some common sense

Channel utilization has been discussed, along with a method that accommodates

data stream imprecision (i.e., multiple possible data streams) allowing a higher channel

utilization than conventional linear streams. We believe that existing protocols will

exhibit performance failures in gigabit WANs because the linear lookahead will be

insufficient to occupy the channel during the round trip time.

Before discussing the particulars of the Mirage model, and how these bifurcating

streams are accommodated within it, some common sense rules of protocols should be

mentioned. These are commonly known constraints, but which are rarely included in

protocol models.

A remote node with a highly fluctuating state requires a higher bandwidth or lower

bit-latency to communicate effectively, because its requests are more unpredictable.

Making pre-existing rules that restrict the fluctuation is the only way to overcome this

limitation. We live with these rules daily. A human parent requires a high bandwidth and

low bit-latency channel to his infant child, because there are very few assumptions that

the parent can make about the safety of the child. Low latency is provided by proximity

to the child. The child represents the highly fluctuating remote node, with respect to the

parent.

As the child is moved away from the parent, either the constraints increase (via the

addition of a sitter to the infant) or the bandwidth increases (e.g., via a nursery monitor).

A nearby infant is not attended to as intensely as a monitor, because the increase in

latency (time before parental intervention is possible) necessitates an increased

anticipation of imprecision. A nearby crying baby is often ignored in the short term,

Chapter 2 MIRAGE 30

because the low latency (proximity to the parent and low time until the parent can attend

the child) permits the parent to postpone action until absolutely required. A crying baby

in the next room causes the parent to act on each cry, in anticipation of a more serious

event, which would require more time to act upon.

The same parent may talk to his child once a week when the child is in college,

because by that time there is sufficient knowledge of constraints in the child. Known

fluctuation constraints permit a relaxation of the latency limitations1.

A gigabit WAN has too much information in transit to manage. Additional

constraints are required which describe how the stream branches (bifurcates) and which

denote redundancy in the branches, in order to permit effective communication at high

bandwidths. The system needs to be sufficiently predictable to utilize the bandwidth, but

not so predictable that communication is obviated. The Mirage Model provides measures

for being “predictable enough”.

2 . 2 . Th e M i r a g e m o d e l

The abstract Mirage model is based on representing remote nodes as volumes in

state space where data transmission and reception, as well as time evolution, are modeled

as transformations on those subspace volumes. State space volumes represent imprecision

in state, i.e., the volume is the subspace that contains the set of possible states.

Inherent in the Mirage model is the notion of measurable latency. Shannon’s model

of a communication channel [Sh63] can be extended by including latency measurements

(Figure 2.8). Latency is assumed to be either constant or predictable (effectively

computable). Flow in the Shannon model is described as the motion of a volume along a

communication pipe, and latency is the length of that pipe. As such, incorporation of

latency into the model reveals a spatial aspect to the formerly topographic Shannon

model2.

1Experience of my advisor, David J. Farber, suggests that these constraints may

require failure compensation mechanisms, or at least a meta-communication that

negotiates and monitors such constraints.
2Further discussion of the relationship between Mirage and Shannon’s model, along

with a brief discussion of the latter, appears in Appendix A

Chapter 2 MIRAGE 31

NODE NODE

BW
(f l o w)

∆t (latency)

FIGURE 2.8
Mirage communication channel

The Mirage model describes communication among similar components of a

network, called nodes. These nodes are separated by some minimum time lag, and

through some maximum bandwidth communication channel; this separation characterizes

the network for our purposes. The minimum time lag is representative of speed-of-light

signal propagation delay, and the maximum bandwidth is representative of physical

limitations on signal power per unit time. The nodes consist of some finite information

storage; here the connectivity among the nodes and algorithmic power of each node is

considered inconsequential to this preliminary analysis.

2.2.1. More definitions

The basis for this protocol model begins with state space transformations, extended

to account for latency. This can be considered an extension of the FSM model, but with

some exceptions.

First, FSMs usually describe a system in state space, whereas Mirage uses the

powerset of this space. State spaces permit only a single value for each dimension in

space, i.e., they accommodate only an individual point in the space. Mirage uses sets of

these points, or volumes (ensembles, in either case) to describe the indeterminism of the

knowledge of data in a remote node.

Mirage models the nondeterministic operation of a remote FSM, just as a

deterministic finite automaton (DFA) models a nondeterministic finite automaton (NFA).

A DFA state represents a set of states in the NFA, just as a Mirage state volume

represents a set of states of a remote node. Mirage permits these volumes to vary,

whereas the DFA model of an NFA fixes the state sets when the model is computed.

Mirage provides a way to describe a Turing machine system with explicit

indeterminism and information delays. Traditional temporal extensions to FSMs describe

the time bounds between transition transformations by describing the length of the time

Chapter 2 MIRAGE 32

arcs in the transition sequence. Mirage is concerned with the number of simultaneous arcs

in the transition (i.e., the number of possible FSMs of the remote node), and so describes

the transition as a function of time, not time as a function of the transition.

Mirage uses state space volumes as they are used to describe error correcting codes,

because error induced by latency is similar to that caused by true corruption of the data.

These analogs, to NFA-to-DFA transformations, to error correcting codes, and to

temporal FSMs are all described in further detail as prior work in Chapter 3.

Because Mirage uses state space volumes to describe the possible states of a remote

node, a set-based description of Mirage is most direct. This description is elaborated in

Appendix E. Another example of its description in terms of Petri Nets is provided in

Appendix F. The Mirage model is more general than either of these examples, i.e., it

represents a model of which set notation and Petri Nets are instances.

Consider a set of nodes in the network. These nodes are considered completely

connected, each pair connected with a finite maximum communication bandwidth and a

finite minimum communication delay. Nodes possess finite storage. This storage is used

both to denote the node’s dedicated local storage and perceptions of the storage of remote

nodes. The local state of a node is the local component of its storage.

One node has a perception of another (remote) node, which represents a subset of

the possible states of the remote node. A node’s view of the network consists of its own

local state and the set of perceptions of the other nodes in the network. Mutually recursive

knowledge is permitted, provided that the recursion is bounded and finite, as required by

the fixed size of local storage at each node.

2.2.2. A description of the model

Like every good model, Mirage has some governing principles. Some of these can

be considered axiomatic, i.e., self-evident truths used as the basis of the model Some are

tenets, i.e., beliefs common to a group (the network research community), but as yet

unproven. Some are thesis statements, to be proven by this discussion. The common

thread among these statements is that they are generally believed, but to date no model

existed in which their truth could be debated. Mirage presents such a model. As such, we

believe the most appropriate label is ‘tenet’. The following are a few we think are

important.

Chapter 2 MIRAGE 33

TENET 1: Communication is logical information synchrony among information
separated entities

TENET 2: A protocol is a mechanism for maintaining communication

TENET 3: Information separated entities are separated in time*space, in units
of pending-information

TENET 4: Bandwidth-delay product is a measure of information separation

When the system begins, each node is modeled as a point in state space, a particular

individual state. As the system progresses, this single state evolves into a set of states.

Which of these states exactly describes the remote node is not known; it is known that the

state of the remote node is in this set. Thus from the initial individual point, volumes in

state space result corresponding to the set of possible states of a node.

v

v '

FIGURE 2.9
Shannon’s model: states are points, transformations move points.

In Shannon’s model [Sh63], information about remote nodes is modeled as a point

in state space, and any operations that affect this information translate the point in space

(Figure 2.9)1. In Mirage, a remote node is modeled as a volume in state space, where

operations become transformations of that space. Volume before the transform is denoted

by a thin outline, volume after the transform is denoted by gray shading, and the action of

the message or time is denoted by the thick outline. Time expands the volume of a space,

transmission yields the union of the original volume (thin outline) with the transformed

copy (thick outline), and reception collapses the volume to a sub-volume (Figure 2.10).

1In Shannon’s model, the receiver gets a single message, and back-calculates the

state of the sender (i.e., what was sent) from this. The goal is to determine, from a

sequence of messages, the exact states of the sender. The sender does not model the

receiver.

Chapter 2 MIRAGE 34

These transformations are derived from the progression of time and the action of

messages, as they leave the originating node and as they arrive at the destination. These

are further discussed below.

Transmit Receive Time

FIGURE 2.10
Visualization of state space volume transformations

2.2.2.1. Time

Time is modeled by the expansion of the state space volume. A node’s local state

does not grow in volume over time, because there is no imprecision in local state

information, i.e., a node knows itself. The perceptions of remote nodes become less

precise over time; it is this imprecision which the time transformation models.

Local state volumes cannot expand over time, because this would imply a violation

of the Liouville thermodynamic theorem. The theorem indicates that local state spaces in

physical systems cannot expand. This is not an issue here, because local state remains a

point model; only remote state expands, and the theorem does not apply to perceptions

(see Appendix D).

The transformation of a remote node’s representation over a time interval is

represented by a function that describes the known bounds on the variation of state space

evolution over time. The extent to which the remote node is correctly modeled depends

on the precision of this function, which is characterized by the amount of state space

expansion per unit time, a form of induced entropy1. The imprecision describes the

difference between the node actual state and the perception of that state. The entropy

change per unit time is a measure of the minimum bandwidth required to compensate for

1The notion that state reduction and volume ratios are related to entropy is not new;

it has been discussed before, in [Sh63] and [Ha28].

Chapter 2 MIRAGE 35

the entropy change, and can be bounded by the ratio of the volumes of state imprecision

at the beginning and end of the time interval. Formulae expressing these relationships are

described in Appendix E.

The computation function, which describes the evolution of the space over time as

viewed at a distance, is a combination of the remote space evolving over time and the

messages that it can receive over that time. Analysis of this function can be complex,

because all possible permutations of messages and computing intervals must be

accounted for. The computation function encodes known internal computation in the

remote node, known bounds on the information received by that node, and known

message emissions from that node (i.e., all known constraints on the remote node).

In the case where the time transformation is expressed by a probability density

function (pdf), the computation function reduces to a convolution of the entire set of

remote nodes over the set of probability density functions (pdfs) of the transformations of

individual messages that can be received and a time transformation pdf. This reduction to

convolutions requires that the time transformation is time invariant, i.e., it depends on the

interval of elapsed time, but not the absolute time at which the interval occurs.

2.2.2.2. Receive

Receiving information collapses the perception volume of a remote node to a

subspace of its former volume. Consider the case where a node receives data from a

remote node. The received message affects part of the view that models the source of the

message (the perception of the sender). There is a limit to the amount to which the

message can reduce the volume of the perception (on average), because the volume

reduction caused by the incoming information is bounded by the information content of

that message, and because volume reduction is equivalent to reduction in entropy.

2.2.2.3. Transmit

Transmitting messages expands the perception of a remote node’s state, similarly to

the expansion induced by time. Rather than accounting for the temporal transformation of

the remote space, the message itself causes the transformation of the space. The expanded

space is logically OR’d with the entire original space, because the message may be

received later, or lost, and both cases must be accounted for. The message affects a

node’s view by transforming its perception of the remote node to which the message is

sent. Again, the information contained in the sent message is limited by the

Chapter 2 MIRAGE 36

transformation it effects, in terms of relative volumes of state spaces indicated (i.e.,

entropy).

Lost messages increase the state space of the perception, which is collapsed either

when the state of the remote node indicates, or when the sender decides that the message

loss can be ignored (i.e., a time-out that forces perception collapse). The use of time-outs

to force collapse denotes the potential conflict with message loss assumption (i.e., that the

reappearance of the message can cause an inconsistency in the perception).

2.2.3. Implications of the model

Several constraint conditions have already been presented, relating message effects

on state space volume transformations and entropy limitations. Other correctness criteria

have been presented relating received state to a subset of prior state. There are other

constraints that are implied by the model, when further considered.

2.2.3.1. Lag and stability

The Mirage transformations can be considered with respect to stability. There are

two variations on the definition of control stability. The first assumes that the state space

reaches some fixed-point value, i.e., that it focuses on a specific point, within some

variation, and remains there. The second maintains that the state space entropy is the

value that becomes stable, i.e., that the imprecision of remote information reaches some

fixed point, rather than the value of the state itself.

Consider the system whose state space is A. Over time, the space evolves to A’,

whereas given communication (traditionally feedback/feedforward), it would become A’’

(Figure 2.11). Stability is defined as A’’ being a subset of A (after some minimum time1)

(Eq. 2.13), whereas entropic stability is defined as the volume of A’’ being smaller or the

same as the volume of A (Eq. 2.14). Neither criterion applies to the uncontrolled state A’.

Equation 2.13: ′′A ⊆ A()
∆t >tmin

∀

Equation 2.14: ′′A ≤ A()
∆t >tmin

∀

1Feedback stability commonly requires a minimum time lag, in order that the

requisite circularity of information and action exists.

Chapter 2 MIRAGE 37

A A' A''

communication & ∆t

∆t

FIGURE 2.11
Control space evolution

2.2.3.2. Communicability

We can now express the most important formulae in the description of Mirage that

defines the goal of the model. The space of a node consists of a finite number points, so a

message could be sent, suitably guarded, for each point in this space. Assuming each

message is of arbitrary length, destination state space can be transformed as precisely as

desired, guaranteeing either stability criterion.

The trick is to send messages that are short enough, and to partition the space

coarsely, to send as few of these messages as possible (each with a similarly brief guard),

otherwise the required bandwidth would be unmanageable. The ultimate goal is a suitably

efficient partition K (i.e., smallest number of component partitions in K) that satisfies

these bandwidth criteria, and that ensures stability over all time frames beyond some

minimum (Eq. 2.15)1.

In Equation 2.15, A denotes the state of the remote node (i.e., the perception to be

stably modeled), K denotes the partition, A’’ denotes the perception thus stabilized, and

A:M denotes the state A as transformed by the set of delivered messages M. The goal is

that for all intervals larger than some minimum, the system is entropically stable. The

goal also includes ensuring that the smallest message set M be chosen, and that the set of
messages can be communicated in the time given. One message mi is sent to each

component of the partition K.

1The number of components in the partition is the branch degree which alters the

graphs (Figure 2.7). The message length is related to the limb length mentioned before

and reflects the directed state path between branchings.

Chapter 2 MIRAGE 38

Here we denote this condition as a predicate, called communicability. The predicate

holds where entropic stability is permitted by a given partition under the given

communication bandwidth and latency parameters. This predicate can be used to specify

the bandwidth and latency for a given partition, or to govern the search for a minimal

partition, using bandwidth or latency as a measure.

Equation 2.15: Given:

K - a partition of A' s perception at B,

 i.e., in a set of guarded messages M
tmin - latency

BW - bandwidth













Node A is COMMUNICABLE from node B if and only if:

′′A ≤ A()
∆t >tmin

∀ where ′′A = A:M








 and M ≤ BW * tmin{ }

The condition under which such a partition exists, called communicability,

represents the ability to communicate sufficiently with a remote node so as to ensure its

stability, within the given bandwidth and latency criteria.

Stability need not be strictly guaranteed; in many cases, it is sufficient that the

stability be highly probable. By assigning probabilities to each path in the state space

evolution, the expected entropy change, rather than worst-case, can be considered. In this

way statistical methods can be incorporated into the realization of the model. The

volumes of state space become probability density functions (pdfs) in that space. Set

operations on these volumes then become compositions of the pdfs. One case where

similar statistical methods have already proven useful is clock synchronization [Cr89];

this is discussed in Chapter 4.

One important result of this description is that protocols which operate in high-

latency environments require sufficient constraints on control space evolution. The

stability of the system relies not only on the messages sent, but on the existing constraints

of the computation function as well, because the state space is constrained by the

interaction between the two.

The communicability formula is easiest to compute as a test. Given a fixed latency,

does there exist a partitioning that results in a set of messages that can be sent during the

round trip time and that result in stability in the perception of all remote spaces? If the

Chapter 2 MIRAGE 39

time transformations of the remote nodes are sufficiently constrained, and if sufficient

bandwidth exists to overcome any remaining imprecision via controlling messages, then

the answer is “yes”.

Another way to view the situation is that error and lag are conjugate variables. A

communication system that requires zero error thus requires infinite lag, to collect

arbitrarily precise information about a remote node before making a decision. A system

that tolerates infinite error also tolerates zero lag – the instant a query is asked, a reply is

given. The lag can be zero, because the answer is allowed to be arbitrarily wrong.

2.2.3.3. Guarded messages

Thus far, the description of a protocol as a set of state space transformations is very

similar to conventional statistical communication theory. Rather than using the state

space volumes merely to describe or analyze the protocol, Mirage uses guarded messages

to manipulate portions of these volumes, as part of the control mechanism [To89].

Guarded messages are similar to guarded commands as used in programming

languages [Di76]. Prior to executing a set of guarded commands, the state of the machine

is within some set of states (the union of the states specified by the guards); afterwards

the state of the machine is within another set of states (the union of the states resulting

from each guarded command)1.

Guarded commands are used during programming to counter the uncertainty in the

machine state during execution of the program; guarded messages do the same for

communicating nodes. Guarded commands account for the latency between coding and

execution (and uncertainties that arise in that interval), whereas guarded messages do the

same for transmission latency.

Guarded messages permit the transmission of multiple sets of information to a

remote node (Figures 2.12, 2.13). The perception of the remote node can be a volume in

state space, so messages can be sent that are labelled with various regions of that volume.

The remote node compares its current local state2 to the label of the incoming message,

and acts on the received information only if the two match.

1 See the discussion on isopotency.
2 A node’s local state is known as a point in state space. The imprecision in the

perception of the state of a remote node causes the volume to be introduced.

Chapter 2 MIRAGE 40

data

FIGURE 2.12
Entire space affected by unguarded message

1
2

3

1:data

3:data

1

2

3
1

2

3
1

2

3

2:data

2

3
1

3
1

2

2

3

FIGURE 2.13
Guarded messages affecting partitions only

2.2.3.4. Isopotent sets

Isopotency describes a set of messages whose actions are equivalent, albeit by

different actions on separate partitions of the state space. Guards differentiate the

component messages of an isopotent set, to partition the space as desired.

The notion of isopotency leads to the distinction between a physical message and a

logical message. A physical message is conveyed by the unguarded data, whereas a

logical message is the message indicated by an isopotent set. Isopotency denoted the

single effect on the whole state space, as indicated by its component messages and their

corresponding guards. The union of these actions is the logical message.

Chapter 2 MIRAGE 41

2 . 3 . D i s c u s s i o n

There are several results to this abstract model, which are the consequence of this

view of protocol models. Mirage is a model for a channel that accounts for imprecision in

the communication, as introduced by latency.

We also have shown some formulae for the limitations of the ways in which latency

can be accommodated (communicability). Most importantly, these formulae depend on

the ways in which the state space can be partitioned, which in turn depends on semantic

information about the state space. The result is that protocol layering prohibits this

partitioning, by hiding the semantic structure of the space. Layering prevents the

effective partitioning of the state space, and thus prevents any accommodation that could

have occurred by sender-based anticipation using logical messages.

2.3.1. A channel with imprecision

The concept of a channel with imprecision can be elaborated. The limitation of

existing protocols in gigabit WANs is due to an increase in the bit-latency. The increased

amount of pending communication, i.e., information in the channel, requires modeling to

permit channel utilization to increase. Further, this modeling can be performed only

where prediction is possible, where the layering does not completely obscure some

structure of the time transformation.

In Mirage, the characteristics of the data stream that are required in order to permit

sender-based anticipation can be specified. The linearities in the stream express sender

determinism, so that, regardless of the information communicated in the data of the

stream, the sender knows which data to emit. Branching allows indeterminism in the

sender, where the data sent depends on some unknown state of the receiver, permitting

context sensitivity of the data stream.

The conclusion is that there are limitations to the utilization of the channel, and that

these limitations can be overcome only if the internal structure of the data stream is

examined. The sender can predict the next required information only if it knows what to

expect. If these expectations are not fulfilled, round-trip delay penalties are incurred, in

order to resynchronize the sender to the receiver’s state.

Chapter 2 MIRAGE 42

We note the imperfection of the simulation. Although the Holodeck was
successful in most details of the simulation, it lags when we strayed from the
expected.

- Star Trek, the Next Generation
“Future Imperfect”

Some observations include the equivalence between infinite linearity and TCP-like

existing protocols, and between infinite branching and NCP-like request/response

protocols.

2.3.2. Looking into the structure of the stream

The structure of the stream can be described more completely in diagrams (Figures

2.14, 2.15). In the first case, bit-foreshortening (via increasing the channel transmission

rate) causes the channel to be utilized less effectively. The result of the bit-foreshortening

is an increase in the amount of the data stream that is “looked into” (fetched for

transmission) during a round-trip time. So long as this stream continues to be linear,

current protocols accommodate the lookahead (given sufficient buffer space).

0 t 2t 3t 4t 5t 6t 7t 8t 9t 10t

Utilization

1.0

0.8

0.6

0.4

0.2

0.0

Round trip time

bit foreshortening

1.0

0.8

0.6

0.4

0.2

0.2

Stream lookahead
(in units of 't')

FIGURE 2.14
Bit foreshortening and its effect on lookahead / utilization

In the second case, bifurcations in the data stream cause the channel utilization to

drop, because lookahead is permitted only until the first branching. By permitting the

protocol to accommodate the branching, the remainder of the stream can be anticipated,

albeit less effectively than the initial linear portion. This is presented in more detail in

Chapter 5, in the discussion of the processor architectural implications of the protocol

analysis of a processor-memory interaction.

Chapter 2 MIRAGE 43

0 t 2t 3t 4t 5t 6t 7t 8t 9t 10t

Utilization

1.0

0.8

0.6

0.4

0.2

0.0

Round trip time

bit foreshortening

1.0

0.8

0.6

0.4

0.2

0.2

Stream lookahead
(in units of ’t’)

FIGURE 2.15
Bit foreshortening and branching effecting utilization

2.3.3. Implementations

Mirage is an abstract model, using state space set transformations to describe the

stream with imprecision. There are various ways to implement the model, such that the

implementations are equivalent to the abstract form. Some of these implementations are

direct analogs of the abstract model, suitably collapsed or condensed to permit their

realization. A more specific example is investigated in a later chapter (Chapter 5).

2.3.3.1. Projections

The Mirage model is based on state space transformations, so one obvious

implementation is the realization of a projection of the model, where some dimensions of

the model are ignored, or groups of dimensions are collapsed into one.

The complete form of the model incorporates not only sets of points in state space,

but also probabilities for each state. Where probabilities are not known, the worst case is

assumed, which in information theory is the case where each possible state is

equiprobable. This results in a uniform distribution among members of the set.

Each point in the state space is assigned a probability, where omitted points (points

where the receiver’s state cannot lie) have zero probability, so probability density

functions can be used to express the distributions as a function of state value.

Transformations of the state space in Mirage are then most completely expressed as pdf

transformations, which are the convolutions of the individual pdfs.

Chapter 2 MIRAGE 44

These pdfs can be restricted to ease their implementation. For example, the state

space volumes can be limited to be uniform and orthogonal, such that the value of the pdf

(i.e., probability of the state space value being accurate) is independent in the dimensions

of the variables of the state space. This is equivalent to a range-value system, where we

can express the pdf as high/low values, between which the probability is uniform, and

outside of which the state cannot lie. The result is an implementation that tests only

bounds of the state space, rather than true likelihood. Such a system would be useful in

real-time systems, or fault-tolerant systems.

The pdf can also be replaced with an average/standard deviation pair, but only

where the pdf is orthogonal and has an internal structure that is adequately approximated

by these first order statistics. This is useful in ‘aiming’ protocols, where boundaries are

not an issue, but localization of a shared value is; such is the case in clock

synchronization protocols.

2.3.3.2. Granularity

Another consequence of the Mirage model is an acknowledgment of the desired

dichotomy between the state space of the receiver and that same space as modeled in the

sender, for the purposes of controlling data anticipation.

The receiver has a state space that is a fine partitioning of the state space, fine

enough to express the limit of the granularity of the space. The fineness of the granularity

of this space is defined by the degree to which the receiver partitions (or does not

partition) it.

The sender’s view of the receiver is a more coarse partitioning of this space. The

coarseness of the granularity reflects the ‘need to know’ principle of this model – the

sender models the state of the receiver only so explicitly as it needs to, in order to permit

effective use of the channel. From the equations of stability and control, a larger

granularity means that fewer messages need to be sent to anticipate the partitions of the

receiver’s state, which in turn allows the individual messages (to each component of the

partition) to be longer.

The result is a system in which the sender models the receiver only to the extent

that it must in order to send data in anticipation, and the receiver completes the structure

of the partition down to the level of each state value. The sender needs to model only so

far as to anticipate, but the receiver will use the sent data along with local information to

achieve the desired computation.

Chapter 2 MIRAGE 45

2 . 4 . In s i g h t s

There are a few useful insights from the investigation of this abstract model. There

are several types of information in a system: direct, indirect, and a new kind, virtual.

Error and latency are related, as conjugates. Finally, entropy and communication have

been discussed in more abstract terms.

2.4.1. Kinds of information

In distributed systems, two kinds of information are usually described: direct, and

indirect. Direct information is data about another node which that node explicitly sent.

Indirect information is inferred data, sometimes called ‘common knowledge’[Ha84],

[Go88], which is information about another node that is inferred from global constraints

and direct information from the rest of the system. Indirect communication occurs when

we know a-priori that 3 of 5 nodes hold a copy of a single datum, and we have received 2

replies where the datum is absent; we can immediately conclude from the global

constraint and the received information that the remaining 3 nodes contain the datum.

Mirage suggests another kind of communication, that of virtual data. Virtual

communication is not the result of any direct communication; it is the consequence of the

lack of communication over time, and some specific constraints about the node ‘not heard

from’. Virtual communication results from the time transformation, i.e., how the state

space of the remote node behaves over time, unless otherwise heard from.

2.4.2. Error and latency as conjugates

Mirage indicates ways in which error and latency are conjugates. C. Shannon noted

that error could be reduced as small as desired by encoding information over a long

enough sequence [Sh63]; the process of encoding induces a latency of the length of the

encoding sequence. Mirage shows how to reduce latency by anticipation, with a

corresponding increase in the error of the perceived state of the remote node.

Chapter 2 MIRAGE 46

2.4.3. Entropy

When the state space volumes were described as corresponding to entropy, a set of

constraints was introduced, by analogy. If the log of the state volume is entropy, then all

the conventional physical constraints on entropy should apply.

For example, in physical systems, entropy always increases. In this system, entropy

increases with time and with emitted messages (i.e., entropy increases in the sender when

it sends data to the receiver). Mirage permits the collapse of these volumes, when

information is received, contrary to traditional physical laws (i.e., entropy decreases).

However, because data is created in the nodes of a network, as has been claimed in

biological systems [Ja55], the state space volume may reduce.

2.4.4. Constraints

There is an interaction between error, latency, communication, and the need for

constraints about the ways in which the receiver traverses the state space.

Time and space and thought aren't the separate things they appear to be.
These things are dangerous to say.

- Star Trek, the Next Generation
“Where no one has gone before”

2.4.5. Contrasts & comparisons

There are comparisons between the abstract Mirage model and aspects of forward

error correction (FEC) FEC uses the same kinds of state space volumes, where the state

space is divided into equivalence classes, so that when any point in the class is received,

the canonical member of the class is presumed to have been sent. Mirage uses what can

be considered a dynamically reconfiguring FEC scheme to communicate the remote state.

Mirage also uses multiple possible messages, in the isopotent set. It explores the

state space in a breadth-first sequence (BFS), rather than depth first, as in conventional

receiver-based anticipation. The use of BFS techniques removes the need for sender

rollback, because all possible states are covered with the traversal of each level of the tree

of possibilities of communication.

Chapter 2 MIRAGE 47

Other anticipatory schemes sometimes use replication of multiple independent DFS

explorations, in which the results are collected upon termination of each probe [Sm89].

Although there are analogies to our method, Mirage relies specifically on the differences

which BFS affords; specifically those removing the need for rollback. Further, there is a

difference in the characterization of the state space in these two methods. [Sm89]

assumes one of the DFS paths will terminate before others, and that which path is shortest

is not computable before the actual probing of the space. In Mirage, the space is

computable, with sufficient delay. Mirage tries to get around the delay of communicating

exact state by permitting the states to be mere approximations.

There are direct correspondences between the way in which the receiver filters

messages according to guards, specifically related to the Universal Receiver Protocol

(URP) [Fr89] and the Knockout switch [Ye87]. These similarities, as well as other prior

work, are discussed in Chapter 3.

Finally, there is an interesting comparison between the implications of Mirage and

the selection of optimal buffer sizes in sliding-window protocols. The optimum buffer

size for communication is the size of the round trip bandwidth-delay product, and

inefficiencies result if the buffer size available is less than this product, addressing the

TCP/sliding-window protocol situation. Mirage asks the question ‘what happens if the

buffer size indicated is negative’, i.e., if the round-trip time is much larger than the

maximum possible window (i.e., linear lookahead in the data stream). In this case,

Mirage suggests an advantage.

Chapter 3 PRIOR WORK 48

C H A P T E R 3

Prior Work

The Mirage model evolved from concepts from a variety of disciplines, and is also a

paradigm for latency in communication. As such, the relevant prior work spans a breadth

of disciplines in traditional protocol research and communication models, as well as in

distributed systems, cybernetics, and physics. This is a summary of that prior work and a

discussion of Mirage in comparison.

 This chapter discusses prior work in general protocols and communication, rather

than as it relates to specific applications of the model. Discussion of prior work relevant

to these particular applications is presented in the chapter where the Mirage model is

applied to specific protocols (the Network Time Protocol, Chapter 4) or systems

(processor-memory interaction in the µ-Net evaluation, Chapter 6). Elaborations of

particular similarities are presented in appendices, e.g., relevance to Shannon’s model of

communication (Appendix A), equivalences in timed Petri Nets (Appendix F), and

original conceptions from analogies in physics (Appendix B).

Mirage is also related to some recent high speed optimizations of protocol

implementations. Most of these optimizations are designed to reduce computational

requirements of high speed protocols, rather than to compensate for increased effects of

bit latency, as Mirage is intended. In hindsight, these optimizations can be viewed as

Chapter 3 PRIOR WORK 49

versions of some aspects of communicability in Mirage, although none has been derived

or presented as such.

Mirage is a system comprised of sender modeling of a receiver, sender anticipation,

entropic stability, and guarded messages. All of these components are intended to

describe latency compensation if the information in transit exceeds the determinism of

the system. Whereas some of these components appear in prior research, their

combination in Mirage provides a novel system for understanding the effects of latency

in communication.

Mirage originally evolved from analogs to principles in physics, most notably those

of imprecision of state, quantum interaction by the exchange of field particles, and

Feynman path integrals. These analogies are addressed further in Appendix B, so as not

to confuse the conceptual basis for Mirage with its development and current design as a

model.

3 . 1 . P r i o r m o d e l s of c o m m u n i c a t i o n

There are a few canonical finite state machine (FSM) models used in protocol

analysis; these include Shannon’s model of communication, communicating FSMs, Petri

Nets (and their variants), and language-based descriptions such as LOTOS and Estelle

[Si91], [Ve86], [Sc82a]. Mirage differs from these models primarily in its use of

partitions for communicability, although individual models individually exhibit

similarities to components of Mirage.

3.1.1. The models

The Mirage model is most similar to the anticipatory feedback mechanisms of a

compensator in the presence of effector delays, from cybernetics theory [Wi48]. This

work describes the notion of sender (compensator) modeling of receiver (effector) state to

maintain stability. This modeling is the converse of that of Shannon’s model of

communication. In that model, the receiver models the sender to back-calculate the

sender’s state from received messages with transmission errors.

The abstract model, as presented in Chapter 2, is an extension of existing finite state

machine methods. Mirage is also presented as an extension to timed Petri Net models in

Chapter 3 PRIOR WORK 50

Appendix F, although it may be applicable to any general instance of a compensator in a

communication or control system.

Most of the relevant prior work on protocol models involves temporal extensions of

finite state machines, such as timed Petri Nets and extended finite state models, and

temporal logic. These all incorporate time as a boundary condition (event), record age as

a static property of a variable, or denote only discrete time intervals, whereas Mirage

considers the continuous effect of time on communication. These models also consider

state as a point in state space and thus do not accommodate Mirage’s extension to the use

of probability density functions1.

Mirage differs from FSM models in its use of time as a continuous parameter, in

treating the remote space as indeterminate (as sets of possible states), in the dynamic use

of partitionings of the possible remote state spaces, and in the use of such partitions to

determine communicability and stability constraints.

3.1.1.1. Shannon’s model of communication

Mirage can be considered to be an extension of Shannon’s communication model

[Sh63]. This is elaborated in Appendix A, but will also be briefly described here.

Shannon’s model of communication is based on a point model of interaction. The

state of the sender is a known point in state space, and the receiver interprets the arriving

message as it refers to that point. This model describes error within the communication

channel, of which a fundamental theorem is that the probability of error can be reduced to

an arbitrarily small value, provided that the messages are encoded over a correspondingly

arbitrarily large sequence.

Mirage can be considered an extension of this model, where Shannon’s point value

is a set in Mirage, and where point motion becomes set expansion, contraction, or

translation due to various communication operations (Chapter 2). In Mirage, the

conventional notion of connectivity and bandwidth is extended to account for latency, so

that the connectivity of the communication graph is extended to denote topology, using

link ‘lengths’. Our model also extends the notions of effectiveness, correctness, and

precision as described in Shannon’s model, to temporal equivalents of timeliness,

controllability, and communicability (see Appendix A).

1Our use of PDFs is analogous to the analyses of state evolution of physical systems

in thermodynamics.

Chapter 3 PRIOR WORK 51

Mirage is also a complement to Shannon’s model, in several ways. Shannon’s

model considers a receiver’s model of the sender, whereas Mirage considers the sender’s

model of the receiver. Shannon’s error theorem trades error for latency, through sequence

encoding, whereas Mirage trades latency for error (state imprecision) or restriction of

operation (constraints).

3.1.1.2. Communicating finite state machines

Communicating finite state machines are a class of models for protocol analysis.

These include communicating FSMs [Bo78], [Ok86], and FSMs extended with temporal

constraints [Si82], [Ag83]. Neither case considers communicability. Extensions of these

models are the basis for the Mirage protocol.

3.1.1.3. Petri Nets

Petri Nets [Pe62] are a variant of FSM models. The timed Petri Net model [Me76]

can be extended to exhibit the characteristics of Mirage, just as the FSM model was; this

extension is described in Appendix F. This demonstrates that the Mirage model is not

restricted to a single paradigm.

3.1.1.4. Estelle / LOTOS

LOTOS [IS88a] represents a class of programming language models of protocols,

which strictly includes Hoare’s Communicating Sequential Processes (CSP) [Ho78],

ISO’s LOTOS, Milner’s Calculus for Communicating Systems (CCS) [Mi80], and Real

Time Attribute Grammars (RTAG) [An88], and which also includes hybrid programming

language / state machine models such as Estelle [IS88b]. These models similarly lack

expressions of communicability, although it may be possible to extend these models

similarly. The most similar is RTAG, because the real-time scheduling constraints are a

version of communicability, albeit on an individual message basis.

3.1.2. Partitioning the state space

Each of these traditional protocol analysis models is plagued by an explosion in the

state space of the model [Bo78]. As the state of the analysis evolves, indeterminism of

state requires modeling the powerset of possible states (i.e., all possible subsets). This

Chapter 3 PRIOR WORK 52

state space explosion is accommodated using imaging projections, factoring, and

Powerdomains.

Part of the state space explosion is due to a set of messages in transit. FSMs cannot

model a protocol with more than only a few messages in transit, and as such they cannot

effectively model high information latency systems [Bo78]. The state space explosion

can be managed by introducing state variables to factor some dimensions of the original

FSM into variable-managing components.

By additionally partitioning the state variables, latency can be incorporated into the

extended FSM [Si82]. This partitioning allows the separation of the effects of messages

being emitted from a sender and collected by a receiver.

The state space can also be managed by partitioning, factoring, or imaging. Such

partitions and projections may aid real implementations of the abstract Mirage model.

The abstract Mirage model is intended for direct computation, but equivalent

substructures of the model may be suitable. A more coarse-grained partitioning of the

state space, using equivalence relations, accomplishes this. The subspaces become

partitioned as a result of the imposed homomorphism of the relation, and particular

location in the subspaces becomes less important than the traversal of these boundaries

[Ch81]. This work was examined as ‘protocol conversion’, in both projections [La86] and

general FSMs [Ok86].

3.1.2.1. Partitions

Partitioning a FSM is similar to the technique of transforming a nondeterministic

finite automaton (NFA) into a deterministic one (DFA) [Sc82b], and to the partitioning

principles of error detecting and correcting code analysis. Partitioning segments a FSM

into independently verifiable components. Various methods determine an appropriate

partition, including the use of artificial intelligence (AI) to differentiate between the

explored and ignored components of state [Li87]. Mirage uses a similar partitioning in

the communicability function, but ours is a dynamic process balancing partition and

message sizes to ensure stable interaction among communicating entities.

3.1.2.2. Factoring

A FSM can be factored into its components. The reverse is more common, in which

the product of component FSMs of a protocol generate the complete state space, factoring

out statistically favored components. The remaining protocol is factored back down,

Chapter 3 PRIOR WORK 53

where possible. This results in a very efficient implementation, because a separate

partition handles the most common FSM states, and a larger, more complex FSM is used

only if necessary [Wo90].

3.1.2.3. Projections / imaging

Image protocols are formed by projecting functionality from the FSM. Given a

specific function, an image of the FSM includes all states relevant to the provision of that

function [La82]. These projections are similar to Mirage’s modeling of remote state,

which hides invisible state. They too can be extended to include latency and time [Sh82].

Projections also describe the partitioning of the state space in communicability, although

in Mirage such partitioning is a dynamic process, whereas image protocols compute static

partitions for analysis only.

Another version of imaging is found in entity models of protocols [Mo82]. These

models consider the visibility of local state variables, in the same way as Mirage defines

a perception.

3.1.2.4. Powerdomains

Mirage’s analysis of state space subsets is similar to that of Powerdomains [Pl80].

Both Mirage and Powerdomains describe properties of the partitioning of state space into

sets. Mirage bounds the size of the set of states as the system evolves; Powerdomains

focus on the computability of the partition itself. A partition describing communicability

therefore satisfies computability, because communicability requires a computable

function to describe the evolution of the remote state space. Powerdomains consider set

orderings as subset inclusion, whereas we consider a set ordering on size alone. These

similarities are the result of the similarity between Dijkstra’s guarded commands [Di76]

(as analyzed by Powerdomains) and Mirage’s guarded messages.

3 . 2 . P r o t o c o l op t i m i z a t i o n s

The Mirage model can also be compared to model implications of specific protocol

instances. Because Mirage addresses latency, especially in high speed wide area

networks, comparisons focus on the model implications of light weight protocols

Chapter 3 PRIOR WORK 54

developed for similar domains [Do90], or on the model implications of flow control

protocols for high speed networks.

Light weight protocols are developed by omission in functionality, hand-coded

optimizations, or by limiting the protocol to a very specific domain. In contrast, Mirage is

a general model for latency in communication, and it describes the optimizations used in

light weight protocols in more general terms.

These light weight protocols include URP, VMTP, XTP, and versions of existing

protocols (TCP) or variations that accommodate high bit latency (NetBlt). Many of these

light weight protocols are instances of a general method we call ‘Cross Product

Protocols’. New protocol designs have also focused on timers rather than packet

exchanges, such as Delta-t, Virtual Clock, SNR (leaky bucket) and TP++. These

protocols raise layering issues which Mirage avoids by its requirement of the

predictability constraints of communicability.

3.2.1. Universal Receiver Protocol

The Universal Receiver Protocol (URP) [Fr89] is a data transport protocol that

accommodates high bandwidth by a combination of omission and reorganizing the

protocol components. URP assumes that the network will not reorder packets, and as

such omits the reordering mechanism from the protocol specification. It also achieves

high packet throughput by balancing the protocol load between receiver and transmitter.

One of the observations in URP is that conventional protocol code is unbalanced

because most of the work is on the sender end of the protocol. Recent protocols mirror

this imbalance, shifting the load onto the receiver (e.g., PROMPT) [Ba90a]. URP claims

that a protocol is most efficient if the protocol work is evenly distributed between sender

and receiver.

The Mirage model balances the actions of sender and receiver when the two interact

evenly. The sender models the receiver, and anticipates its needs, whereas the receiver

accepts and reacts to messages that correspond to its current state. In cases where the

receiver can anticipate the reception of certain types of packets, Mirage would consider

the data receiver to be modeling the state of the data sender. In Mirage the data flow

direction doesn’t matter; state is modeled in either direction as desired, to the extent

desired. The balance of the protocol depends only on the balance of the state modeling

required.

Chapter 3 PRIOR WORK 55

Mirage’s expansion of state space upon data transmission, and collapsing upon

message receipt, has been examined in the design of buffer ‘barriers’ of URP [Fr89].

‘Barriers’ is a modified flow control mechanism that attempts to equalize the uncertainty

of communication among transmitter and receiver. Mirage’s expansion and collapse of

state modeling are the same as the expansion and collapse of buffer space allocation in

barriers. Barriers apply to only buffer space state, and Mirage applies to the entire state of

the remote node.

3.2.2. VMTP

The Versatile Message Transaction Protocol is a lightweight transfer protocol based

on message transactions [Ch88b], [Ch89], [Ch86]. It provides a request-response

capability, as in RPC (remote procedure call [Su88]), in addition to stream transmission,

as in TCP. VMTP was “rethought from first principles,” [Ch89], but these principles do

not include domains of high latency, therefore much of VMTP is not applicable to

Mirage’s domain. VMTP reduces packet processing overhead and response latency, but

does not mitigate the effects of transmission latency.

What is more important for future work in Mirage, VMTP combines concepts of

RPC with NetBlt [Cl87] and flow protocols [Zh90]. Mirage may provide a model

paradigm from which to unify these two datagram and data stream domains.

3.2.3. XTP

The Xpress Transfer Protocol (XTP) is another high speed transfer protocol

[Ch88a], [Sa90]. XTP is designed for hardware implementation, and facilitates high

speed communications, but was not designed for high latency.

XTP uses the exchange of state to manage rate control monitors, controlling the size

and spacing of packets. The integral flow control mechanism manages the state exchange,

and uses timers to force the exchange of state to reconnect after some types of failures. In

the Mirage model, state is managed explicitly and the exchange of state is specified by

imprecision, rather than on certain (error) events.

Chapter 3 PRIOR WORK 56

3.2.4. TCP

In Chapter 2, Mirage was analyzed with an extension of the conventional stream-

based model of communication that the Transmission Control Protocol (TCP) provides

[Po81a]. TCP supports only linear streams of data, whereas Mirage models branching

streams as well. Protocols designed using Mirage reduce to TCP where the remote state is

precise, i.e., where the stream does not branch.

TCP’s sliding window flow control expects a linearity of the data stream at least as

long as the window size requires, i.e., the round trip bit latency. Due to connection

management overhead, TCP works efficiently where the data stream has a linearity that is

at least an order of magnitude greater than the round trip time.

TCP has been extended for high latency domains by extending the maximum

possible window size [Ja88a], and by modification of the windowed flow control

feedback algorithms (also discussed later) [Ja88b]. These modifications assume that the

round trip bit-latency can be filled with deterministically predicted data; Mirage assumes

this is not the case, and that state imprecision will prevent effective utilization of the

channel as a result.

Optimized TCP implementations have resulted in connections of 720

Megabits/second, demonstrating that TCP can operate in high speed networks [Ni91].

This verifies our original argument (Chapter 1), however, because these rates were

achieved over very short (1-2 meters) distances (500 Megabits/sec), and in loopback

mode (i.e., zero distance) (720 Megabits/sec). High speeds increase bit-latency, so

because TCP works on a 45 Megabit WAN (the Internet), it should work equally well

(modulo technological advances) at rates up to 10 Gigabits/sec on a MAN and up to a

100 Gigabits /sec on a LAN.

3.2.5. NetBlt

NetBlt is a variation of data transfer protocols optimized for bulk data transfer

[Cl87]. NetBlt assumes that the data stream has a linearity that is an order of magnitude

longer than TCP does, and so is generally less applicable to Mirage’s domain than TCP

is. NetBlt optimizes bulk transfers by amortizing packet and acknowledgment overhead

over large blocks of data, and adds a pacing (rate control) mechanism. This pacing

Chapter 3 PRIOR WORK 57

mechanism is contained in the Mirage model description, i.e., the sender emits packets

when its model of the receiver determines that a receive buffer is available, according to

known state of the receiver and elapsed time.

3.2.6. ‘Cross Product Protocols’

Another means to adapt existing protocols to high speed networks is a method of

optimization we call ‘Cross Product Protocols’ (CPPs, for short). This includes methods

of header prediction as in URP [Fr89] and TCP [Cl89], and methods of protocol layer

merging and reduction as in XTP [Ch88a] and VMTP [Ch88b]. Header prediction and

layer merging are both in the ‘protocol bypass’ [Wo90]. All these methods are included

in the general method we call CPP.

The basis of a CPP is that the entire functionality of a protocol, either in

implementation or layers of specification, is derived by a cross product of its

components. Transfer protocols that implement a combination of the OSI transport and

network layers are one example; protocols that combine features of RPC and streaming

data transfer are another.

Indicated states are removed from the resulting protocol and treated as special

cases, and the remainder of the protocol is factored down where possible. These states

can be statistically favored (by direct measurement) [Kr85], selected to favor particular

protocol operations, as in the ‘protocol bypass’, or determined by the current protocol

state, as in the header prediction mechanisms of URP and an optimized TCP. The

remaining states can be included in the resulting protocol, or removed to favor a

‘lightweight’ implementation (i.e., XTP, VMTP).

CPPs optimize protocol processing speed, but do not compensate for high bit

latency. They are similar in focus to the statistical aspects of Mirage, in which pdfs

determine expected values of the remote state. In addition, a CPP also collapses the

implementation of the ISO protocol layer model, whereas the Mirage model considers the

entire layer stack as the protocol. The result is that a CPP instance demonstrates how

layering inhibits efficiency by restricting interlayer interaction, just as the Mirage model

describes that layering prohibits latency compensation by hiding information required for

the communicability function (i.e., regarding the state evolution function). Mirage can

include layering, but only where it does not inhibit communicability (i.e., doesn’t hide

Chapter 3 PRIOR WORK 58

information required for prediction), in a manner similar to that of ‘information flow’

protocol analysis [II87], in which information is hierarchically maintained.

3.2.7. Delta-t

The Delta-t protocol optimizes low latency response and high throughput stream

transfer [Wa89], [Wa81]. The shared state of a connection is assumed from a default, and

updated only when a connection is in use, thus avoiding explicit connection management.

Implicit connections support datagram and RPC messages without connection overhead,

and without unnecessary agreement of stream-oriented buffer, window, and rate values.

A connection is assumed to have a predefined state, unless a current connection

record exists that supersedes that information. The role of timers in state management is

also shown, i.e., that timers are required in all protocols in lossy environments. Mirage

uses time information to determine perception evolution, and so timers are implicit in the

model. A protocol designed using Mirage implicitly includes bounds on the state

evolution, whereas Delta-t enforces bounds by functions expressing viable states, as in

the functions that describe the retransmission strategy. The implicit state of an unused

connection expresses the initial conditions for communication, i.e., there must be shared

state to maintain shared state; Delta-t permits these initial values to be nontrivial, whereas

explicit connection protocols consider unopened connections to express an ‘undefined’

state. Further, Delta-t describes the initiation and evolution of the connection

management information, which Mirage considers the ‘protocol’ itself.

3.2.8. Virtual Clock

The Virtual Clock (VC) protocol emulates statistical multiplexing using temporal

windows to control packet flow [Zh89], [Zh90]. It uses time-based state information of

the receiver’s ability to process packets to regulate the sender’s scheduling of packet

emission. VC’s control of receiver buffer usage via sender constraint equations thus

exhibits aspects of Mirage’s temporal evolution function.

There are aspects of the VC protocol to which Mirage will be applied in the future,

notably the resynchronization of the clocks. As time progresses, the sender accumulates

rights to send packets, assuming that it will use those rights and that the receiver will be

processing them. If the sender does not use these rights, they expire. VC removes

transmission access rights by the periodic resynchronization of the clocks. This is similar

Chapter 3 PRIOR WORK 59

to expansion of the state in the Mirage model, and a constraint that the space will not

expand beyond a determined bound.

3.2.9. SNR (leaky bucket)

The SNR ‘leaky bucket’ protocol is a transfer protocol based on periodic exchange

of state [Ne90], [Sa89], whereas comparable protocols (NetBlt, VMTP, XTP, Delta-t,

etc.) exchange state primarily at the occurrence of an event. Because the complete state is

communicated asynchronously to such events, SNR is self-correcting, i.e., it recovers

gracefully from corruption and loss errors without additional mechanisms. Whereas SNR

claims to be self-stabilizing (with proofs forthcoming, [Go]), Mirage sets stability as the

criterion for state information emission, so protocols designed using Mirage are stable by

construction.

SNR is a linear data stream oriented protocol that incorporates amortization

methods as in NetBlt, and minimizes packet processing overhead as in VMTP.

Amortization assumes an increase in the expected linear data stream length, and prevents

branched stream utilization. The protocol is simplified by the use of a single timer

mechanism to maintain state, resulting in reduced overhead. Further, both rate and

window based flow control are consequent to maintaining shared state, i.e., by sharing

buffer availability status.

The exchange of complete state allegedly prevents the sender and receiver from

being ‘out of sync’ due to high transmission latency. State information packets are sent in

anticipation of their request to ensure management of the perception imprecision. This

provides greater state synchronization than explicit request/response mechanisms and

accommodates known latency, given deterministic remote state evolution. If the remote

state evolves nondeterministically or if the latency is variable, the mechanism in SNR

does not ensure synchronization of state. The reasons for this are described further in

Chapter 4, in the analysis of the Network Time Protocol.

SNR causes the receiver to send state updates to the sender in a pipeline to keep the

sender’s perception of the receiver as small as desired, whereas protocols designed using

Mirage cause the sender to emit messages in anticipation of the receiver’s request. SNR

can be viewed as a restricted implementation of Mirage’s anticipation mechanism, where

the receiver in turn models the sender’s model of itself, and endeavors to constrain that

model sufficiently by anticipating its temporal expansion. For example, the sender

Chapter 3 PRIOR WORK 60

models the receiver, but that model also includes expansion in its perception of the

receiver. The receiver is in a stable state, and knows that the sender is not aware of that

stability, so it pipelines state information, recollapsing the perception at the sender each

time a message arrives there.

SNR uses periodic exchange of state as a tradeoff between bandwidth (assumed in

excess) and reduced processing overhead, and yet uses selective retransmission for packet

loss. As little as a single bit can govern flow control [Ra88], but SNR exchanges

complete state both for redundancy (thus error resilience) and because excess bandwidth

is available, preventing computationally intensive packet processing. In addition, if

bandwidth is excessive, forward error correction should dominate packet loss solutions,

with simple bandwidth-wasteful retransmission as a backup (i.e., go-back-N). Selective

retransmission reduces bandwidth at the cost of processing, contrary to the other design

decisions of the protocol; this indicates that the protocol takes advantage of reverse path

bandwidth excess only. Using the forward path in a lossy way is not considered, whereas

in the Mirage model it is considered a viable complement to latency.

3.2.10. TP++

TP++ [Fe90a] is an extension of TP4, the OSI Transport Class 4 protocol which

provides error detection and recovery [Ro90]. It provides a combination of latency

constrained, transaction (RPC), and bulk data transfer (data streaming) communication.

TP++ uses multiplexing to reduce state information among virtual connections.

Multiplexing is claimed beneficial in reducing bandwidth requirements, but detrimental

where particular state information must be retrieved.

The Mirage model considers multiplexing to reduce state information harmful. Such

multiplexing inhibits the determination of the communicability constraint, and prevents

latency reduction by anticipation with guarded messages. The Mirage model assumes that

bandwidth is not a premium, and should not be reduced in ways that restrict latency

compensation.

Chapter 3 PRIOR WORK 61

One statement associated with TP++ but not explicitly in the available literature is

that of “running until you run out of state.”1 This (unstated) assumption of protocol

design is the explicit basis for the communicability and stability constraints in Mirage.

3 . 3 . C o m m u n i c a b i l i t y

One of the fundamental characteristics of Mirage is the communicability constraint,

which indicates the conditions under which fixed latency can be accommodated by a

protocol. Communicability denotes the requisite partitioning of the remote state volume,

the need for guarded messages, and the need to express the temporal evolution of the

remote state. Communicability also specifies the conditions under which stability can be

maintained.

The basis for communicability lies in traditional communication theory, of

cybernetics and control theory. Its implementation is similar to constraint mechanisms in

monitors and methods for real time systems.

3.3.1. Cybernetics and control theory

Mirage is most fundamentally based on notions of controllability from cybernetics

and control theory [As56], [Wi48]. Cybernetics is the basis of stability, as extended in

Mirage, and sender anticipation. Mirage’s use of entropy as a measure of information

dates back to Hartley [Ha28], although originally attributed to John von Neumann. This

was described in Shannon’s communication theory, whose relevance to Mirage is

elaborated in Appendix A [Sh63].

Stability has three variations — equilibrium, cycle stability, and phase space

stability [As56]. Equilibrium occurs when a system reaches a single unchanging state.

Cycle stability occurs when a system enters a set of states that is subsequently never

exited. Phase space stability occurs when a system enters a region of phase space that is

subsequently never exited. All of these types of stability are traditional, as referred to by

‘stability’ in Chapter 2; Mirage adds another type, entropic stability, as a further

1This was mentioned by David Feldmeier in a presentation on TP++ at IFIP

Protocols for High Speed Networks, 1990.

Chapter 3 PRIOR WORK 62

extension of these, in which stability occurs when the volume of a region of phase space

is constant, rather than the particular region being fixed.

In addition, the TreeStack structure (Chapter 5 and Appendix G) in particular and

the perception that it represents are encodings of persistent phase space trajectories

(PSTs). PSTs are used in control and feedback theory to determine the stability of a

system, usually defined as the confinement of trajectories to some bounded region of

phase space.

In Mirage, perception encodes pending PST information. A perception is an

afterimage of the traces of the possible futures of the remote state, held for the duration of

the latency, until feedback resolves imprecision in the PST. This explains the need in

Mirage to extend the notion of stability to include volume stability as well as the

traditional state stability. In traditional control theory, PSTs converge to a finite region,

whereas Mirage ensures stability by bounding the size of the afterimage, regardless of the

path of the PST itself.

3.3.2. Time

There exist models of time in protocols that are more closely related to that of the

Mirage model [Sc82b]. Incorporating time as a valid period for each state of a protocol

machine is similar to denoting the interval over which the expansion of the subspace is

well-defined [Ag83]. The extension of this method that presents hold times of protocol

states as cumulative distribution functions is similar to a time extrapolation of this state

space.

Time constraints have also been added to conventional protocol models, including

timed Petri Nets [Me76], protocol projections [Sh82], and finite state machines [Sh85].

Time boundaries have also been used to denote limitations on state expansion explicitly

[Fe90b], as in Mirage. These constraints are usually expressed as boundaries, but some

describe state as a distribution function [Ag83], as does Mirage.

The incorporation of time into protocols has thus far been limited to two methods,

where time is modeled either by boundaries or by finite time-steps. In the former, time is
denoted by "T1 ≤ T ≤ T2", for some T1, T2. Actions occur upon violation of these

boundaries, as in time Petri Nets, temporal logic, or time-out timers [Sc82b]. In finite
time-step models actions occur at some time instant, where "T = T1". In Mirage, time is a

Chapter 3 PRIOR WORK 63

fully parametric value. The values of all other entities may change over time, and no

barriers or finite points exist. Time is a continuous entity, over which other entities vary.

3.3.2.1. Real time systems

Real time systems also exhibit constraint mechanisms, usually in either an analysis

or runtime scheduling capability. Here ‘real time’ means that operations terminate within

a predeclared deadline, as opposed to the less formal definition of speed, i.e., fast enough

to support ‘interactive’ requests. Real time system description languages include Hoare’s

Communicating Sequential Processes (CSP) [Ho78] and Milner’s Calculus of

Communicating Systems (CCS) [Mi80]. Mirage includes a scheduling constraint notion

in communicability, i.e., in the scheduling of packets during the latency.

3.3.2.2. Aging variables

The modeling of time as an aging variable [Sc82b] is not as general as that in

Mirage. Time markers age, but other entities do not vary with time. Aging reduces the

precision of an entity. The aging of other variables may also affect the aging of a

variable, so the function of time on the variables is arbitrary and variables are

interdependent. In the Mirage model, time transforms the subspaces arbitrarily; the

transformation is known at the time it is invoked, but the model does not restrict the

transformation a-priori.

3.3.2.3. Timers

Other systems model time not by a variable but by timers that govern error recovery

as in TP++ [Fe90c] and Delta-t [Wa89], or state maintenance as in SNR [Sa89] or Delta-t

[Wa89]. Mirage uses time to model the entire state space, not just flow parameters, error

control, or recovery state.

Time can also be a boundary, as in Real Time Communication (RTC) [Fe90b],

including statistical boundaries, as in Mirage. In RTC there are temporal constraint

formulae as in Mirage, including those for connection management, buffer availability,

delay bounds, and statistical properties of ‘saturation’ (real time deadline overflow, i.e.,

saturation of the scheduling mechanism). Rate based flow control is a side effect of this

use of timers and constraint equations in RTC, and future research in Mirage may also

show other aspects of existing flow control protocols to be side effects of maintaining the

communicability and stability constraints.

Chapter 3 PRIOR WORK 64

3.3.3. Constraints

The notion of restricting a machine to operate only within the valid subspace is an

extension of distributed/replicated database techniques, most notably read/write quorum

strategies [Gi79]. In addition, there have existed designs for external monitors that

maintain constraints on a system, one of which is called the Overseer [Fa76a]. The use of

these environments or supplemental programs to warn of dead-ends, maintain locality,

and restrict other programs to within some valid subspace is similar to the methods used

here. Mirage differs in that it appears that these notions are central to the operation of the

protocol, not external, supplemental constraining devices.

Common knowledge methods of constraint are also relevant to Mirage, including

conventional common knowledge [Ha84], database knowledge as in quorum consensus

[Gi79], and in protocol analysis [Go88]. Each of these uses individual inference based on

group constraints, as applied to incomplete information about the group. Mirage uses

individual constraints, but includes similar inference, although common knowledge does

not include Mirage’s anticipation mechanisms.

Common knowledge as applied to protocols [Go88] denotes knowledge as a

superset of state, e.g., knowledge includes facts true in all possible states, whereas state

may include particular facts which may be asserted or omitted (although not inhibited).

Mirage’s ‘perception’ models locally all possible states of a remote entity, so in Mirage

knowledge is explicitly denoted by the modeling of state. For example, if some states in a

perception require a message emission, and no other states inhibit it, the sender would

emit the message guarded to be received by the indicated states only.

3 . 4 . A n t i c i p a t i o n

Prediction in cybernetics utilizes constraints with sender/receiver modeling [As56].

This permits regulation, defined as isolating an external observer from observing internal

system effects. In Mirage, this corresponds to anticipatory latency accommodation as it

isolates the communicating entities from observing the actual latency between them, i.e.,

from being adversely affected by the latency. Regulation, also referred to as homeostasis,

reflecting cybernetics as focused on biological systems, also is described in the presence

of error (i.e., latency), and in the presence of constraints on the anticipatory control

capability (i.e., communicability).

Chapter 3 PRIOR WORK 65

Anticipatory feedback is defined as the action of a ‘compensator’ (sender) when the

‘effector’ (receiver) has a time lag in action. As noted therein, “the conditions of stability

and effectiveness of anticipatory feedbacks need a more thorough discussion than they

have yet received,” [Wi48] which we believe is just as true today.

Anticipation mechanisms that are similar to Mirage exist in operating systems and

congestion control, as well as areas of client/server extensions and some recent

discussions in protocol research.

3.4.1. Operating systems

Most versions of anticipation use a depth-first search (DFS) of the possible state

space. Some extend this to a version of breadth-first search (BFS) that examines some

paths of possible state, and either terminates all but the desired path [Sm89] or rolls back

the state of the paths that fail (Time Warp) [Je85]. Mirage exhibits BFS anticipation

without rollback, but the source of the indeterminism (of the BFS tree) is latency induced

imprecision, rather than algorithmically explicit, e.g., Monte Carlo execution methods

[Sm89].

3.4.1.1. Concurrent execution

Jonathan Smith’s dissertation addressed the speedup of BFS searches by distributed

BFS execution, with successful paths preempting the execution of concurrent attempts

[Sm89]. Mirage is similar in the use of excess resources to save time. Mirage differs from

such a BFS search in that entire levels of the possible state ‘tree’ are accounted by

messages, so no preempting of failed paths is required. ‘Sibling elimination’ collapses the

ensemble of processors to a single valid member, whereas Mirage requires a more

intricate TreeStack pruning to remove models of multiple possible remote states.

Smith’s method is similar to Mirage if the set of remote processors is considered a

single remote entity; in that case Mirage’s state imprecision corresponds to Smith’s

indeterminism of process execution time or termination. Smith’s method uses BFS to

permit multiple processors to participate in latency reduction in ensemble fashion,

whereas Mirage models temporal imprecision in the state of the remote node.

Chapter 3 PRIOR WORK 66

3.4.1.2. Time Warp

The Time Warp system uses multiple distributed processes, each looking ahead,

with rollback providing resynchronization (i.e., Time Warping) [Je85]. Time Warp is a

distributed system, but in one of our first discussions (Chapter 1) we describe that there is

little difference between a distributed system mechanism and a protocol, for which

Mirage is designed. Even though rollback is a common method of error recovery in

distributed systems [Ra78], Time Warp uses rollback to permit the distributed processes

to proceed into possible future paths. Rollback occurs when a particular future of a

participant is inconsistent with that of some other participant.

Messages in Time Warp are modeled similarly in Mirage, with sent messages being

modeled as being both received and not received, and resolution of state occurring at a

later time. In Time Warp the local process examines a single DFS path into the future,

whereas Mirage examines all paths in BFS order, avoiding rollback. Resolution in Time

Warp occurs via rollback, whereas in Mirage it occurs when the modeled state collapses

using the subtree selection mechanism of the TreeStack.

Time Warp differs also in that it deals with message loss as the source of state

imprecision, rather than time lag, as in Mirage.

3.4.2. Congestion control

Anticipation is beginning to appear in congestion control methods as well. We

distinguish general methods of anticipation from congestion control anticipation because

the latter uses a restricted state space. Congestion control, also called flow control, is

performed by feedback, timers, anticipation, or a combination of these. The relative

merits of each system can be evaluated as compared to Mirage.

3.4.2.1. Anticipatory congestion control

Predictive congestion control (PCC) “predict(s) (the) behavior of the system at a

specific time instant in the future” [Ko90]. Mirage assumes that propagation delays

dominate the system, whereas PCC claims that switching delays dominate. PCC attempts

to reduce the switching latencies caused by buffering. In either case, the systems are

based on the notion that the “state of a node may change considerably between sending

Chapter 3 PRIOR WORK 67

messages (with control) and receiving them” [Ko90]. In Mirage, all messages control the

state space, but the assumption that state varies during communication latency is the

same.

Reactive congestion control fails due to the fixed latency, so proactive measures are

indicated. PCC is similar in principle to Virtual Clock, albeit derived differently. PCC,

like Delta-t and SNR, uses periodic exchange of data and rate control state to govern flow

control. PCC is directed at individual hop flow control, but extends to end-to-end

methods as well.

Mirage is also proactive, although as it regards the entire controlling state of a node,

rather than just the flow of data. Mirage is thus a more general form of PCC, based on

more general principles of state sharing and stability.

3.4.2.2. Timer-based congestion control

The Stop-and-Go flow control protocol reduces latency jitter in packet transmission

[Go90]. This protocol is designed to be used where the state of the system (available

buffers) is deterministic with respect to time, but where latency jitter induces the same

imprecision in remote state perception as nondeterministic state evolution would have.

This isomorphism is addressed in Chapter 4. Jitter is reduced at the expense of an

increase in the minimum latency, which is advantageous only where the remote state

imprecision is a function of jitter alone, i.e., where the remote state is otherwise

deterministic. Such is the case in some time protocols, such as the Network Time

Protocol [Mi90b], also addressed further in Chapter 4.

3.4.2.3. Feedback congestion control

Other mechanisms more indirectly infer feedback information for flow control

[Ja89]. Jain’s mechanism uses round trip time variability to determine network overload,

and to adjust packet flow accordingly, but this is a reactive method of control, in which

adjustments occur after a round trip latency. Reactive flow control works properly on the

time scale of tens of round trip times, whereas proactive control methods, such as in

Mirage, are required for more spontaneous activity [Ja90].

Jain also argues for multidimensional flow control, noting that window vs. rate

control, open vs. closed feedback, router vs. source controls, and reservation vs. ‘walk-in’

bandwidth allocation mechanisms each affect the entire scheme of flow. We consider that

these are each an endpoint in a continuum, and that the entire set of controls denotes a

Chapter 3 PRIOR WORK 68

space of possible flow protocols, because each requires additional state modeling in

Mirage. Conventional mechanisms investigate endpoints of the flow protocol space,

whereas further investigation using Mirage may demonstrate protocol versions that

exhibit any location in that space.

3.4.2.4. Combination control

Other attempts have been made to reexamine round trip time estimation, as it

pertains to flow control and state variability, including those by Jacobson [Ja88b]. In

terms of Mirage, state is the send window size and the rate parameter of the flow control,

as managed by predictions of round trip time and altered by feedback information. Initial

state is assumed to have a unit window and a minimal (one-time emission) rate, which is

a minimal initial state resulting in sustained communication, as compared to the non-

minimal initial state of the Delta-t protocol. Methods to adjust this state are expressed by

the so-called Slow Start and Exponential Backoff algorithms, and the inverse exponential

‘round trip time’ sequence averaging. In the past, these algorithms have been considered

extraneous to the declaration of the TCP protocol [Po81a], but Mirage indicates that the

TCP protocol cannot be modeled without them, because these equations govern the

evolution of state and thus communicability and stability.

3.4.3. Other forms of anticipation

Other versions of anticipation include extensions to client/server models, recent

conference presentations in protocols, and most notably computer architecture. The

similarity between methods of protocol anticipation in Mirage and computer architecture

is described in detail in Chapters 5 and 6, in which we describe a novel architecture for

processor-memory interaction using anticipation mechanisms in active memory

architectures.

3.4.3.1. Client / server extensions

Existing client/server protocols exhibit traditional request/response protocols, such

as Remote Procedure Call (RPC) [Su88] and the Network File System (NFS) [Su89].

Extensions to RPC include Remote EValuation (REV), which sends the code to the data,

rather than the conventional converse of RPC [St90]. A further extension of REV, called

Late Binding RPC, provides for some kinds of anticipation [Pa91]. The difficulty with

Chapter 3 PRIOR WORK 69

RPC mechanisms is that the evolution of the perception of the remote space is governed

by the function within the RPC. The RPC functions thus determine communicability, and

their variation makes stability more difficult to ensure.

3.4.3.2. Recent protocol discussions

A recent conference in high speed protocols resulted in several current

considerations which are similar to components of Mirage [Pa90b]. These include

‘parallel RPC’, network anticipation, and ‘asynchronous RPC’.

‘Parallel RPC’ (of Craig Partridge) requests data in excess of expected utilization,

in the hope that some will be of use. Excess bandwidth is wasted to keep the CPU fed, in

the prediction that CPU starvation will result from increased bit latency. This method is

similar to the parallelization in Jonathan Smith’s method of distributed execution [Sm89],

which is ensemble based, whereas Mirage is based on possible states of a single remote

process.

‘Network anticipation’ (of Jonathan Smith) is a receiver version of sender

anticipation in Mirage, and is similarly used to keep a starved CPU fed. This method is

the network analog of conventional cache anticipation mechanisms, whereas Mirage

suggests new versions of active memory anticipation in contrast. Sender anticipation in

active memories is addressed in Chapters 5 and 6.

‘Asynchronous RPC’ is a new paradigm for interaction that accommodates latency

(Thomas Joseph). He notes that asynchronous RPC may require larger messages, but that

wasting bandwidth to permit asynchronous return frees the local processor during

response latency. A-RPC is not anticipatory, as Mirage is, but it does provide a

mechanism in which Mirage’s analysis may also prove useful.

David Cheriton also presented a talk recently [Ch91] about ‘dissemination oriented

communication’ (DOC). It describes an eager communication system, in which round trip

latency is avoided for conditional behavior. This system is similar to a SIMD1

conditionally executed instruction, i.e., where opcodes are executed or ignored depending

upon local processor state; messages are sent and accepted only if the receiver is in the

proscribed state. Such messages are the same as Mirage’s guarded messages, although the

guard performs different functions in each. DOC is geared towards conditional execution

1Single Instruction Multiple Data, denoting a multiprocessor system in which

opcodes are broadcast to the processors, each of which operates on its own data stream.

Chapter 3 PRIOR WORK 70

in an ensemble of processes, as in the SIMD system, whereas Mirage models imprecision

in knowledge of a particular state (i.e., temporal imprecision).

3 . 5 . P h y s i c s an a l o g s

Mirage was originally developed from analogies from physics, as described in

Appendix B. The analogies are based on the multiple-worlds model of quantum

interaction, and the Feynman path integral method for particle interaction analysis. The

multiple-worlds model is also similar to those in Truth Maintenance Systems, which

describe data structures for maintaining simultaneous logical states, similar to the

TreeStack structure developed for the µ-Net architecture presented in Chapter 5, and

discussed in Appendix G.

3.5.1. Truth Maintenance Systems

The term ‘Truth Maintenance System’ (TMS) was coined by Jon Doyle, and refers

to a logic system that maintains possible logical states [Do77], [Do79]. This is similar to

the sender’s perception of the receiver as modeled as a set of possible states in Mirage. In

a TMS, this set of states is modeled by a data structure, which is maintained by a

combination of instantiating extensions and collapsing revisions; in Mirage, the set is

expanded upon message emission, and collapsed upon message reception. The perception

in Mirage has been extended to model recursion in the remote state (in µ-Net, in Chapter

5), but it is not clear whether a corresponding recursive TMS exists, although recursion is

used in TMS methods.

3.5.2. Physics in protocols

The Computational Field Model (CFM) is recent research in the direct application

of physics analogies to distributed systems issues [To90b]. CFM is an “object oriented

open distributed environment” that addresses the issues of computing processes (i.e.,

programs) affecting the environment of the computation, permitting redistribution of the

processes. CFM also notes that message passing and object oriented hidden messages are

not capable of modeling communication latency; instead, a model of “assimilation /

dissimilation” is developed.

Chapter 3 PRIOR WORK 71

CFM defines distributed computing as parallel computing with interprocess

communication delay, similarly to our definitions of communication in the Introduction

(Chapter 1). Distance is defined as geographic distance, under the presumption that this is

proportional to communication latency. Mass is defined as the size of the object, and

inertia as the migration overhead. These definitions are not otherwise justified, i.e.,

inertia is necessarily linearly related to mass, as in their physical analogs.

Gravitational force is defined as the bandwidth of communication (size and

frequency of communication, therein). A counteracting repulsive force is defined as “the

product of the size of the objects over the distance to the n-th power.” No rationale for the

definition of these forces is given. Gravity should be a benefit function that causes

objects to migrate together. Repulsion is a cost function causing objects to migrate apart.

A message is considered a “special object,” whose migration is handled through the

addition of primitives of dissimilation, migration, and assimilation primitives. It is not

clear why a more unified approach is not used, where messages are simply objects that

are defined as having an infinite repulsion to the sender and an infinite gravity to the

receiver. Assimilation is message creation and dissimilation is message absorption, which

are required in either case to describe object ‘fission’ and ‘fusion’ (terms we prefer,

because they imply messages and nodes are the same ‘matter-energy’). In CFM, delivery

service classes and timeouts can be specified in terms of message inertia, mass, and

lifetime to decay, rather than introduced as separate characteristics of migration.

The CFM bears a resemblance to our original model basis, in which communicating

entities are described as particles, and communication is described as particle exchange.

Our original model, however, does not differentiate messages from endpoints, and

presents a more unified approach that we feel more accurately adapts physics analogs to

communications principles. This may be the effect of our choice of utilizing the particle

exchange description of physical forces, rather than fields, described in detail in

Appendix B. Particle exchange seems more accurate because messages represent

particles. The field model of forces is likely to be more appropriate to repulsive cost

description, because multiple objects should be prevented from sharing a single

processor. This latter field is a binary function, because there should be no difference in

the repulsion between objects on two adjacent vs. two separated processors; other costs of

interaction (communication) should govern their attraction, or permit them to move about

independently.

Chapter 4 A MIRAGE OF NTP 72

C H A P T E R 4

A Mirage of NTP

This is an application of the Mirage model to an existing protocol, the Network

Time Protocol (NTP). We chose this protocol for its simplicity and its prevalence. Here

we apply the abstract principles of Mirage and perform an experiment that helps further

refine the Mirage model.

This analysis demonstrates the equivalence between latency variability and

imprecision in the local perception of the remote state, thus extending the domain of the

Mirage model to variable latency regimes. We also examined how Mirage relies on time

measurements, due to the seeming contradiction in modeling a clock protocol with a

time-based model.

We concluded that several optional components of the NTP specification are

integral to our model of NTP in Mirage, and that these components should therefore be

required. These components include the logical clock, peer dispersion, and data filter

algorithms.

The Mirage model of NTP reduces to a hardware clock signal where delay

variability is zero. This implies that the variability of the latency limits clock

synchronization, rather than the overall latency magnitude. This reduction resulted in a

refinement of the variability of the measured offset.

Chapter 4 A MIRAGE OF NTP 73

NTP has proven useful in demonstrating the application of some basic components

of Mirage. Unfortunately, many of the novel aspects of Mirage are not applicable to NTP,

e.g., guarded messages, state space partitioning, and communicability tradeoffs. Later

chapters of this dissertation (µ-Net in Chapter 5, and µ-Scope in Chapter 6) demonstrate

those components that NTP cannot.

4 . 1 . A n ov e r v i e w of N T P

We begin with a summary of NTP. Whereas there have been 4 versions of NTP

(numbered 0 through 3), this exercise focuses on core aspects of the protocol, which have

changed little in recent versions. Thus Version 3 is referenced here [Mi90b].

The Network Time Protocol is a protocol for synchronizing system clocks. It

consists of a request/response engine for exchanging timestamp messages, a logical clock

providing an adjustable time reference, and a set of algorithms for integrating sets of

message responses to determine an appropriate adjustment.

The logical clock provides a mechanism for a user-adjustable time reference, if not

already explicit in the node’s operating system. The NTP logical clock engine is named

the Fuzzball. The clock consists of an absolute offset, called an epoch, and a frequency

ratio scale. The logical clock is defined as the epoch plus the hardware elapsed time

multiplied by the frequency ratio, so an otherwise fixed system clock can be adjusted in

both absolute offset and frequency. Drift, the variability in frequency, is not compensated

for in the logical clock provided in NTP, and is assumed to be zero. Furthermore, the

logical clock is described as ‘optional’ in the NTP specification. Between two logical

clocks, offset is the difference in epochs, skew is the difference in frequency. Dispersion

is the known error in the local clock.

NTP also includes a mechanism for organizing a set of clock servers into a

hierarchy based on clock strata, where stratum is a group of clocks at a specified

precision. Descriptions of various strata are given in [Mi90b]. Lower strata (e.g., Stratum

1) describe more accurate clocks; strata range from 1 to 255, with 0 representing an

unspecified stratum. Stratum 1 clocks are called primary servers; strata 2-255 are called

secondary. Stratum 1 clocks are the root(s) of the timeserver hierarchy, and a stratum k

server is defined as having a distance of k -1 to the nearest root.

Chapter 4 A MIRAGE OF NTP 74

The core of the NTP protocol is a client/server engine that stamps messages when

sent and received. A message initiated at a host returns with 3 timestamps in its packet

body (sender out ‘originate’, receiver in ‘receive’, receiver out ‘transmit’) and a fourth

stamp retained upon receipt of the message, but separate from it (sender in ‘input’)

(Figure 4.1). Received messages are automatically replied, and sent messages are

periodically initiated according to local state information.

0 1 2 5 6 8 9 16 17 24 25 31

LI VN MODE STRATUM POLL PRECISION

ROOT DELAY (32)

ROOT DISPERSION (32)

REFERENCE IDENTIFIER (32)

REFERENCE TIMESTAMP (64)

ORIGINATE TIMESTAMP (64)

RECEIVE TIMESTAMP (64)

TRANSMIT TIMESTAMP (64)

AUTHENTICATOR (OPTIONAL) (96)

FIGURE 4.1
NTP message format

The local state information is combined with sets of replies. These replies are

processed to prevent individual server clock errors from affecting clocks of their clients,

where possible. Various combining and filtering algorithms provide this processing, and

adjust the current local clock and maintain the clock server hierarchy. The hierarchy

determines which servers will be consulted for future clock data.

There are two types of sets of message replies considered in NTP. Temporal sets of

data are taken at different times from the same server; ensemble sets are taken at (nearly)

the same time from a set of different servers.1 Temporal sets are held in a shift register,

and combined using a filter algorithm; ensemble sets are combined using the peer

selection algorithm and the combining algorithm.

1The terms ‘temporal set’ and ‘ensemble set’ occur in both statistics and physics, as

they are used here.

Chapter 4 A MIRAGE OF NTP 75

Other components of NTP include control messaging, authentication, and

asymmetric modes of operation. The conventional symmetric mode of operation is

outlined above; asymmetric modes include servers broadcasting to a set of workstation

clients, and those clients, as well as root servers (read-only clocks). Control messaging

provides user-level access to protocol state, for remote monitoring and manipulation.

Authentication provides security and additional protection from Byzantine failures

[Pe80]. These components are optional in the NTP specification. They are not considered

in this analysis because they are supplemental to the basic operation of the protocol.

4.1.1. How NTP reads a clock

NTP reads a remote clock by sending a NTP message to the remote node (Figure

4.1), and waiting for a reply. Upon receipt of the reply message, the client/server engine

pairs the incoming packet with the current local time (‘input time’, a.k.a. ‘peer receive’),

and processes it. The message is stamped at each reception and emission (Figure 4.2).

REMOTE

LOCAL
originate

receive transmit

input

offset

FIGURE 4.2
NTP message exchange

The four timestamps – originate, receive, transmit, and peer receive (input) – are

used to compute round trip time and offset measurements. The round trip time (δ) can be

computed from the difference between the sender interval and the receiver interval

(Equation 4.1). This formula appears in the NTP specification.

‘Clock time’ is defined as the average over an interval, i.e., local time is the average

of the originate and input values, and remote time is the average of the receive and

transmit values (Equations 4.2, 4.3). ‘Offset’ (θ) is defined as the difference between the

remote clock time and the local clock time, where a positive offset indicates that the

remote clock is ahead of the local clock (Equation 4.4, Figure 4.2). This formula is

Chapter 4 A MIRAGE OF NTP 76

derived differently than in the NTP specification, but the result is the same (Equations

4.5, 4.6).

Equation 4.1: δ = Tin − Torig() − Txmit − Trecv()

Equation 4.2: Tlocal =
Tin + Torig()

2

Equation 4.3: Tremote =
Txmit + Trecv()

2

Equation 4.4: θ = Tremote − Tlocal

Equation 4.5: θ =
Txmit + Trecv()

2
−

Tin + Torig()
2

Equation 4.6: θ =
Trecv − Torig() + Txmit − Tin()

2

The calculated round trip delay is ‘exact’, i.e., the four timestamps exactly

determine the total round trip time. The offset calculation, however is not similarly exact.

The NTP formula for offset makes several assumptions: (1) that clock time varies only

linearly during the exchange, and (2) that outgoing transit time and incoming transit times

are identical . Assumption (1) is required – were it not, the protocol would not be able to

determine a clock value. The clock value is thus defined to be the linear interpolation of

the send and receive times of the message.

The calculated offset is affected by the difference between the outgoing and

incoming transit times. Outgoing transit time adds to the measured offset, whereas

incoming transit time subtracts from the measured offset. Under no other assumptions,

the one-way delays are bounded between 0 and the total round trip time (δ) (Equation

4.7). This loose bound on delay results in a similarly loose constraint on calculated

offsets (Equation 4.8). These bounds are shown visually (Figures 4.3, 4.4). Figure 4.3

shows that if outgoing delay is larger than incoming delay, the offset is incorrectly

Chapter 4 A MIRAGE OF NTP 77

measured as larger than intended; if incoming delay dominates the round trip time

(Figure 4.4), the offset is incorrectly measured as smaller (falsely negative).

Other boundaries exist in the specification that require local time lines to be non-

negative, a receive time between the originate and transmit times, and a transmit time

between the receive and input times as well.

Equation 4.7: 0 ≥ δunidirectional ≥ δbidirectional

Equation 4.8: θ +
δ
2
≥ θ̂ ≥ θ −

δ
2

REMOTE

LOCAL

offset (+)

FIGURE 4.3
Exchange slid forward (maximum offset)

REMOTE

LOCAL

offset (-)

FIGURE 4.4
Exchange slid backward (minimum offset)

4.1.2. NTP background

NTP relies on the UDP protocol for connectionless transport-layer services [Po80],

i.e., unreliable datagram services. UDP provides user-level access to the IP protocol

[Po81b] and is the basis of the request/response transport mechanism, but the NTP

protocol does not require either IP or UDP specifically. NTP evolved from earlier time

protocol extensions of the Internet protocol suite, specifically the Time Protocol [Po83]

and ICMP Timestamp message [Po81c].

Various versions of NTP exist, beginning with the original RFC [Mi85], which

included only data and packet formats, and the specification of the client/server engine.

Version 1 [Mi88] added a self-organizing clock hierarchy and a logical clock algorithm,

neither of which is integral to the protocol. Version 2 added authentication, control

message capability, and asymmetric modes of operation, also supplemental to the

protocol [Mi89b]. The latest NTP, Version 3 [Mi90b], includes an “overhauled” local

clock algorithm, and new algorithms for peer offset combination; it also refines the

definitions of delay, offset, and dispersion.

Chapter 4 A MIRAGE OF NTP 78

We use Version 3 NTP for our discussion and analysis. A summary of the version

enhancements of NTP appears in Table 4.1. “Required” indicates whether the NTP

specification denotes the component as required or optional, and “first version” indicates

the version number in which the component first appeared.

NTP component Required? First
versio

n

packet exchange engine y 0

logical adjustable clock n 1

self organizing hierarchy y 1

overcome unreliable y 1

peer select / filter n 1

control message y 2

asymmetric modes y 2

authentication n 2

TABLE 4.1
NTP versions and components.

4 . 2 . C a s t i n g N T P in t o M i r a g e

Viewing NTP using the Mirage model (‘casting’) involves describing the state

space of NTP and interpreting messages of NTP in terms of the state space

transformations of Mirage (Chapter 2). We define the state space of a protocol by the

variables that characterize the protocol operation, rather than by those of the protocol

specification. We differentiate the state that the protocol manipulates from the state

required to manage that manipulation, in the sense of first-order state and second-order

state. First order state characterizes the state space of the protocol, whereas second order

state helps define varying characteristics of the transformation functions.

Chapter 4 A MIRAGE OF NTP 79

The Mirage model contains numerous references to time as absolute, so it may

seem confusing to apply it to a protocol that manages clocks. Prior work in clock

synchronization has called a clock “a function that maps real time to clock time” [Ma85],

so the ‘time’ variable that NTP manages is just another linear state space. Clock protocols

manage the agreement of a single variable (clock value), as it changes over time.

Although time is used to manage the clock (e.g., in NTP using the polling interval), the

effect of clock manipulations on the time variable of the protocol is ignored. NTP (and

Mirage) assume that such variations are small in comparison to the intervals measured.

NTP endeavors to replicate a remote clock value that is assumed to be precise and

accurate in its local space. The precision and accuracy of this clock are denoted by user

classification, not within the protocol. The correspondence between the clock value and

real time (true accuracy) is a semantic issue that is arguably not provable and that neither

NTP nor Mirage proposes to address.

4 . 3 . R e s o l u t i o n of do m a i n di f f e r e n c e s

The Mirage model is designed for the domain where messages are delayed by a

fixed, known amount, and the remote process exhibits variability in its computation.

Conversely, NTP operates where messages are delayed by a variable amount (and

potentially lost), and the remote process (clock) has very little intrinsic variability (error).

We first describe how variability in message latency is equivalent to variability in

computation at the remote node.

In NTP a round trip message exchange specifies a delay and offset; delay is the

round trip message latency, and offset is the difference between the clock values.

Consider the case where two nodes are absolutely correct, but the communication

latencies vary. The true offset is zero, but the measured offset is not.

Let the unidirectional message delay be a probability density function (pdf)

approximated by a Poisson distribution (Figure 4.5). The round trip delay is the sum of

the unidirectional delays, and can be computed by the convolution of the unidirectional

delay with itself (Figure 4.6). The offset is affected by the difference of the unidirectional

delays, because outgoing delay causes the remote clock to be measured as late, whereas

incoming (return) delay causes the remote clock to be measured as early. The difference

in these delays is the convolution of the unidirectional delay with a reverse of itself (f(-x),

Chapter 4 A MIRAGE OF NTP 80

as in Figure 4.7). Both these formulae assume that the unidirectional delays are identical

pdfs.

Prob.
(%)

Delay

0

0 MIN
LAG

FIGURE 4.5
Unidirectional delay as a Poisson pdf1

⊗ =

FIGURE 4.6
Bidirectional delay is the convolution of unidirectional delays

⊗ =

FIGURE 4.7
Measured offset is unidirectional delay convolved with its reverse

The resulting bidirectional delay has an Erlangian distribution (by definition2)

(Figure 4.8). The measured offset exhibits the effects of the difference between incoming

and outgoing delay, and that even perfect clocks are measured as statistically variable

when communication latencies vary (Figure 4.9). The consequent offset pdf is symmetric

1probability density function.
2An Erlangian distribution is defined as the convolution of a fixed number of

identical Poisson distributions. In a queuing network, if each stage is Poisson in

processing delay, then a path through the network exhibits Erlangian delay.

Chapter 4 A MIRAGE OF NTP 81

about the zero offset, and appears Gaussian in form. An asymmetric pdf would result if

the communication latency were asymmetric (forward vs. reverse paths).

Prob.
(%)

Delay

0

0 MIN
LAG

FIGURE 4.8
Bidirectional delay as Erlangian (N=2)

Offset

Prob.
(%)

0
0

FIGURE 4.9
Measured offset as pseudo-Gaussian.

The bidirectional delay and measured offset of this system can be combined by an

outer product, to show one possible structure of a delay/offset pair (Figure 4.10). The

internal structure of such a graph cannot be determined from the delay and offset pdfs

alone, because two one-dimensional pdfs underspecify the 2-dimensional delay/offset

pdf. Even so, the outer product shows a structure similar to that of real NTP

measurements, shown later. The result is that, even in the case of perfectly aligned

clocks, a wide distribution of offset values occurs.

0

MIN
LAG Delay

Offset

0

FIGURE 4.10
Probability vs. [delay, offset] pairs, density plot.

Chapter 4 A MIRAGE OF NTP 82

4.3.1. Analysis of delay and offset measurements

To verify these assumptions, we performed some measurements of NTP. We used a

UNIX1 shell script to exchange NTP packets (with timeout) between a local host (in

Pennsylvania) with a remote node in California (a Stratum 2 NTP server). Each set of

measurements reflects 2200 NTP requests (with a failure rate of approximately 1.5%, or

33 lost requests), at a rate of approximately 200 per hour, for a total of 11 hours,

beginning at the time indicated. “Friday 8am” indicates a peak period (Friday 8am – 7pm

EDT), and “Tuesday 8pm” indicates an off-peak period (Tuesday 8pm – 7am EDT).

The offset curves are Gaussian-like (Figures 4.11, 4.12), in which the peak

measurements (Figure 4.12) have slightly higher variance than off peak (9.3% higher

variance for peak).

- 0.05 0 0.05

5

10

15

20

25

30

- 0.1 0.1

Offset (sec)

Percent
of total

(%)

FIGURE 4.11
Tuesday offset values (off-peak)

0.1 0.2 0.3

5

10

15

20

25

30

0.40

Offset (sec)

Percent
of total

(%)

FIGURE 4.12
Friday offset values (peak)

The delay measurements are also as expected, approximating Erlangian

distributions (Figures 4.13, 4.14). The off-peak measurement exhibits a smaller minimum

delay (Figure 4.13). Both experiments show an unexpected quantization, especially

because it appears in the delay measurements but not in the offset measurements, and

both quantities are derived from the same timestamp sets (from NTP message headers).

The quantization may be the result of using a fixed set of IP paths, except that the

quanta are nearly exact units of 0.01 seconds (10 ms). We assume that this quantization

was due to a fixed service interval in the local NTP server response loop. This conclusion

is further complicated by the fact that some replies have delay quantizations that are

slightly smaller than the 0.01 second quanta. Similar quantizations are manifested in

ensemble averages, so we conclude that the code of our local NTP implementation is the

1UNIX is a registered trademark of Unix Systems Laboratories.

Chapter 4 A MIRAGE OF NTP 83

most likely suspect. Further analysis of NTP may prove this conclusion, but is beyond the

scope of this dissertation.

0.1 0.2 0.2 0.4

5

10

15

20

25

30

0

Delay (sec)

Percent
of total

(%)

FIGURE 4.13
Tuesday delay values (off-peak)

0.1 0.2 0.3 0.4

5

10

15

20

25

30

0

Delay (sec)

Percent
of total

(%)

FIGURE 4.14
Friday delay values (peak)

Regardless of the quantization effects, the curves are bounded by Erlangian-shaped

envelopes. Again the peak values have a slightly higher variance (15.7% larger variance

for peak), although this is because the peak delay pdf has a longer ‘tail’ of values of

higher latency. The peak pdf is has a larger minimum delay, and delay values are grouped

more tightly about the mode than in the off-peak. The higher latency is the result of

higher network loads during peak times. The more tightly grouped latency values are

most likely the result of side effects of network load on routing information accuracy.

The NTP implementation we tested is supported by the IP datagram transport

protocol. IP routing information is maintained as a side effect of IP datagram

transmission [Co91a]. Higher network loads result in more accurate routing information,

which in turn results in more precise (i.e., repeatable) latency. Lower network load can

permit routing table inaccuracies to persist longer, so that datagrams experience larger

variability in route paths, in turn increasing delay variability.

These measurements indicate that: (1) there is a minimum delay that is not affected

by the latency variability, so there exist tighter bounds on the measured offset, and (2)

forward and reverse path delays are not equal. The distributions of delay/offset pairs for

both peak and off-peak data sets are shown in Figures 4.15, 4.16, respectively. The

previous plots of offset and delay are the (respectively) horizontal and vertical projections

of these plots (Figures 4.13, 4.14, 4.11, 4.12). For comparison, we also present a 3-

dimensional plot of the off-peak values (Figure 4.17).

The round trip latency can be partitioned into two components – a fixed minimum,

and a variable additional delay, where each component is non-negative (by definition).

Chapter 4 A MIRAGE OF NTP 84

The corresponding fixed minimum components of the two alternate bounds are plotted as

vertical lines (gray and dashed).

0.05

0 0.1 0.2 0.3 0.4

0.1

0

-0.05

-0.1

Delay (sec)

Offset
(sec)

FIGURE 4.15
Delay v.s offset, time-repetition density (off-peak)

0.05

0 0.1 0.2 0.3 0.4

0.1

0

-0.05

-0.1

Delay (sec)

Offset
(sec)

FIGURE 4.16
Delay vs. offset, time-repetition density (peak)

In these plots, the NTP bounds (Equation 4.8) are shown as solid diagonals. These

bounds appear too loose, and are based on the assumption that one-way latency is

bounded by the total round trip latency only. Shifting these bounds to the right yields

more appropriate boundaries to the displayed data; two such alternate bounds are shown

(loose in gray diagonal, and more restricted in dashed diagonal lines). These alternate

boundaries suggest reinterpretation of the bound on the difference between outgoing and

incoming latency, and their effects on the measured offset values.

Chapter 4 A MIRAGE OF NTP 85

0
0.1

0.2
0.3

0.4-0.1

0
0.1

0

5

10

15

20

Delay
(sec)Offset

(sec)

Percent
of total

(%)

FIGURE 4.17
Delay vs. offset vs. probability, time-series (off-peak)

Off-peak measurements have larger minimum delay components, but there is less

variability in our visual estimation of the minimum delay, compared to peak

measurements. Again, this can be explained as an effect of the routing table maintenance,

where light network load results in low delay, but in high variability in delay, because

route information is updated less often. High load causes high delay, with low variability

because heavy traffic helps maintain accurate route information.

The partitioning of round trip latency into non-negative fixed and variable

components (Equation 4.9) can be incorporated into the previous constraint equations

(Equations 4.7, 4.8), resulting in Equations 4.10, 4.11.

Equation 4.9: δ total = δ fixed + δvar

where δ fixed ≥ 0 and δvar ≥ 0

Equation 4.10: 0 ≥ δuni-var ≥ δvar

Equation 4.11: θ +
δvar

2
≥ θ̂ ≥ θ −

δvar

2

Chapter 4 A MIRAGE OF NTP 86

Visually, the effects of this partitioning of the delay can be shown by modifying the

NTP message exchange diagram (Figure 4.2) to Figure 4.18. Black portions indicate

fixed components of the delay, and gray indicates variable components; the remote

interval is bounded between the fixed components of latency. The bounds on the offset

are more tightly restricted as a result (Figures 4.19, 4.20), compared to the earlier

diagrams (Figures 4.3, 4.4).

REMOTE

LOCAL

offset

FIGURE 4.18
Fixed (black) and variable (gray) delay in message exchange

REMOTE

LOCAL

offset (+)

FIGURE 4.19
Exchange maximum offset, variable delay

REMOTE

LOCAL

offset (-)

FIGURE 4.20
Exchange minimum offset, variable delay

Thus far the delays have been assumed identical on the forward and reverse path of

a message. If this were the case, all measurements would exhibit a symmetric offset

distribution. Temporal data sets do exhibit this behavior, but ensemble data sets are

heavily skewed toward positive offsets (Figure 4.21). This skew is the result of a larger

average forward latency, which is the result of routing effects in the underlying IP

transport mechanism.

An ensemble data set consists of a set of unique message destinations. Each

message is routed to the destination and back. The reverse path of a message occurs by an

updated and presumably shorter path than the forward message, because the forward

message updates routing information as it is delivered. Forward messages are routed by

comparatively stale information, exhibiting longer routes as a result.

Chapter 4 A MIRAGE OF NTP 87

Lower strata (e.g., Stratum 1) servers exhibit large offset skews, which disappear as

the stratum increases (Figures 4.22, 4.23, 4.24, 4.25)1. Offset skews should tighten as

strata decrease due to higher precision in local clocks, whereas empirically, offsets

tighten and become more symmetric as strata increase. Both the tightening and more

symmetric nature of higher strata can be attributed to the locality (and thus known routes)

of lower strata servers, whereas higher strata servers were typically more distant; this is a

side effect of the NTP server hierarchy and its partitioning of siblings according to their

parent and topological access criteria. Empirically, lower strata servers were more distant

than higher strata servers.

Figure 4.21 also includes NTP bounds (black diagonal lines), violations of the NTP

bounds (circles), and a possibly more constrictive bound (gray diagonal lines) resulting

from an assumed latency minimum (gray vertical line).

1.00.80.60.40.20.0
-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Delay (sec)

Offset
(sec)

FIGURE 4.21
Delay vs. offset, entire ensemble (all strata)

1Stratum 0 server replies are not shown; only 5 were accessible, and ‘0’ indicates an

unknown stratum.

Chapter 4 A MIRAGE OF NTP 88

1.00.80.60.40.20.0
-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

Delay (sec)

Offset
(sec)

FIGURE 4.22
Stratum 1 ensemble

1.00.80.60.40.20.0
-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

Delay (sec)

Offset
(sec)

FIGURE 4.23
Stratum 2 ensemble

1.00.80.60.40.20.0
-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

Delay (sec)

Offset
(sec)

FIGURE 4.24
Stratum 3 ensemble

1.00.80.60.40.20.0
-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

Delay (sec)

Offset
(sec)

FIGURE 4.25
Stratum 4 ensemble

4 . 4 . D e s c r i p t i o n of N T P in M i r a g e

The following is a description of the variables of NTP, (some individual, some

groups), and their description as Mirage indicates (Table 4.2). Local state denotes the

protocol state space as Mirage considers it, and remote perception is the value obtained

by communication with a remote node, i.e., part of the node’s total view. Computation

function parameters denote those components of NTP that are part of the Mirage time-

Chapter 4 A MIRAGE OF NTP 89

transformation function. Protocol management denotes components that affect the

boundaries of the computation function, and that govern the send actions. These last

management operations are part of communicability, and the optimization thereof.

NTP ‘state’1 NTP description Mirage description

(time) current clock value local state

(frequency scale) clock frequency adj. comp. func. params

drift frequency variability comp. func. params

wander drift variability comp. func. params

offset remote clock shift remote perception

delay packet RTT protocol mgt.

dispersion variance in packet data protocol mgt.

elapsed time time since last request protocol mgt.

poll interval time between requests protocol mgt.

TABLE 4.2
Mirage interpretation of the state variables of NTP

4.4.1. State space

The local state of NTP consists of the state of the local clock, i.e., the current time.

The local perception of a remote clock is the offset, i.e., the difference between the

remote clock and the local clock. The remainder of the state variables of the NTP

specification refer to protocol management or expression of computability (to describe

the time transformation). The only variable that is managed by NTP is time; all others

serve to facilitate this management.

1Parentheses indicate variables which are not listed as explicit in the NTP protocol

description, but are implicitly required.

Chapter 4 A MIRAGE OF NTP 90

4.4.2. Transformations

Transformations of the state space of NTP, as described by Mirage, map sets of

time values onto other sets of time values. These sets affect the perceptions of remote

clocks. In NTP, sets of time values are denoted by continuous intervals, so

transformations map time intervals to other time intervals.

Some components of NTP resemble those required in Mirage to manage the state

space and maintain stability. Elapsed time indicates the time since the last clock update,

and indicates when stability will fail. This, together with the assumption of a fixed skew

(0.01 sec/day), indicates the current imprecision of the clock (dispersion), and is used to

determine the expansion of the time transformation. The poll interval indicates the time

between messages, and is a precomputed expected time when the state becomes

imprecise enough to require a message initiation, i.e., the maximum interval over which

stability can be maintained.

4.4.2.1. Time

The local clock of a node changes as a function of time, both by tracing a path of

sequential clock values (ticking), and by becoming less precise as time progresses (in the

absence of received messages). The ticking of the clock is modeled by Equation 4.12

(depicted in Figure 4.26), from the definition of frequency as the first derivative of the

clock transition function, drift as the second derivative, wander as the third, etc., and

includes noise.

The imprecision of the clock is modeled by Equation 4.13. The imprecision

describes the expansion of the state point (clock time) to a state interval (time +/-

imprecision), where the distribution within this interval is assumed to be uniform

(Equation 4.15, Figure 4.27).

Equation 4.12:

T ∆t() = noise ∆t() + epoch + F ∆t() +

1
2

D ∆t2() +
1
6

W ∆t3()+L

Equation 4.13: imprecision(t) = {bit_ precision} + max_ skew_ rate * t

Equation 4.14: T t() = noise t() + T t0() + R t0() ∆t[] +
1
2

D t0() ∆t[]2

Chapter 4 A MIRAGE OF NTP 91

Equation 4.15: T _ interval t() = [T(t) − imprecision(t),T(t) + imprecision(t)]

Clock
Value

Time

ZERO DRIFT
POSITIVE

NEGATIVE

FIGURE 4.26
Clock value is a function of time

Time

CLOCK CENTER

INTERVAL MIN

INTERVAL MAX

Clock
Value

FIGURE 4.27
Clock interval as fixed expansion centered on time function

In NTP, wander and higher order variability effects are not considered. The

combination of the equations for time transformation and imprecision growth result in the

same formula as in NTP (Section F.3 of [Mi90b]), which describes the operation of the

logical software clock (Equation 4.14). The imprecision of the clock is a fixed, linear

function of elapsed time since the last clock adjustment, and is not determined by clock

precision, strata, or previous adjustments.

The software clock model of NTP is called supplemental and external to the

protocol in its specification. We disagree, because the clock equations are required to

specify the time transformation of the Mirage model of NTP.

Chapter 4 A MIRAGE OF NTP 92

NTP makes the same assumptions as Mirage, that although ‘time’ can vary as the

result of the protocol, variability in the progression in time is small enough that it does

not affect the model substantially, i.e., it is not contradictory to model displayed time

against a virtual absolute timescale (even if the latter is unknown).

NTP further describes the noise function as a pdf, in which a single initial clock

value spreads into a zero-centered bell-shaped curve (Gaussian) of the pdf. This curve

occurs as the vertical cross section of the time transformation graph (Figure 4.27), so that

the figure has a bell-shaped surface in the third dimension (not shown).

There are also several constraints on the clock function. Clocks never run

backwards, so the drift parameters can never combine to cause reversal of the clock. The

clock distribution is similarly limited, so that the slope of the interval minimum line can

never be negative.

4.4.2.2. Send

The effects of a sent message are not considered in NTP. The protocol is intended

to create a hierarchical organization of clients and servers, where clients are served by

their parents in the hierarchy. As a result, clocks are modeled unidirectionally, i.e., the

child models the parent only. The parent does not model the child.

Offset

Time

FIGURE 4.28
Transformation of a perception due to a sent NTP message

We can extrapolate our investigation to the case where the parent would model the

child. Emitting a time message would cause an adjustment in the center-line of the

expanding state (Figure 4.28). The resulting state space consists of the union of the

Chapter 4 A MIRAGE OF NTP 93

affected and unaffected expanding state spaces, indicating an increase in imprecision

caused by the adjustment. The parent node doesn’t know whether the sent time is

accommodated into the child node, so it adjusts its perception based on the new state

emanating from any existing possible clock. The result is an adjustment of the clock

frequency only.

4.4.2.3. Receive

Received messages alter the local state in NTP, as proscribed by Mirage. A received

message causes a node’s perception of the remote state to be updated, which collapses the

interval to a point, from which subsequent expansion will resume (Figure 4.29). Other

information is also extracted from this collapse.

If the received time is in the upper region of the interval, then the local model of the

remote clock is slow (the expanding triangle is angled too far downward), and needs to be

compensated by shifting the triangle up. The shift in the triangle is reflected in an update

of the frequency parameter of the computation function.

From this analysis, we conclude that the components of the computation function,

i.e., frequency, drift, etc., are not constants, as initially perceived, but variables in the

model which need to be incorporated. There is an interaction in these equations that

indicates that the variables are not an orthogonal basis of the system space. The result is a

revised set of time transforms (Equations 4.16, 4.17, 4.18), plus a set of receive

transforms (Equations 4.19, 4.20, 4.21).

The receive transforms use the delay and offset information derived from the

received message, and assimilate it into the local time view as specified by recombination

algorithms in the protocol. NTP does not manage multiple perceptions within a single

node; an ensemble data set is combined using the peer selection algorithm. Similarly, a

temporal data set is collapsed to a single value by the data filter algorithm. This is

required to reduce the computation overhead in resolving a set of clock values to an

indicated correction, and to reduce the storage required over time to maintain data of

previous state.

Note that both the peer selection and data filter algorithms are integral to the Mirage

model of NTP, because they specify the receive transformation operations, whereas the

NTP specifications refer to the equations as optional “suggested implementations”.

The slope of the expansions is indicated by the error function (Equation 4.22). NTP

uses fixed values for the skew, currently set to a constant of 0.01 second/day. In Mirage,

Chapter 4 A MIRAGE OF NTP 94

this corresponds to the computation function, and need not be linear in the elapsed time

since last update. In NTP, time updates never alter the value of the expansion, only the

center-line of it.

Equation 4.16:

T ∆t() = noise ∆t() + epoch + F ∆t() +

1
2

D ∆t2() +
1
6

W ∆t3()+L

Equation 4.17:

F ∆t() = F t0() + D ∆t() +

1
2

W ∆t2()+L

Equation 4.18: D ∆t() = D t0() + W ∆t()+L

Equation 4.19: T ∆t() = {weighted avg. of clocks}

Equation 4.20: F ∆t() = {exponential avg. of clock differences}

Equation 4.21: D ∆t() = {current freq − avg. freq.}

Equation 4.22: error ∆t() = {bit_ precision} + max_ skew_ rate Tin − Torig()

Offset

Time

FIGURE 4.29
Transformation of a perception due to a received NTP message

As noted before in the Mirage model description (Chapter 2), the delay in a

message’s transit since its origination must be measured, and the current state must be

back-calculated from it (Figure 4.30).

Chapter 4 A MIRAGE OF NTP 95

Offset

Time

FIGURE 4.30
Receive transformation, accommodating transit time effects

As also noted in the Mirage model, there are restrictions on the collapse of the state

space, as indicated by the received message. If the message indicates that the new state

space value is not contained in the current model of the remote node, then an

inconsistency exists. NTP calls this type of inconsistent received message a Time Warp,

and it correlates to Mirage receive constraint criterion violation (Figure 4.31).

Specifically the violation occurs in NTP because the received offset cannot be

incorporated within a continuous valid interval, whereas in Mirage the violation occurs

because the collapsed state is not a member of the set of current possible states.

Offset

Time

Time Warp

FIGURE 4.31
Representation of a Time Warp in the state space timeline

Chapter 4 A MIRAGE OF NTP 96

4.4.3. Partitioning of the state space

In NTP, the state space is modeled as a continuous interval of possible clock values.

In Mirage, the bit size of the message guard indicates the extent of the partitioning of this

interval (here we assume an equipartitioned interval).

NTP does not send guards on the messages; they are inferred from the relative

position of the received clock adjustment to the computed valid interval. If the received

message is in the upper portion of the interval, the current clock frequency is low (i.e., the

clock is slow), and it needs to be speeded up.

If the interval is not partitioned, received clock adjustments result in new clock

values, but frequencies, drifts, etc., are not compensated (Figure 4.32, 0 bits). If the

interval is partitioned into two (i.e., as if a one bit ‘virtual’ guard is inferred), then the

frequency is adjusted faster or slower, but only by a fixed amount in either case (Figure

4.32, 1 bit). If the interval is partitioned into progressively smaller components, more

accurate adjustments of the frequency can be made (Figure 4.32, 0-4 bits shown). NTP

never alters the drift value.

As a result, NTP uses ‘virtual’ guard information to adjust the clock by a value

indicated by a partition inversely proportional to the number of unique frequency

adjustment parameters. Guards are inferred from clock timestamp information in the NTP

messages, which are much larger than the required guard size.

2 3

Time

0

Clock
Value

1 4

FIGURE 4.32
Partitioning of the state space results in variably ‘tight’ state collapse

Another interpretation of the partitioning is the way in which larger messages

specify more precise clock update values. If no bits are sent, the clock is not updated. If

one bit is send, then the clock is in one of two indicated subintervals of the currently valid

Chapter 4 A MIRAGE OF NTP 97

interval. The more bits that are sent, the more precisely the receiver can update the

interval (again, Figure 4.32).

In either case, the guards are virtually specified by the sent clock value. The larger

the guard, the more finely partitioned the state space (interval) becomes, and the more

precisely the space can be maintained. The problem is that larger guards also increase

time between sent messages, because larger guards require longer messages. Consider the

case where messages specify clock values to within 10 ms, and take 1 minute to send, vs.

messages that specify the clock value to within 1ms, and take 1 hour to send. If the clock

skew rate (computation expansion function) is small (less than 1ms/hour), then the long,

(infrequent) precise messages are more effective in synchronizing the clock than short,

(frequent) imprecise messages. When the clock skew rate is large (more than 60

ms/hour), the short, (frequent) imprecise messages can maintain the clock to within

60ms/hour, whereas the long messages also let the clock skew out of adjustment by a

larger amount, even though it may be more tightly synchronized for a short time

immediately after being adjusted.

4.4.4. NTP degenerates to a clock pulse

NTP clock value messages degenerate to a clock pulse (hardware clock signal)

under certain conditions. If the latency variability is zero, the clock is completely

described by the temporal transition function. If drift and other higher order components

are zero, and if the frequency component of the clock is zero, the clock is described by a

perfect line. If frequency error is not zero, there is an expansion of the interval with time.

The sender limits the extent of this error by the frequency with which adjustments are

sent. The remote clock is partitioned into two components (time received, time not

received), so reception of any unique signal suffices to manage the clock. This is a

regular clock pulse, because the frequency error in the receiver is the size of the true

frequency (because the transition function assumes a static clock value (i.e., zero

frequency) with an error that increases with time (Figure 4.33). The period of sent

messages determines the extent to which the sender’s clock is accurately modeled, and

the centerline of the sent messages expresses the clock frequency.

Chapter 4 A MIRAGE OF NTP 98

Time

Clock
Value

SENDER'S
CLOCK

SENDING
PERIOD

FIGURE 4.33
Regular sender anticipation.

4.4.5. Constraints

Many of the constraints in the Mirage model overspecify components of the NTP

protocol. For example, the message size constraints of Mirage indicate that smaller

messages could be used in the NTP header, where in the latter a timestamp indicates a

200 picosecond interval within a 136 year span. The overspecification of the timestamps

is used by NTP for other consistency checks, e.g., to ensure that incorrect timestamps do

not ‘wrap around’ onto valid stamp values. Consistency checks include measuring

positive intervals for client/server responses, verifying reasonable delays, and possible

formal authentication of the packet using an auxiliary mechanism.

4 . 5 . Ob s e r v a t i o n s

The main observation from the application of the Mirage model to NTP is that NTP

makes little use of Mirage components. NTP has a very simple state (time, frequency,

drift) that is governed by simple (quadratic) equations, and has a fixed linear computation

function. Receive transforms are elaborate, but only insofar as they accommodate

multiple Byzantine sources in a way that attempts to discern true time from a perception

(through peer selection and filter algorithms); Mirage is intended to maintain the

perception only. NTP uses intricate weighting functions to collapse the state space which

Mirage preserves (inefficiently, in comparison to NTP).

Chapter 4 A MIRAGE OF NTP 99

We have observed an isomorphism between variability in latency, which NTP

accommodates, and variability in the computation expansion, which Mirage

accommodates. Certain characteristics of the delay and offset measurements in NTP can

be predicted from simple models of the network characteristics (Poisson unidirectional

latency), with the “Mirage function” embodied as the convolution of the component pdfs.

We were previously unaware of the extent to which Mirage relies on accurate

time measurements (relative time), especially in the computation functions. This was

however no more so than other protocols similarly rely, even clock synchronization

protocols.

Some constraints of Mirage are unnecessary in the NTP protocol, notably those

indicating the bit size of the sent and received messages, because NTP uses fixed headers

with oversized messages intended to provided informal authentication and error

resilience. Other constraints specified in Mirage also appear in NTP, e.g., an NTP Time

Warp is a violation of the state space collapse being a subset of the existing state space

model.

NTP circumnavigates issues of modeling sent messages, as well as sender

anticipation, by organizing the time server network into a strict hierarchy. We can add

sender anticipation to NTP, which results in a server-initiated periodic ‘chime’, similar to

NTP’s broadcast mode of operation.

4.5.1. Gains

NTP uses a fixed header description, with fixed message sizes. The message sizes

can be reduced to minimal values as specified in Chapter 2. The sizes of the messages are

a function of the variability in the remote state, which in NTP is isomorphic to variability

in the round trip time, as described earlier. As the variability in round trip time decreases,

the need for extended precision clock stamps in the header is reduced; a zero round trip

variability indicates that the clock discrepancies are a function only of local drift and

error. As local drift and error approach zero, there is less need for clock value

correspondence. Zero round trip variability and zero drift and error would abolish the

need for communication altogether.

Note that these conclusions require that latency variability and drift disappear;

actual round trip latency does not matter, so long as it can be predicted with a probability

of 1.

Chapter 4 A MIRAGE OF NTP 100

4.5.2. Prior work

Relevant prior work on the analysis of time protocols includes probabilistic clock

synchronization [Cr89], optimal clock synchronization [To87], and distributed clock

mechanisms [Ma85].

All of these analyses rely on bounds on the maximum round trip latency to

determine achievable precision and accuracy, according to the same bounding formula as

in NTP (Equation 4.8). A smaller round trip latency results in less error in the computed

offset. We have shown that offset error is linearly proportional to the variability in round

trip latency, and more precisely to smaller difference between forward and reverse path

latency (Equation 4.11).

We do not consider Byzantine failures, or the explicit failure of any components of

the protocol in the Mirage analysis. Mirage shows the errors in the perception of remote

clocks, even where the remote clock is perfect. Byzantine and fail-stop failures would

increase the error in the local perception of the remote clock, although determination of

whether stability could be achieved is beyond the scope of this analysis. We limited this

analysis to the characteristics of NTP.

The methods used here are similar to those used in statistical timekeeping analysis

[Cr89], especially those relating the pdf of latency values to a time protocol. Here we

additionally show the way in which a Poisson unidirectional latency variability can cause

Erlangian round trip variability, and Gaussian-like measured offset variability, even in

the presence of a perfect remote clock (i.e., one with no temporal expansion in state).

The statistical method suggests increasing the number of message attempts to

increase the probability of receiving a message with a minimal latency, potentially

increasing the link latency due to load increases [Cr89]. Other methods use sets of

messages to overcome node failure [To87] or ensure accuracy [Ma85], but indicate

nothing of the tradeoff between message size and frequency. These are self-defeating

mechanisms, which Mirage counteracts by indicating that more frequent communication

allows use of smaller guards and smaller messages.

Mirage does not claim optimality in the number of messages exchanged alone;

rather, it optimizes the total communication in message number and length (integrating

length over the message set), and considers optimality only insofar as the desired stability

can be achieved and maintained. Furthermore, [Cr89] permits failure of the protocol to

achieve the desired precision, thus permitting instability, which Mirage prohibits.

Chapter 4 A MIRAGE OF NTP 101

4.5.3. Conclusions

The use of Mirage to analyze NTP has highlighted aspects of NTP not required in

the specification, and helped refine our understanding of Mirage. NTP specification

considers the logical clock, peer selection, and filter algorithms optional to the protocol

specification. Mirage cannot model NTP without the use of constraints from these

algorithms, so we consider them integral components of the NTP protocol, and would

suggest that they be required in the specification.

We showed the equivalence between latency variability and imprecision in the local

perception of a remote state. We concluded that the NTP protocol boundaries on

measured offset error can be corrected, to denote explicitly that measured error is the

result of latency variability alone. This results in more accurate constraints on the

measured offset error.

Using message length and frequency tradeoffs in the Mirage communicability

formula (Chapter 2), we show the degeneration of NTP to a hardware clock signal, as

latency variability approaches zero. The Mirage was used to derive exact effects of

latency variability on measured offsets, by applying the discrete Mirage formula to

continuous latency distributions using pdf convolutions.

Before this investigation, we were not aware the extent to which the Mirage model

relies on time measurements for its analysis. This use is not precluded by the application

of Mirage to even clock synchronization protocols, because the assumptions of

measurement required within Mirage are similar to the requirements in other clock

synchronization model analyses.

NTP was useful as a sample protocol for Mirage analysis, but many of the more

interesting components of Mirage were not applicable to NTP. Messages in NTP are

static and overspecified as required by Mirage’s message constraints. NTP models time

as continuous intervals, whereas Mirage permits arbitrary sets in its model. Sender

anticipation and guarded messaging can be inferred from some aspects of message

processing in NTP, but are not explicitly applicable to this protocol. Finally, some of the

most interesting algorithms in NTP, those of peer selection and data filtering, are

mechanisms to collapse and project multiple dimensions of the state space that Mirage is

intended to preserve.

Chapter 5 µ-NET 102

C H A P T E R 5

µ-Net

5 . 1 . P r e f a c e t o C h a p t e r s 5 an d 6

The following two chapters comprise a discussion of the application of Mirage to

processor-memory interaction as a protocol. This, Chapter 5, is a description of the

process of modeling processor-memory interaction as a protocol (Sections 5.2-5.3.), and

an elaboration of the various degrees of implementation of the design that the process

suggests (Sections 5.4.-5.5).

Chapter 6 compares the feasibility of the degrees of implementation, based on

measured opcode statistics (Sections 6.1.-6.3). That chapter also contains the discussion

of prior work specific to the processor-memory domain; more general prior work

regarding Mirage is contained in Chapter 3, in Section 6.4. Chapter 6 concludes with an

evaluation of the utility of this modeling process, and the value of the results it generated

(Section 6.5).

A more concise version of the material in these two chapters, describing m-Net and

its results, can be found by reading the following sections:

Chapter 5 µ-NET 103

5.2. (inclusive) Introduction

5.4. (inclusive) µ-Net - Design

5.5.6.2. The Total implementation of µ-Net

5.6-5.7. (inclusive) Implications

6.1.-6.2. (inclusive) Performance, Feasibility

6.3.2. Other Observations

6.5. (inclusive) Conclusions

As a preview, µ-Net is a processor-memory interface design derived using Mirage

as a model of the interaction as a protocol. The processor is augmented with a filtering

device, to accept only messages (opcodes) with guards (addresses) that match the

processor’s state (program counter).

The memory is augmented with a mechanism, called a Code Pump, to model the

state of the processor (PC) as a set of possible states, using a data structure (we call it the

TreeStack). The mechanism sends data messages to the processor ([address, opcode]

pairs) that increase the modeled state (i.e., send transformations), using a component

called a Diverger. The mechanism receives data from the processor (PC values) that

collapse the modeled state (i.e., receive transformation), using a component called a

Converger.

This design is very similar to, and a superset of, current research trends in memory

anticipation mechanisms, notable that of proactive memory. Performance increases are

achieved by using idle bandwidth during round-trip latencies to send anticipatory

information. µ-Net sender anticipation as suggested by Mirage.

Measurements indicate that a simple, partial implementation would reduce opcode

pipeline gaps and increase processor performance by a factor of 10; a complete

implementation would increase performance by a factor of 300 to 3,000, when coupled

with a cache. Feasible implementations require a simple stack mechanism and as little as

400 bytes of storage to achieve the same performance over high latencies as a 50

Kilobyte cache alone.

Chapter 5 µ-NET 104

5 . 2 . In t r o d u c t i o n

Mirage provides methods for mitigating the effects of latency on communication,

provided that the communication is well described by the protocol. In Mirage, the

protocol doesn’t merely police the information stream, it is the information stream.

Evaluating Mirage requires the selection of a protocol in which shared state is the goal of

the communication, rather than merely a means for connection management. In Chapter

4, NTP was used to describe the abstract components of the Mirage model in real terms,

but many aspects of Mirage did not have analogs in NTP. For further analysis of the

model, a new domain was chosen so as to exhibit some features of Mirage that existing

protocols do not possess. We call the design that results from this analysis µ−Net

(pronounced ‘MicroNet’).

There are two common interpretations of a protocol - a mechanism to maintain

shared state (i.e., the protocol is the communication), and a mechanism to manage

communication (i.e., the protocol provides bit-transmission). Existing protocols manage

only connection information as shared state; most of the data communicated is not part of

this shared state. For the shared state to comprise the actual communication, a large state

is not required; in NTP as few as 2 variables (current time and rate factor) are shared. In

TCP a similarly small number of variables are shared1, but this state information is used

to facilitate other data transmission. Most current protocols are not currently used to

manage state spaces directly (as Mirage requires in order to show advantage).

A more complete investigation of Mirage requires the selection of a domain in

which communication protocols may not be normally applied, yet one in which state

sharing is the goal of the communication. We have chosen a domain in which

communication protocols are traditionally not used, that of processor-memory

communication. Existing processor-memory communication architectures are shown

equivalent to existing protocols, and application of the Mirage model yields novel

communication architectures that improve performance where transmission latency is

high.

As discussed in Chapters 1 and 2, Mirage adds a parameter of transit time to the

conventional parameters of a communication channel, those of bandwidth and channel

1TCP state information consists of the current connection information: the current

window number, one of 11 connection states [Co91b], and endpoint address information.

Chapter 5 µ-NET 105

width (parallelization) (Figure 5.1). Consider an analogous structure, in which the

communicating nodes are that of processor/RAM and program memory (read-only)

(Figure 5.2); this example is justified by its similarity to the client-server model of

computation, in which code is stored on shared remote nodes, and utilized locally. This

structure is a variant of the Harvard-style architecture, in which the data bus is local to

the CPU and the code bus is a latency communication channel. The benefits of this

architecture are not discussed here; it was chosen only as a domain in which to

demonstrate the benefits of Mirage. The application of the Mirage model to this domain

provides methods for reducing the performance effects of latency.

BW = area

Height = parallelization

Transit time

NODE A NODE B NODE A NODE B

FIGURE 5.1
Mirage extends the channel model to include latency

CPU
local RAM

Program
ROM

address

code

SHARED STATE = program counter

FIGURE 5.2
Communication channel analog of processor/memory interaction

In this domain, performance is defined as the time of execution of a fixed code

measure. In some cases reducing the execution time is cosmetically desirable, i.e., the

computational outcome remains the same, but a speedup is desired; it is in this way that

performance is usually considered. Execution time is as valid a measure of code as any

other (i.e., correctness, completeness), and performance can be considered a correctness

criterion, especially in time critical environments (see Chapter 3, on Real Time systems).

The characteristics of this architecture can be measured as the channel latency

increases. The channel is a logical interaction between the processor/RAM and program

memory, where the address of the desired code and the code itself are the communication

exchanged across the interface.

Chapter 5 µ-NET 106

5.2.1. The Domain - the processor / memory interface

A processor communicates with memory for two uses - retrieving data with which

to operate and retrieving code to direct these operations. In the Harvard architecture,

these two communication streams are both logically and physically independent1. The

domain considered here is a version of this architecture, where the code stream

communicates across a distance, but the data stream is local. This resembles a client-

server model of computation, where the data (and perhaps I/O devices) are located at the

CPU, but the code is archived at remote stations.

The advantages of this example are not of prime importance to us here, although

they have been discussed elsewhere (as RPCs, or simply shared code on mounted disks in

NFS). In this domain the shared state is concise and the temporal and communicative

transformation functions on the state space are well understood. The shared state is the

address whose code is being retrieved (i.e., the program counter), and the state space

transformations are indicated in the opcode (e.g., jump, jump-to-subroutine), in some

structure in the data space (return), or implied (the default for most opcodes). The nature

of these transformation functions will be elaborated later; initially current architectures

are described, together with their behavior as the code storage area is moved away from

the CPU/data area.

The following discussion focuses only on communication between the CPU/data

storage (noted as CPU) and the code storage area (noted as Memory). The effects on the

communication of program code are measured as the program memory is moved away

from the site of its utilization.

5.2.2. Description of current architectures

The processor/memory interface can be considered as a communication channel. In

conventional computer designs, a processor communicates with program memory by

either a request/response or a timed-response protocol, usually across a bus. The

processor places the address of the desired code on a bus, and indicates a memory request

by a pulse or level on a signal line (e.g., read/write, memory request, etc.). Memory

1Sometimes Harvard architectures only indicate separate data and code caches; here

we intend that code and data are not only communicated separately, but also stored

separately.

Chapter 5 µ-NET 107

responds to this request by placing the opcode at the desired address on a bus, either

setting a reply line (memory ready, etc.) or assuming that the processor will wait a fixed

number of clock cycles for the reply. These two protocols are shown below (Figures 5.3,

5.4, 5.5, 5.6), both as conventionally shown as a bus interaction (time/wire label) (Figures

5.3, 5.5), and as a protocol time line (time/space) (Figures 5.4, 5.6). We denote the

former protocol as explicit; and the latter as timer- based.

Explicit and timer-based protocols differ from the conventional designations of

synchronous and asynchronous. Synchronous protocols ensure (and rely) on signals being

aligned with the clock pulses, and asynchronous protocols permit clock signal

independence. Timer-based protocols are synchronous, but explicit protocols can be

either synchronous or asynchronous, depending on whether the reply signal must be

aligned with the clock pulse.

clock

address

memory request

memory ready

data

valid

valid

FIGURE 5.3
Explicit processor-memory protocol (voltage/time diagram)

CPU Memory

request

opcode

s t a r t

end

set address lines

set request line

read address lines

access memory

set data lines

set memory ready line

time

FIGURE 5.4

Chapter 5 µ-NET 108

Explicit processor-memory protocol (as a protocol time line)

clock

address

memory request

data

fixed number of clocks

valid

valid

FIGURE 5.5
Timer based processor-memory protocol (voltage/time diagram)

CPU Memory

request

opcode

s t a r t

end

set address lines

set request line

read address lines

access memory

set data lines

time

fixed waiting time

FIGURE 5.6
Timer-based processor-memory protocol (as a protocol time line)

There are usually few or no provisions for a failure of this request-response type of

protocol; it is assumed that if this communication fails, little can be accomplished

anyway (i.e., if an arbitrary opcode cannot be retrieved, neither can the interrupt handler

code)1. If an explicit protocol is used, the processor would wait indefinitely; if a timer-

1In fault-tolerant systems, an external mechanism monitors opertation and switches

to a backup system or halts the current failure in a safe manner; systems do not perform

fail-safe functions after their own (arbitrary) failure.

Chapter 5 µ-NET 109

based protocol is used, the processor would read invalid data, because it would not

otherwise know that the memory had failed to reply correctly.

Consider the characteristics of this communication as the processor and program

memory are moved farther apart. In this description, CPU refers to the processor and

local RAM memory (read/write data), and Memory refers to program memory (i.e., read

only). The two components communicate by a high bandwidth path (Figure 5.7), whose

latency increases as a parameter of this investigation.

CPU Memory

high latency
non-local path

FIGURE 5.7
Processor-memory interaction across a distance

This configuration is usually augmented with a program cache (Figure 5.8). The

cache is located with the processor and communicates to it via a low latency, high-

bandwidth path. The CPU initiates a request for code to the cache, and the cache either

replies directly (in the case of a cache hit) or forwards the request to the program memory

over the high latency path. The memory reply is forwarded back to the processor and also

copied into the cache for later reuse.

CacheCPU Memory

low latency
local path

FIGURE 5.8
Processor-memory interaction via a cache

There are extensions to this architecture which support prefetching, where the cache

requests program code in anticipation of its use by the processor. The receiver of the data

(the cache, ‘speaking’ for the processor) asks for the data before it is needed; this is

called a lookahead cache.

The Mirage model, when applied to this domain, indicates a new way to design this

architecture. In this new design, the sender (memory) anticipates the needs of the receiver

(processor). This has been alluded to as proactive memory, although we refer to a specific

Chapter 5 µ-NET 110

architecture here (i.e., suitable for implementation), whereas the prior work refers only to

a “possible future direction” [Kr91].

In the new architecture, called µ−Net [To91b], a Code Pump manages the

anticipation at the site of the memory, and a Filter Cache emulates the function of a

conventional cache, isolating the processor from the details of the mechanism (so that the

system appears to the processor to be identical to Figure 5.9 (CPU-memory only), except

in performance).

F i l t e r
cache

CPU Memory
Code
pump

FIGURE 5.9
µ-Net processor-memory interaction

In terms of the earlier protocol figures (Figures 5.4, 5.6), the protocol timelines of

the three architectures can be shown symbolically (Figure 5.10). The conventional and

cache architectures exhibit the same protocols, except that the cache can omit

communication when a hit occurs. A prefetching cache can retrieve multiple replies with

a single request. µ-Net permits memory to send replies before requests are received, i.e.,

the sender anticipates the receiver requests (the gray line in the µ-Net version in Figure

5.10).

TIME

CPU MEMORY CPU MEMORY CPU MEMORY

PRE-REPLY

Conventional/cache Cache with prefetch µ-Net

FIGURE 5.10
Protocol timeline comparisons of processor-memory protocols

A conventional architecture with a cache incurs a round trip latency expense (miss

penalty) whenever a miss occurs. A prefetching cache periodically requests blocks of

code in advance, whereas µ-Net is a self-adapting sender-based version of prefetching

Chapter 5 µ-NET 111

where the memory sends code that the processor might need and concurrently receives

updates of the processors actual state.

Cacheing is complementary both to prefetching and to anticipatory replies as

implemented in µ-Net. Cacheing reduces access bandwidth to memory. Prefetching

increases memory use because fetched code may not be utilized; µ-Net similarly

increases memory use by sending sets of codes (isopotent sets), but only one member of

each set is used. Cacheing is a way of looking into the past (of code use), making

assumptions that code is reused in the future, to reduce memory bandwidth, whereas both

prefetching and µ-Net are ways of anticipating future requests (beyond just code reuse)

which subsequently increase memory bandwidth.

5.2.3. Effect of latency on existing architectures

The effect of latency on these architectures can be considered by describing the

time it takes to execute some number of instructions (N). Assume that the processor

executes 1 instruction per time unit (t) (thus defined). A conventional architecture

requires Nt time units to execute N instructions. This is the optimal case, with respect to

the communication latency (i.e., latency is not considered, or zero) (Equation 5.1).

Equation 5.1: Toptimal = N * t

This formula is augmented to include latency (i.e., as latency increases beyond a

negligible amount), in Equation 5.2, where r denotes the round trip latency. Negligible

latency is defined as any time at least one order of magnitude smaller than the execution

time of a single instruction, in which case Equation 5.2 reduces to Equation 5.1 (i.e.,

latency contributions are negligible in comparison to instruction execution).

Equation 5.2: Tconventional = N * (t + r)

Performance is described as the time required to execute N instructions vs. the time

required in the optimal case. The ratio of particular execution time to optimal time is

defines the slowdown (Equation 5.3). This ration in conventional architecture analysis is

usually called the speedup, but we consider cases where the instances examined are

slower than optimal. In the case of a conventional architecture, this is Equation 5.4.

Equation 5.3: Slowdown =
Tmeasured

Toptimal

Chapter 5 µ-NET 112

Equation 5.4: Slowdownconventional =
Tconventional

Toptimal

= 1 +
r

t

In the case of the conventional architecture augmented by a cache, the effects of the

latency are reduced proportional to the effectiveness of the cache utilization (Equation

5.5). M denotes the probability of a miss in the cache. On a cache miss, both the round

trip and the execution time are incurred. A cache hit costs only one instruction execution

time. Equation 5.6 reduces to Equation 5.4 where the cache is 100% effective. In this

case, no communication costs are incurred, because all code accesses are intercepted by

the (local) cache.

Equation 5.5: Tcache = N * (t + r * M)

Equation 5.6: Slowdowncache = 1 + M *
r

t

The time to execute N instructions in an architecture where the cache prefetches can

also be described. Let k denote the prefetch length, in instructions. Further

characterization of the communication stream will be required to estimate the probability

of a prefetch occurring (described later), as used in the equation.

Prefetching is usually implemented in a linear fashion only. When an opcode at

address i is accessed, address i+1 though i+k are prefetched, where k is the linear

lookahead, and usually k is the number of opcode words in a cache line1. A miss occurs

when the prefetch fails to anticipate the next opcode used, i.e., when the linear

anticipation assumed by most implementations is breached. Misses also occur when the

destination of a control transfer instruction (e.g., BRANCH, JUMP, CALL, RETURN) is

not in the cache.

At most, prefetches occur at the miss rate of the cache alone (i.e., the same as

without prefetching). The actual prefetch miss rate is also at most the rate of occurrence

of control instructions, because the opcode after a control transfer may not be in the cache

(Equation 5.8).

Control instructions are assumed always to prevent the prefetch of the next opcode.

This assumption is valid for JUMP, CALL, and RETURN opcodes, but it is not always

valid for BRANCHES. In the case where a BRANCH is not taken, the next opcode is

1In an Intel 80386, k=4; in most caches the line size is between 4 and 8.

Chapter 5 µ-NET 113

successfully anticipated. Because branches are taken about 50% of the time [He90], the

formula can be further refined (Equation 5.9).

For the moment, the probability of a fetch occurring is denoted as F (Equations

5.7, 5.10). F is always less than M, because control instructions are only part of the cause

of misses in a conventional cache, so Equation 5.7 is always at least as good as Equation

5.5. Empirical values of F and M are discussed in Chapter 6.

Equation 5.7: Tprefetch = N(t + r * F)

Equation 5.8: F ≤ J + B + C + R + I

where opcode occurrences are denoted by percentages:
J = % JUMPS (direct only)
B = % BRANCHES (direct only)
C = % CALLS (direct only)
R = % RETURNS1

I = % other indirect opcodes (JUMPS, CALLS, BRANCHES)

Equation 5.9: F ≤ J +
B

2
+ C + R + I

Equation 5.10: Slowdownprefetch = 1 + F *
r

t

In µ-Net, the equations are a little more complicated. The time to execute the N

instructions depends on the ability of the Code Pump to predict correctly the opcodes

desired by the processor. The probability of an incorrect prediction is denoted as P, and

one round trip time will be required for each misprediction, to allow the processor to

fetch the desired data which is not already available (Equations 5.11, 5.12). This case

reduces to the optimal (Equation 5.1) where P = 0, i.e., when the prediction is perfect. An

estimate of P will be discussed later, with the conditions under which it is smaller than F

and M.

Equation 5.11: TµNet = N * (t + r * P)

Equation 5.12: SlowdownµNet = 1 + P *
r

t

1The percent of CALLS and RETURNS are not always equal. Some systems

permit direct stack manipulations, or returns which pop out of multiple nesting levels.

Chapter 5 µ-NET 114

5 . 3 . µ - N e t

µ-Net [To91b] refers to our choice of the processor-memory interaction as being

analyzed by a communication model, Mirage. This is in keeping with the tradition that all

protocol research, at one time, must coin a network name suffixed in ‘Net’. This was not

done with the model name (MirageNet?), so the tradition is upheld in the name of the

example.

The µ-Net domain is easily modeled in Mirage, by suitably defining the shared state

space and by defining the state transformations of Mirage in terms of this space. In this

example, communication is affected by classes of opcodes in the instruction stream. The

usual techniques of cache prefetching, widening cache line sizes, and branch prediction

are confirmed from the Mirage model of µ-Net. Further, µ-Net exhibits new techniques

for active opcode anticipation, which are only recently being proposed as new solutions

to latency issues in architectural design. Also, some simple data structures in the memory

interface can reduce the latency for some kinds of memory access operations; these

structures implement isopotent anticipation as described in Mirage.

In order to consider the Mirage model of µ-Net, the components of µ-Net need to be

defined in terms of the model components in Mirage. The first and most fundamental of

these is the shared state between the sender and receiver.

In the processor/memory interface, what state is shared? Usually, this is minimally

the program counter (PC) value. The program counter denotes the address of the next

instruction desired, to be placed on the address lines when a memory request is made.

During the memory request, that address is received by memory, after which the desired

opcode is replied. The state space is thus the space of all PC values. Conventional

protocols communicate by understanding the state of the remote node as a point in this

space, and moving this point explicitly. Therefore, until the memory receives the new

value of the program counter, the previous value remains in effect, as far as the memory

is concerned (Figure 5.11).

CPU
Memory

PC

PC
PC
PC
PC
PC

STATE

PC
IMAGE

FIGURE 5.11

Chapter 5 µ-NET 115

CPU state and Memory image

In terms of the Mirage model, the state is a PC value, and an image is a set of PC

values, i.e., a subset of the entire PC space. Transformations map PC values onto new PC

values, or sets onto sets.

The value of the state space changes with the progression of time, the sending of a

message, and the receipt of a message. The state space, in this case, is the program

counter, because the memory models the processor’s current PC value.

This analysis considers the memory’s model of the processor, not the processor’s

model of the memory. This is appropriate because the communication is essentially

unidirectional, although there are components in both directions (control in one direction

vs. data in the other).

5.3.1. Time transformations

As time progresses, two things happen at the processor. The processor is executing

the current instruction, then it must wait for opcodes to be sent from memory, sitting idle

until its request for the subsequent opcode is serviced. As a result, the state of the

processor (i.e., the PC, the part of the state that the memory is concerned with) is stable

during the execution of the instruction, and changes only afterwards.

This assumes, however, that there is no cache at the processor. When there is, the

processor may use opcodes already in the cache during the time lapse. The opcodes in the

cache have already been sent from memory, so they are already accounted for in the

memory’s image of the processor’s PC.

The passage of time then, in this domain, denotes the scheduling of the need for

opcodes by the processor. During the time in which the current opcode is executing, the

PC image does not change. At the time when the execution changes, the PC image

changes to reflect the need for the next opcode.

The simplified model assumes a RISC architecture with a single opcode execution

time. Variability in execution times (e.g., in CISC architectures) can be accommodated

by tables in the sender when opcode execution times are static, or by a dynamic structure,

if execution times vary, as in pipelining. This latter dynamic structure emulates the

pipeline activity, in order to predict the need for new opcodes at the pipeline input.

Chapter 5 µ-NET 116

5.3.2. Receive transformations

When messages are received, the state space collapses accordingly. There are cases

(in Table 5.1) in which the state space of the program memory can grow, by modeling

both arms of a conditional, or by expanding to the limit of the state space (in the case of

indirect opcodes). The messages received by the program memory are processor PC

values, which collapse the PC value set in the program memory to a single value. In fact,

in this case, the PC set is collapsed to the value received, and then expanded to account

for the transit time of the message. In this way, the PC set in the program memory always

models the PC of the processor, out of sync by the transit time of a message.

5.3.3. Send transformations

When information is sent, the state space expands through the unioning of the sets

of state space before the message and that state space as affected by the message. The

state space consists only of PC values (and possible PC values), so the actual opcodes

sent are ignored, except in the way in which they affect the current PC. The memory has

some set of possible PC values; it sends the opcodes as these PCs indicate (i.e., it sends

the opcodes at those addresses), and transforms each PC by a function indicated by the

opcode. After transmission, the new PC set becomes the union of the prior set and the

transformed set. For example, if the opcode is ordinary (OTHER, i.e., not otherwise

distinguished hereafter), the PC would increment when the opcode is sent. The resulting

PC set is the union of the PC and PC+1. The transformation depends on the opcode sent;

some opcodes increment the current PC, some transform it, some expand it to a set of two

PCs (i.e., two possible PCs), and some expand the PC to the set of all PCs (Table 5.1).

In the most general case, the PC would be arbitrarily transformed with each opcode,

but this is not effective in modeling the evolution of the imprecision of the knowledge in

the PC as known by the program memory. Because the program memory knows the

contents of the message (i.e., the opcode), it can determine how the message will

potentially affect the PC at the processor (i.e., the transformation).

The image of the PC in the program memory is transformed differently for various

classes of opcodes sent. The opcodes are distinguished only by the way in which they

transform the current PC over time (Table 5.1).

Chapter 5 µ-NET 117

OPCODE transform:
PC

new PC values are computed based on...

other1 PC+1 PC

direct jump PC’ PC, opcode

indirect jump {all PCs} PC, opcode, any CPU register, program or
data memory value

direct call PC’ PC, opcode (prior PC is stored in a known
structure in RAM)

indirect call {all PCs} PC, opcode, any CPU register, program or
data memory value (prior PC is stored in a
known structure in RAM)

direct branch {PC+1,PC’} PC, opcode

indirect branch {PC+1,PC’} PC, opcode, any CPU register, program or
data memory value

return PC’ stored in a known structure in RAM
(previously saved)

TABLE 5.1
Opcode time transformations

For the majority of the opcodes (denoted as OTHER), the PC is incremented. In the

case of a JUMP, the program counter becomes a new value based on the destination. In

the case of a BRANCH, the program counter becomes one of two new possible program

counter values, one being the incremented PC, the other being the newly indicated branch

destination, thus the model of the PC becomes a set of PCs. This is the expansion of the

state space referred to in the Mirage model.

At some later time, at the receipt of a message from the processor, this set is

collapsed down to a single member. CALLs behave similarly to JUMPs, except that in

addition to performing the transformation indicated, some local state is maintained (in a

stack). A RETURN utilizes this local state to perform a JUMP back to the opcode

following the origin of the corresponding CALL.

1I.e., not otherwise listed in this table.

Chapter 5 µ-NET 118

The table distinguishes between direct and indirect types of jumps, branches, and

calls, because in the former case the resultant PC can be computed, whereas in the latter

the state space becomes completely unpredictable1 (i.e., it expands completely to

encompass the entire state space). Opcodes differ in the way in which they affect the

expansion of the state space over time; this is the criterion for partitioning them as

described.

In the case where the PC set expands to the limits of the state space (for indirect

opcodes), further temporal transformations become impossible to compute. The memory

must wait for a message from the processor of the actual PC value chosen, before it can

proceed further. Indirect opcodes necessarily cause ‘bubbles in the communication loop’,

where sender anticipation cannot be accommodated. Indirect opcodes, are, in effect, too

unpredictable to model.

5.3.4. Guarded messages

In the conventional processor/memory architecture, there is no need to label the

opcodes which are sent from memory, because only one memory request is outstanding

per unit time. Even in the cache prefetch case, the cache either requests each memory

value independently, or an initial request is made and the resulting values are assumed to

arrive sequentially.

The opcodes being sent from memory must be labelled, in order to permit the

processor to receive them conditionally. Consider the case where the PC modeled in

memory contains a BRANCH instruction. Memory sends the next instructions, but more

than one instruction is sent (i.e., more than one possible next request, as discussed

before). Replies to these requests must be differentiated, so that the processor (which

knows its own state) can select the appropriate one. Although there are more efficient

labellings, the opcode can be labelled with the part of the state space to which it applies

(i.e., with the PC it is located at). A single bit could be used to indicate the two arms of a

1Indirect jumps can be limited to the set of labels in the program source code,

assuming that the compiler ensures such restrictions, and that the executable code

contains label information. This will be discussed in the prior work of µ-Net, in Chapter

6.

Chapter 5 µ-NET 119

branch,, but any label thus chosen is limited to some finite partitioning of the state space

(i.e., only 1 branch lookahead per bit).

5.3.5. Partitioning the state space (stability)

The state space is not partitioned into sets of PC values, which would be

computationally prohibitive. The PC image may indicate two PC values which request

the same opcode, which could be sent only once with a guard indicating both PCs. Such

an implementation would be excessive, because the resulting reduction in bandwidth

would be at the expense of excessive encoding.

Instead, the state space is partitioned into its individual points (single PC values), so

each message (opcode) requires a single PC value as a guard. The state space is not

separated into “last timestep / this timestep”, as in the union of the two spaces in the

Mirage send transformations. µ-Net assumes that messages are not lost, so the prior state

(before the sent message) need not be retained. This prevents having to resend opcodes,

under the assumption that the communication channel is lossless. If messages always

arrive, in some fixed time delay, the part of the state space which corresponds to the prior

state can be ignored because the probability density highly favors the send-transformed

state.

5.3.6. Isopotent sets

There are two analogs of isopotent sets in this domain. In the first, isopotency

occurs when two PC image values recombine, i.e., when instruction streams reconverge.

In the second, isopotency indicates the satisfaction of both paths of a conditional by the

set of both destination opcodes. This latter isopotency is accommodated in µ-Net by the

expansion of the state space when a BRANCH occurs, because subsequent message sets

furnish both arms of the branch.

The reconvergence case occurs either during a single timestep (simultaneously), or

at differing timesteps. For example, when two current PC image values JUMP to the

same location, the streams converge simultaneously. This convergence is managed as a

side-effect of our implementation; if two PCs in the image at time t become the same at

time t+1, only one remains.

When a forward branch occurs, the streams converge at different time values,

because the PC of the branch-taken stream is the same as the PC of the branch-not-taken

Chapter 5 µ-NET 120

stream at some earlier time. This is not handled in µ-Net. In this latter case, isopotency

also exists where two PCs in the image become one, but only under message sequences

of different length. If information were maintained on the past state in the model (it isn’t -

see the discussion on Partitioning, above), this recombination would be recognizable.

µ-Net cannot take advantage of the case where one stream becomes a time-shifted image

of another stream. This inability is not corrected because the complexity in modeling past

time images would be prohibitive, and a corresponding benefit may not exist.

As a result, the way in which a set is isopotent depends on the ways in which the

members of the transformed set are considered equivalent, i.e., the way in which the

messages are equivalent.

5 . 4 . µ - N e t - D e s i g n

Although Mirage is an abstract model whose direct implementation was argued

against, µ-Net can be implemented directly. Models are not usually intended to be

implemented, but the domain of this problem has been sufficiently constrained to permit

such an implementation to be reasonable, both to give a real impetus to the abstract

model and to permit a better understanding of the model’s advantages.

Communication in µ-Net is unidirectional - although the processor needs to

communicate its state to the memory to specify the desired opcode location, the processor

is modeled in the memory, and not the converse. Only the memory is concerned with the

state of the remote entity (processor) here. The model of the processor can be

implemented by putting a PC in the memory. In fact, a structure is placed near memory

which will permit the modeling of more than one possible PC.

5.4.1. The Code Pump

The Code Pump manages the image of the processor for the memory. It also

contains the send and receive mechanisms, insofar as they affect the state space modeled

within the Code Pump. The Code Pump implements the time, receive, and send state

space transformations, and the state space image (albeit limited) (see detail, Figure 5.12).

Chapter 5 µ-NET 121

F i l t e r
cache

CPU Memory
Code
pump

ADDRESS

ADDRESS
& DATA

A
D
R

CMP

A
D
R

ADDRESS

READY

DATA

ADDRESS

DATA

Filter Cache
1-element flow-through cache

Code Pump
automated DMA &

treestack protocol structure

CONVERGER DMA /
DIVERGER

TREESTACK
STRUCTURE

FIGURE 5.12
Detail of Filter Cache and Code Pump of µ-Net

The Code Pump contains three main components: a TreeStack data structure, a

Converger, and a DMA/Diverger. The TreeStack structure maintains the image of the

processor’s PC; its tree-like attribute manages bifurcations in the PC image caused by

sending BRANCH opcodes, and its stack-like attribute manages the information of saved

and restored PC images which are caused by CALLs and RETURNs, respectively.

The Converger manages the collapse of the PC image in the TreeStack structure, as

indicated by the receipt of messages from the processor (i.e., addresses). The

DMA/Diverger manages the preparation and sending of messages anticipating the

processor’s request (DMA), and the expansion of the PC image in the TreeStack, as

indicated by the send transformations.

5.4.2. The Filter Cache

The Filter Cache serves only to make the Code Pump mechanism appear invisible.

It buffers data coming in from memory, and passes through only opcodes whose label

(PC value, i.e., address) match the requested address whose data the processor is waiting

for. All other data, for addresses not requested, is thrown away. It thus implements the

receiver requirements for guarded message use.

Chapter 5 µ-NET 122

The Filter Cache needs only a small amount of space to operate. If the rate of the

processor is known(i.e., the rate at which opcode requests are issued, which is nearly

trivial in a RISC processor), the Filter Cache needs only one opcode/address unit of

space. The opcode arrives with the address as a conditional label (guard), so that the

opcode is used only if the address is pending a request, which is the purpose of the

comparator in the filter. The Code Pump knows this rate, so it sends the messages only

when needed (see the time transformation).

The Filter Cache is also completely compatible with a conventional cache in

parallel at the same location. The Filter Cache’s purpose is to manage the incoming

stream of new information, and pass the relevant parts on to the processor, whereas the

conventional cache passes old information back to the processor. The two caches are

complementary.

5.4.3. Degrees of design

The model is implemented directly in µ-Net, so there are some variations to the

level of implementation which can be performed. For example, a TreeStack structure

cannot be effectively implemented which models the PC after an indirect opcode,

because the state space grows to its limits, and further partitioning of the state space to

predict the next desired opcode is impractical. The design can be further simplified by not

implementing any branch transformations, or not implementing RETURNs,. The

following is an enumeration of the various levels of implementation, in increasing order

of complexity (Table 5.2).

In the Code Pump implementation, the effects of the sent message on the PC image

must be modeled, as well as modeling the old image (i.e., unioning of the unaffected and

affected PCs). One simplifying implementation decision is to ignore the possibility of

message loss, and omit the old PC image, replacing it with the new one as soon as the

message (i.e., opcode) is sent. This works under the assumption that messages are not

lost, simply delayed by a fixed time, in a way that simplifies the design to account for a

reduction in the probability of states in the old image remaining valid.

The Code Pump can be implemented as a null device, which reduces to a

conventional or conventional plus cache architecture. Prediction can be limited to only

OTHER opcodes, where the Code Pump requires only a single PC image and an

incrementer. This is analogous to an opcode prefetch in current CPUs (680x0, 80x86,

Chapter 5 µ-NET 123

MIPS, SPARC, etc.), but differs in that the PC and incrementer are placed in the memory,

rather than in part of the processor (i.e., the PC is on both sides of the interface), thus

reducing the comparable latency by half. At this point, the Filter Cache needs only 1

element of space to operate - to hold the opcode/address pair as it is received, and to

compare it to the current desired address.

TABLE 5.2
 Degrees of implementation, and the implications of each

When the Code Pump is augmented to handle JUMP opcode messages, the

incrementer is converted to an adder, to accommodate the ways in which JUMP opcodes

alter the PC - by direct overwrite, or by PC-relative addressing (i.e., add a constant to the

current PC). CALLs can be similarly accommodated with no increase in complexity,

assuming we do not store the origin of the CALL opcode.

1L=limb length, r=round trip time.
2The extra bits in the Filter Cache encode the choices made at each branch pending

in the round trip communication, and are used only if the guards on incoming messages

are so labelled. If the incoming guards are labelled with complete addresses, this storage

can be omitted.

Level of
opcodes

done

Filter size Code Pump
Components

Storage required (in
Code Pump, in PCs)1

(none) (null) (null) (none)

other 1 element increment 1

other, jump (same) adder 1

other, jump,
call

(same) (same) 1

other, jump,
call, return

(same) adder, stack avg. pending depth

all but
indirect2

2 elements adder, TreeStack
L * log2

r

L * 2 + 1






Chapter 5 µ-NET 124

In order to accommodate RETURN opcodes, a more complex structure in the Code

Pump is required to image the PCs in the processor. When a CALL is encountered, the

Code Pump must hold the current PC in storage, so that when the corresponding

RETURN occurs, the destination address implied can be determined. The state space

image models the way in which a CALL causes the current PC state space location to be

moved to a new point, for later return. This is a recursion in state space, such that a

CALL is an entry point into a fresh copy of the state space, and a RETURN is the lone

exit point from this state space, back to the original. Recursive state space manipulation

was not envisaged when Mirage was developed, but it appears a natural extension of the

application of the model.

The natural data structure for maintaining this recursive space image of the PC

space is a stack. µ-Net proposes to put a stack on the memory side of the interface, to

permit the memory to model the PC transformation of a RETURN opcode message. The

memory can then proceed to subsequent messages (following the RETURN, in logical

sequence), rather than being required to wait for an explicit request from the processor.

There are only two other classifications of opcodes, whose message transformations

have not yet been considered: INDIRECT (e.g., indirect branch, indirect jump, and

indirect call), and direct branches. INDIRECT opcodes transform the existing PC image

to one which encompasses the entire PC space, as noted before. The result of this

transformation is to prevent subsequent partitioning of the state space, to permit messages

to be determined. If an indirect opcode can indicate a jump to any PC, there is no way to

predict the next PC to send without further assumptions. Memory is forced to wait for an

explicit request from the processor, because only the receipt of a request message will

cause the state space to collapse (to the PC indicated by the request).

The assumptions under which an INDIRECT opcode may be predictable are those

which restrict the definition of those opcodes. Analysis of source code, or suitably

supplemented object code, can indicate a list of possible indirect jump, call, or branch

locations. If the compiler restricts indirect opcodes to jump to computed values which are

members of this list, then the opcode could be predicted. Indirect opcodes so restricted

are equivalent to a fixed dispatch handler with a passed offset argument. In the handler,

the passed argument denotes the requested jump destination. This mechanism requires

compiler participation in the restriction of the action of indirect opcodes. µ-Net makes no

assumption about cooperation of the compiler, and is intended to be compatible with

Chapter 5 µ-NET 125

existing object code, which is not subject to INDIRECT jump restrictions. True

INDIRECT opcodes do not limit the control flow to known compiler labels.

The forced wait for communication from the processor upon execution of an

indirect opcode is sensible, because the new PC value depends on information which the

memory does not have, such as values in RAM or processor registers. Indirect opcodes

provide a transformation of the state space which is too powerful to model. This can be

used as an argument for a more restricted form of indirect branching, such as a multiway

table jump, especially because indirect opcodes are used mainly for such table jumps

anyway. Any form of indirect opcode which permits the PC space to expand in a finite

way, but not to its complete limits, would be able to be accommodated by the Code

Pump.

One such version of a limited indirection is a BRANCH, in which only two

resultant PC values are permitted (one is always PC+1, and the other is specified in the

opcode by either a PC offset or a new PC value). When a BRANCH occurs at a single PC

value, the transformation becomes a set of two PCs. The Code Pump requires a much

more complex, but realizable, structure to implement the image of PCs under BRANCH

message transformations. We call this structure a TreeStack.

5 . 5 . El a b o r a t i o n of de g r e e s of de s i g n

These variations on implementation require various degrees of complexity in design

of the components of µ-Net. All involve the maintenance of data structures in the Code

Pump, where the Diverger manages creation and extension of the data structure, and the

Converger manages reduction. The Filter Cache also varies in design, although only

minimally so, in comparison to the Code Pump. Here we elaborate on the previous

descriptions, and provide implementation designs.

These designs are not intended to be computationally optimal. Delays caused by the

complexity of an implementation would further limit potential anticipation. Only the

combined recursion and branching anticipation design is succeptible to such complexity;

all other designs can be implemented as effectively as existing CPU/memory

components.

Chapter 5 µ-NET 126

5.5.1. No opcodes anticipated (Null implementation)

The null implementation uses a Null Filter Cache (i.e., no Filter Cache), and a

nearly-null Code Pump. All memory requests from the CPU are forwarded to the Code

Pump, where they are latched onto the opcode memory address port (as in a conventional

design). Opcodes in reply are sent back to the CPU. The Filter Cache is non-existent, and

the Code Pump is a memory address latch. Tables 5.3 and 5.4 describe the Null Filter

Cache, and Tables 5.5 and 5.6 describe the actions of the Null Code Pump components

(Converger and Diverger, respectively). Figure 5.14 denotes the data structure

maintained. Figure 5.13 denotes the Null design of the Filter Cache.

The Null µ-Net implements the point model of communication. The Code Pump

models the CPU as a point in state space, i.e., the last address requested is stored in a

latch (PCvalue), representing the last known PC state of the CPU. The latch value is

updated only after the current opcode returns to the CPU, is executed, and a new address

(PCvalue) is communicated to the Code Pump; the alternation of control between the

CPU execution and the Code Pump latching is denoted by the use of the signal variable

(Flag).

Current CPU opcode Action

any opcode send current PC to Code Pump Converger

TABLE 5.3
Null Filter send actions

Message received Action

any opcode send opcode to CPU

TABLE 5.4
Null Filter receive actions

Chapter 5 µ-NET 127

Message received Action

any PC overwrite PCvalue
set Flag

TABLE 5.5
Null Converger actions

Data area item Action

PCvalue & Flag set fetch opcode at PCvalue
send opcode to Filter Cache
set Flag

TABLE 5.6
Null Diverger actions

PC from CPU

opcode to CPU

PC to Code Pump

opcode from Code Pump

FIGURE 5.13
Null Filter Cache design

PC value Flag (1 bit)

FIGURE 5.14
Null data space

5.5.2. Unit Linear opcodes anticipated

Unit Linear anticipation extends the Null design to accommodate the anticipation of

regular (OTHER) opcodes, i.e., those opcodes which transform the PC by a unit addition

Chapter 5 µ-NET 128

(i.e., PC ← PC + 1). The Filter Cache can be more selective in sending PC values to the

Code Pump, because when ‘other’ opcodes are encountered, no PC need be sent.

In the same way as the Null implementation, the Flag variable indicates whether the

anticipation may proceed or when it must cease and await resynchronization. The latter

occurs whenever the Code Pump Diverger encounters an opcode whose future path

cannot be determined.

The Unit Linear Filter Cache has a new set of send actions (Table 5.7), but the same

receive actions as the Null Filter Cache (Table 5.4). The Unit Linear Converger is

identical to the Null Converger (Table 5.5), but the Unit Linear Diverger is augmented to

follow the PC path during pumping of opcodes (Table 5.8). Figure 5.14 denotes the data

structure maintained, as before in the Null implementation, because no other data is

required. Figure 5.15 shows the modified design of the Unit Linear Filter Cache, to

accommodate the required opcode type information.

Current CPU opcode Action

‘other’ opcodes { no action }

jump, call, return,
branch, or indirect

send current PC to Code Pump Converger

TABLE 5.7
Unit Linear Filter send actions

Data area item Action

PCvalue & Flag set fetch opcode at PCvalue
send opcode to Filter Cache
Type of opcode:
‘other’: PC
← PC+1 jump, call,
return, branch, or indirect: reset Flag

TABLE 5.8
Unit Linear Diverger actions

Chapter 5 µ-NET 129

PC from CPU

opcode to CPU

PC to Code Pump

opcode from Code Pump

opcode type from CPU

FIGURE 5.15
Unit Linear Filter Cache design

5.5.3. Linear opcodes anticipated

Linear opcodes transform the state space by some constant amount, not just ‘1’ as in

the Unit Linear case. These include JUMP and CALL opcodes. Linear anticipation can be

accommodated by a minimal modification of the unit linear anticipation design. The

Linear Filter Cache receive and Linear Code Pump Converger remain unchanged, and are

still the same as in the Null implementation. Filter Cache sent data changes only in which

opcodes activate message emission (Table 5.9).

Similarly, the Diverger is extended to add arbitrary fixed offsets, as extracted from

within the JUMP and CALL opcodes (Table 5.10). The data space remains unchanged.

Current CPU opcode Action

‘other’, jump, call { no action }

return, branch, or
indirect

send current PC to Code Pump Converger

TABLE 5.9
Linear Filter send actions

Chapter 5 µ-NET 130

Data area item Action

PCvalue & Flag set fetch opcode at PCvalue
send opcode to Filter Cache
Type of opcode:
‘other’:

PC ← PC+1
jump, call:

get ‘k’ from opcode
PC ← PC+k

return, branch, or indirect:
reset Flag

TABLE 5.10
Linear Diverger actions

5.5.4. Recursion and Linear anticipation

Extending the Linear µ-Net design to accommodate recursion (RETURN opcodes)

involves extending the data structure to model a kind of ‘space embedding.’ The data

structure is a simple stack of PC values, with the same (single) signal Flag as before

(Figure 5.16). The Recutsion Filter Cache receive mechanism remains unchanged (same

as in the null design), and the send mechanism is changed to omit messaging upon

‘return’ opcodes (Table 5.11). The Recursion Converger remains unchanged from the

Null design.

The Recursion Diverger includes not only the linear transformation components

of the linear anticipation design, but also adds the ‘push’ and ‘pop’ operations on the data

structure to model the state space embedding (Table 5.12).

Current CPU opcode Action

‘other’, jump, call,
return

{ no action }

branch or indirect send current PC to Code Pump Converger

TABLE 5.11
Recursion Filter send actions

Chapter 5 µ-NET 131

Data area item Action

PCvalue & Flag set fetch opcode at PCvalue on stack top
send opcode to Filter Cache
Type of opcode:
‘other’:

PC ← PC+1
jump:

get ‘k’ from opcode
send opcode to Filter Cache
PC ← PC+k

call:
push PC+1 onto stack get

‘k’ from opcode send
opcode to Filter Cache PC
← PC+k return:

pop top off
stack and discard branch or indirect:

reset Flag

TABLE 5.12
Recursion Diverger actions

PC value stack Flag (1 bit)

FIGURE 5.16
Recursion data space

5.5.5. Branching and Linear anticipation

Before attempting to augment the Recursion anticipation design to accommodate

branching, it is easier to show the extension of the simple linear anticipation for

branching alone. Later recursion and branching are combined, but here each is shown as

independent extensions to the linear case.

Chapter 5 µ-NET 132

The point model of the PC of the CPU of the linear case is replaced with a

branching set model. The single PC value is replaced with a tree of values, each element

of which is shown in Figure 5.17. This allows multiple simultaneous active PC values,

denoted by the active leaves. ‘Active’ denotes a valid PC model, which was indicated in

the prior designs by a set Flag value. Each leaf of the tree can be active or inactive.

Interior nodes of the tree are inactive by definition.

Now that branching has been added to the set of opcodes accommodated, the

components of the design take on activities denoted by their names. The Branching Filter

Cache send portion emits messages indicating either which branch was taken, or how to

reactivate an inactive leaf of the data structure (caused by indirect and return opcodes)

(Table 5.13). The Branching Filter Cache has a different internal structure, modified to

retain PC values in a shift register in order to enable indirect and return opcode messages

(Figure 5.18).

The Branching Filter Cache receive portion of the branching design performs the

filter function, matching outgoing PC values to incoming (PC,opcode) pairs (Table 5.14).

In this way multiple alternate streams of opcodes sent by the Branching Code Pump can

be distinguished.

The Branching Diverger extends the state space of the Branching Code Pump’s

model of the CPU’s PC value, by splitting a single leaf into a branch with two leaves, in

the case where a branch is encountered. Each arm of the branch has its own new PC

value, and is labelled with the first PC value encountered on the branch path. The

Branching Converger matches incoming branch selection PC values to the set of all

branch labels, indicating a node in the tree where the CPU state has been in the past. The

nodes in the tree superior to the indicated node are possible subsequent states to the past

CPU state, and are kept; all other states denote possible states which the received PC

value has invalidated, and are deleted.

Only leaves in the tree indicate currently active paths, and so the ‘DMA1’ in the

Branching Diverger sends opcodes for each active leaf. Leaves which encounter indirect

or return opcodes are inactivated. A separate message type from the Branching Filter

Cache reactivates these leaves and deletes the whole remainder of the tree when received.

1DMA stands for Direct Memory Access, and represents a component similar to the

system-level component of the same name.

Chapter 5 µ-NET 133

These activities are indicated in the specifications of the Branching Converger (Table

5.15) and Branching Diverger (5.16).

PC value

LEAF

Flag PC value

LABEL

Prev

VERTEX

Prev

TREE

FIGURE 5.17
Branching data space

Current CPU opcode Action

‘other’, jump, call,
return

{ no action }

branch send (‘B’, current PC) pair

indirect send (‘I’, current PC, previous PC) triple

TABLE 5.13
Branching Filter send actions

Message received Action

(PC, opcode) pair if (current PC = PC)
then send opcode to CPU
else { ignore pair }

TABLE 5.14
Branching Filter receive actions

Chapter 5 µ-NET 134

PC from CPU

opcode to CPU

PC to Code Pump

opcode from Code Pump

opcode type from CPU

THIS LAST

FIGURE 5.18
Branching Filter Cache design

Message received Action

(‘B’,thisPC) find thisPC among branch labels delete all
but tree superior to found node

(‘I’,thisPC,lastPC) find lastPC among inactive leaves delete
all but found leaf activate found leaf

TABLE 5.15
Branching Converger actions

Data area item Action

Chapter 5 µ-NET 135

for each active leaf fetch opcode at leaf_PC
send opcode to Filter Cache
Type of opcode:
‘other’:

leaf_PC ← leaf_PC+1 jump, call:
 get

‘k’ from opcode send
opcode to Filter Cache

leaf_PC ← leaf_PC+k branch:
mark

current leaf as inactive get
‘k’ from opcode add
child leaf1

leaf1_PC ← leaf_PC+1
activate leaf1
leaf1_label ← leaf_PC+1

leaf1_prev ← leaf add
child leaf2

leaf2_PC ← leaf_PC+k
activate leaf2
leaf2_label ← leaf_PC+k

leaf2_prev ← leaf return or
indirect:

inactivate leaf

TABLE 5.16
Branching Diverger actions

Chapter 5 µ-NET 136

5.5.6. Combining Recursion and Branching anticipation

The final and most complete µ-Net design includes anticipation of both branches

and recursion. This requires a merging of the aspects of the Recursion anticipation and

Branching anticipation, which is called Total anticipation. Indirect opcodes are still not

anticipated in the Total version, because they cannot be anticipated at all1.

First, the data structure is augmented to provide aspects of the stack required for

recursion and the internal vertices required for branching (Figure 5.19). There are two

types of data structure components, unary and binary elements. A leaf is a unary element

with an empty ‘next’ pointer, and denotes one of the possible CPU PC values being

modeled (either active or inactive). A restoration is an inactive unary element, and

encodes a past call location, to be used when a return opcode is encountered. A vertex is

a binary element. Active leaves denote modeled PC values, and inactive leaves denote

pending indirect opcodes, which cannot be modeled.

PC value

Flag

LABEL

Prev

B1 B2

LABEL

Prev

UNARY
ELEMENT

BINARY
ELEMENT

Next

TREESTACK

FIGURE 5.19
Total Anticipation data space

1Again, we claim that indirect opcodes which are imited to compile-time jump

labels are equivalent to a fixed set of branches, and preclude the intent of an indirect

opcode, which is to permit unpredictability.

Chapter 5 µ-NET 137

The TreeStack is a more general structure than either a stack or tree. The Recursion

anticipation data space consists of unary elements only, i.e., in a linear stack. The

Branching anticipation data space consists of vertices and leaves only, i.e., a simple

binary tree, with no internal unary elements.

5.5.6.1. The TreeStack

A TreeStack is a union of the notions of a tree and a stack. It is both a tree of stacks

and a stack of trees. The stack implements the maintenance of the pending stack

information (as produced by CALLs and consumed by RETURNs), in concert with path

divergence information as indicated by BRANCHes. With respect to the stack, a CALL

causes a push, and a RETURN refers back to the most recent pending CALL on the path

previous to that PC. When all arms of a branch have been RETURNED or if one is

selected (via a received message), the unused arms disappear (are pruned); in this way the

tree aspect of the structure is managed.

The purpose of a TreeStack is to permit storage of RETURN addresses when a

CALL message is sent (to model the recursion of the state space), and to permit the

storage of the pairs of resultant PCs when a BRANCH message is sent. RETURNs

should cause the structure on the path back to the originating CALL to be popped, unless

these structures remain in use by pending BRANCHes. Multiple branches are pruned

either when specifying information is received from the processor, or when all arms are

popped as a result of RETURNs (Figure 5.20).

BRANCH
CALL

1
2

1

2

Original tree before pruning Branches at 1 pruned back via
RETURNs, & regrown

Branches other than 2 pruned
via received message

FIGURE 5.20
TreeStack structure: RETURNs prune, received messages specify

Chapter 5 µ-NET 138

For example, if a CALL occurs, then a BRANCH, a RETURN from the result of

either branch should cause a transformation to the same stored CALL address. Further,

when a both arms of the branch have thus been transformed, i.e., when RETURNS have

been sent from all PCs in the space of the CALL, that space disappears from the image.1

There are other ways to consider the interaction between the sending of code,

received updates of the processor’s actual state, and the structure of the TreeStack.

Sending out code causes the tree to grow, except in the case where a branch arm indicates

a RETURN, in which case the branch arm collapses to reflect the effect of the RETURN.

Received messages cause the TreeStack to be pruned, such that the received address is

the root of the resulting tree, branches superior to that tree location remain, and branches

subordinate to that tree location are pruned.

The transformations describing the TreeStack as a general data structure appear in

Appendix G. This structure may be of more general use.

5.5.6.2. The Total implementation of µ-Net

The Filter Cache sending mechanism of the Total implementation is changed only

slightly from the Branching version, because return opcodes are ignored, and indirect

opcodes send triples consisting of an indicator, the current PC, and the previous PC

(where the indirect opcode occurred) (Table 5.17). The Total Converger needs the

previous PC to match the indirect opcode execution to the correct leaf in the TreeStack,

because the path back to the root must be maintained to encode the recursion stack. This

requires extending the Filter Cache internally to store PC values through a 2-element shift

register (Figure 5.21). The Filter Cache receive design is unchanged (it is repeated here

for convenience in describing the Total design) (Table 5.18).

The Total Converger is modified to maintain the recursion stack information as well

as the superior tree graph of possible futures of the CPU PC (Table 5.19). Some

compression of the paths returning to the root may be possible, by deleting vertices on the

path when the vertex is not required to join two converging root paths. Multiple

simultaneous root paths are possible, because more than one label can be matched by an

incoming branch message.

1This is similar to virtual/real particle pair interaction, such that eventually the pair

collapses. Mirage was conceived of in terms of such physics analogs, as described in

Appendix B.

Chapter 5 µ-NET 139

The Total Diverger operates as a combination of the tree maintenance mechanism

of the Branching diverger and the stack mechanism of the Recursion diverger (Table

5.20). ‘Other’, jump, and branch opcodes are accommodated as in the Branching

diverger. Call opcodes transform a leaf into an internal unary element, in the fashion of a

simple stack push operation.

The return opcode is slightly more complex to accommodate in the TreeStack

structure. The problem is that elements on the path back to the corresponding prior call

(i.e., elements on the path back to the first internal unary element on the path back

towards the root) cannot be popped, because they may encode information which other

pending branches still need. Also, when branch resolution is indicated (by a received

message), the Total Converger may attempt to find a label in part of the tree which was

deleted.

In terms of recursion and branching, consider a call opcode then a branch. One

branch may return and continue execution in the prior environment, but the information

of the call (i.e., its PC) cannot be destroyed, because the other branch will need it to

execute its eventual return. Also, even when all branches in the recursed space return, the

tree of branches must be maintained, because incoming branch resolution information

indicates which returned path is valid. In other words, because a branch can induce

multiple paths back through the embedded spaces, the paths must be maintained.

The Total Diverger accomplishes this by copying the found prior unary node, and

replicating it. The replicate (now a leaf) is activated, and the current leaf (where the

return opcode occurred) points back to the replicate. The tree can therefore have branches

whose limbs recombine, but no circular paths are ever created by these operations, so the

notions of ‘superior tree’ and ‘path to root’ are maintained.

Current CPU opcode Action

‘other’, jump, call,
return

{ no action }

branch send (‘B’, current PC) pair

indirect send (‘I’, current PC, last PC) triple

TABLE 5.17
Total Filter send actions

Chapter 5 µ-NET 140

Message received Action

(PC, opcode) pair if (current PC = PC)
then send opcode to CPU
else { ignore pair }

TABLE 5.18
Total Filter receive actions (same as Branching filter)

PC from CPU

opcode to CPU

PC to Code Pump

opcode from Code Pump

opcode type from CPU

THIS LAST

pairing

FIGURE 5.21
Total Filter Cache design

Message received Action

(‘B’,thisPC) find thisPC among branch labels
unmark all elements
for each found element:

mark all elements in superior tree
mark all elements on path to root

delete all unmarked elements

(‘I’,thisPC, lastPC) find lastPC among inactive leaves
unmark all elements
for each found element:

found_PC ← this_PC
activate found element
mark all elements on path to root

delete all unmarked elements

TABLE 5.19
Total Converger actions

Chapter 5 µ-NET 141

Data area item Action

for each active leaf fetch opcode at leaf_PC
send opcode to Filter Cache
Type of opcode:
‘other’:

leaf_PC ← leaf_PC+1 jump:
get

‘k’ from opcode send
opcode to Filter Cache

leaf_PC ← leaf_PC+k call:
 get

‘k’ from opcode
create new leaf

new_prev ← leaf
new_PC ← leaf_PC+k

activate new leaf
deactivate this leaf
leaf_next ← new_leaf branch:

replace current leaf with vertex
vert_label ← leaf_label
vert_prev ← leav_prev
vert_b1 ← leaf1
vert_b2 ← leaf2

get ‘k’ from opcode
add child leaf1
leaf1_PC ← leaf_PC+1
activate leaf1
leaf1_label ← leaf_PC+1
leaf1_prev ← leaf add

child leaf2
leaf2_PC2 ← leaf_PC+k
activate leaf2
leaf2_label ← leaf_PC+k
leaf2_prev ← leaf return:

find first
unary antecedent copy found
element

new_prev ← found_prev
new_PC ← found_PC+1
this_next ← new
activate new leaf
deactivate this leaf

indirect:
deactivate leaf

TABLE 5.20
Total Diverger actions

Chapter 5 µ-NET 142

5 . 6 . Im p l i c a t i o n s

The implications of the µ-Net architecture on the performance of the

processor/memory system can now be considered. The performance equations defined

before are repeated below:

Equation 5.1: Toptimal = N * t

Equation 5.2: Tconventional = N * (t + r)

Equation 5.5: Tcache = N * (t + r * M)

Equation 5.7: Tprefetch = N * (t + r * F)

where F ≤ J + B / 2 + C + R + I

Equation 5.11: Tµ - Net = N * (t + r * P)

where T = total time to execute N instructions
t = time for the processor to execute 1 instruction
r = round trip time between the processor and memory
M = probability of a conventional cache miss
F = prob. of a conventional prefetching cache hit
P = probability of the µ-Net Code Pump miss

The values of M, F , and P can be compared. As the time separation between

memory and the processor increases, the r component of the equations begins to

dominate. The goal is to determine the conditions under which P is less than M or F.

The value of P can be further elaborated, in the various levels of implementation of

µ-Net. The levels of implementation describe the degree for which various opcode

classes are included in the send transformations. Implementations model ‘no’ send

transformations, send transformations on regular opcodes only, on regular and jump

opcodes, etc. These correspond to predicting the next opcode (and sending it) after

regular opcodes, jumps, calls, etc.

The following formulae describe the ways in which the prediction can alleviate the

effects of round trip latency (Equations 5.13, 5.14, 5.15, 5.16). Evaluation of these

formula, thus far, depends only upon measurements of the probability of each class of

instruction type.

Chapter 5 µ-NET 143

Definitions: O = other instructions
J = jumps
C = calls
R = returns
B = branches
I = indirect (calls, branches, or jumps)

where N = O + J + C + R + B + I

Equation 5.13: Tnull = N * (t + r)

Equation 5.14: Tother = N * (t + (J + C + R + B + I) * r)

Equation 5.15: Tother , jump = N * (t + (C + R + B + I) * r)

Equation 5.16: Tother , jump,call = N * (t + (R + B + I) * r)

These formulae require a constant sized Code Pump (i.e., only a finite amount of

storage to implement the imaging of the PC of the processor), because they consider only

transformations which preserve the size of the image.

If the Code Pump is augmented to accommodate an arbitrary amount of stack space,

as required to handle the pending calls that could occur during one round trip time, the

transformations indicated by RETURN opcodes can be modeled, as shown in Equation

5.17. Because all the types of opcodes whose transformations have been modeled thus far

preserve the size of the PC image, issues of bandwidth in the communication can be

ignored. Only one PC value is ever active, so the instruction communication consists of a

single stream.

Equation 5.17: Tother , jump,call,return = N * (t + (B + I) * r)

If the Code Pump is further augmented to accommodate an arbitrary amount of

TreeStack space, as required to handle the pending branch executions that could occur in

one round trip time (i.e., the entire branch, not just the calls), the transformations

indicated by BRANCH opcodes can be modeled as well.

Recalling the discussion of the Mirage model, there are limitations to this

predictability beyond that of the data storage in the Code Pump. When the image space

becomes large, the state space must be partitioned coarsely enough to be able to send a

small enough number of messages such that the entire space is covered by the guards of

Chapter 5 µ-NET 144

the set of the messages sent; this is from our definition of stability (entropic, as also

discussed in Chapter 2).

At this point that limitation becomes applicable. Expansion of the PC image is

limited not only by the space needed to represent it (the size of the TreeStack structure),

but also by the total number of messages in transit. All possible destinations of all

pending PCs due to BRANCH instructions cannot be sent if the round trip time does not

permit it. Once a BRANCH is encountered, one round trip time exists to send the

messages corresponding to its isopotent set (the set of opcodes of every possible branch

destination, in this case).

Partitioning the state space coarsely is not a concern here; there is not enough

information in the opcodes of a program to collapse the information efficiently, i.e., to

send a single opcode with a label of the five locations where it occurs. This kind of

dynamic partitioning is less effective than simply repeating the opcodes for each address

sent. Further, no compression of the state space (i.e., encoding of the addresses used as

labels) is really necessary, although some useful assumptions can be made. For example,

in many CPUs, branches, jumps, and calls are limited to some fixed maximum distance

from the current PC, usually less than the limit of the entire PC space (i.e., short jumps

vs. long jumps). If a short jump opcodes cause transformations of the PC which are, at

most, 8 bits offset from the current PC, only the lowest 8 or 9 bits of address need be sent

as the label. This latter minimization of communication is not the same as partitioning the

space coarsely; it reflects only a useful encoding of the guards.

A version of Equation 5.17 reflects the use of the bandwidth to accommodate the

multiple possible values in the memory’s image of the processors PC (Equation 5.18).

Equation 5.18: T = N * (t + (I + X * B) * r)

where X = percent of branch possibilities which cannot be communicated

X can be measured directly, from an implementation (either direct or emulated), or

can be approximated through the application of some assumptions. Recall the prior

discussion (Chapter 2), which defines communicability in the abstract model. This refers

to the ability to partition the image space coarsely enough, and to send a small enough set

of short enough messages, that the entire set that covers the image (the isopotent set) can

be communicated in the information separation (bandwidth-delay product) available; if

this can be done, and if the set sufficiently constrains the image space, then the image

(and thus the communication) is stable (entropically, or otherwise).

Chapter 5 µ-NET 145

In the abstract model state space volumes are introduced to represent images of

remote state spaces. Each image either continues in time, or is transformed into a set of

images. In µ-Net, each PC value either continues as a single point (via JUMP, CALL,

RETURN, or regular opcodes), splits into two points (BRANCH), or becomes a set too

large to partition (INDIRECT).

Under the simplifying assumption that branches are indistinct, the ways in which

branch possibilities can be communicated can be computed, thus determining the size of

a isopotent set which can be communicated per round trip time. This formula was also

developed earlier (Chapter 2, Branching Streams).

The ultimate goal is to determine the probability of not predicting an opcode, i.e.,

the ‘miss’ rate of the Code Pump, and to determine the storage required to maintain the

TreeStack structure.

Let L be the limb length (typically 6 to 8 opcodes in length), let D be the branch

degree (usually 2, because only binary branches are modeled), and let rtt be the round trip

time, as defined in prior discussion of channel utilization. Also let OP_BW be the

bandwidth, in opcodes per unit time. In time rtt, the original PC of the processor attempts

to execute opcodes (Equation 5.19, where CPI = clocks per instruction [He90]). In that

time, only a portion of the tree of possible execution streams can be transmitted

(Equation 5.20). With respect to an individual execution path, only a portion of the path

is sent, i.e., the portion equivalent to the tree depth (Equation 5.21). The ratio of the path

length which the CPU attempts to execute in the round trip time to the path length in the

tree sent is the probability of success (Equation 5.22).

Equation 5.19: opcodes_ executed =
rtt

t

where t =
CPI

clock_ rate

Equation 5.20: depth such that rtt * OP_ BW =
D * Ddepth −1()

D −1
* L

Equation 5.21: depth = logD

rtt * OP_ BW * D −1()
L * D

+ 1







Chapter 5 µ-NET 146

Equation 5.22: tree_ success =
logD

rtt * OP_ BW * D −1()
L * D

+ 1







opcodes_ executed

This analysis focuses on prediction failure based on the inability to transmit enough

alternates in the branching stream; it ignores the effects of INDIRECT ipcodes, because

they are so infrequent (less than 0.3%).

Equation 5.17 refers to Equation 5.23, which depends on the growth of the state

space image as determined by the latency, and the management of that growth which is

limited by the information separation (i.e., Equation 5.22). The result is the effective

communicability in µ-Net (Equation 5.24).

Equation 5.23: X = 1− tree_ success

i.e., X = 1−
logD

rtt * OP_ BW * D −1()
L * D

+ 1







rtt

t

Equation 5.17: T = N * (t + X * r)

Equation 5.24: T = N * t + 1−
logD

rtt * OP_ BW * D −1()
L * D

+ 1







rtt

t

















* r

















Before this point in the discussion, the round trip latency did not figure into the

calculation of performance. In considering the way in which the state space image can

expand beyond the ability to manage it, latency becomes an issue. Latency determines to

what extent the expansion of the image can be managed. As a result, it plays a role not

only in the penalty assessed when prediction fails, but also in the evaluation of the

frequency of penalization (X).

In the limit of this equation as the available bandwidth goes to infinity, all isopotent

sets can be sent, and X consists of only those instructions whose transformations cannot

be modeled, those of INDIRECT opcodes. These opcodes require a round trip latency in

which to determine the resultant PC, as computed at the processor (Equation 5.25). This

equation represents an ‘Amdahl’s Law’ of communicating interaction, i.e., that the

Chapter 5 µ-NET 147

speedup is limited to the predictible component, so the speedup is limited to the

reciprocol of the percentage of indirect instructions 5.26.

Equation 5.25: Toptimal µ - Net = N * (t + I * r)

Equation 5.26: Speedupmax ≤
1
I

In these equations, OP_BW is the number of opcodes sent per unit time, and t is the

time to execute an opcode, the two of which are related via the CPU clock_rate and the

CPI (cycles per instruction). Typical values for CPI values are as low as 1.0 for true

RISC processors, 1.3 for a heavily pipelined CISC (68040) [Mo89], and up to 14 for

other CISCs (68000) [Ma84] (Table 5.21). The clock_rate of a CPU is typically 10 to 30

Mhz.

Processor CPI

Motorola 68000 13.5 [Ma84]

Motorola 68010 11.4 [Ma84]

Motorola 68020 6.6 [Ma84]

Motorola 68040 1.3 [Mo89]

DecStation 3100 (MIPS) 1.87 [He90]

Sun 3/75 (680x0) 10 [He90]

DLX (RISC) [He90] 6.28 [He90]

TABLE 5.21
CPI (EXEC) values of common CISC and RISC CPUs

5 . 7 . C o n c l u s i o n s

This chapter presented equations describing the performance of processor-memory

protocols, and developed a new protocol called µ-Net based on the abstract Mirage

model. µ-Net’s design, and the various degrees of its implementation were also

Chapter 5 µ-NET 148

presented. Performance equations require either detailed modeling of the expected

opcode stream, or measurement of real opcode streams. Initial modeling here indicates

that the performance of µ-Net depends on the internal structure of the stream,

specifically, how the stream branches and how long each branch persists.

In order to compare these equations, detailed measurements are required of real

opcode streams. These measurements include the expected branch degree, and the

expected limb length. Other required measurements include the distribution of the opcode

classes. Prior work can indicate the expected values of cache miss (M) or miss with

prefetch (F). Description of these measurements and analysis of the results appears in

Chapter 6.

Chapter 6 µ-SCOPE 148

C H A P T E R 6

µ-Net under a µ-Scope

Evaluation of µ−Net requires measurement of cache miss (M), prefetch cache miss

(F), and µ−Net miss (P) probabilities. Cache performance parameters are available in the

literature [Sm82]. Some measurements of opcode statistics have also been published

[He90], but some of the statistics required to evaluate µ−Net are not available, and were

made by direct measurement of opcode execution. The measured design is called µ−Net

(MicroNet), so this measurement method is called µ−Scope (MicroScope). A description

of µ-Scope appears in Appendix H.

Required measurements which were not available in the literature include statistics

of opcode distributions according to the partitioning indicated by µ−Net. µ−Net also

requires measurements of the average number of non-control transfer opcodes between

control transfer opcodes; the definition of control transfer differs for the various levels of

design discussed (Chapter 5). µ-Scope was developed to perform these measurements.

Other tools for opcode distribution measurement were considered (as discussed in

Appendix H), but were either insufficient for the measurements desired (Pixie) or

proprietary and not available to us.

These measurements are made on the dynamic trace of opcode executions of

various benchmarking programs. The applicability of benchmarks for general analysis is

not advocated here. This selection represents widely available benchmarks which

Chapter 6 µ-SCOPE 149

compiled and ran without explicit error in µ-Scope. Other benchmarks were considered,

but omitted because they were not available in either SPARC Assembler or C language

source code (which µ-Scope is limited to), or because of system limitations during the

preparation of this dissertation (i.e., the benchmark was of limited interest due to its

specificity, and there was insufficient disk space and insufficient processing capability to

examine all available benchmarks).
 The GNU C, TEX, Linpack, and Dhrystone benchmarks were chosen for these

measurements. GNU C is a freely distributed C language compiler; our version (1.35)

and the test set weightings used were extracted from the SPEC Benchmark Release 1.0
[Wa90]. TEX is an embedded text typesetting program; our version was contained in the

benchmark distribution of [He90]1. The C language versions of both Dhrystone and

Linpack were obtained from standard Internet libraries2. Each benchmark has particular

characteristics, listed below:

• GNU C - a large program, complex, recursive; uses many language features

• TEX - a typical large frequently-used program

• Linpack - a set of routines collected from a mathematical software library

• Dhrystone - a contrived program claimed to represent intense integer
computing

Both Linpack and Dhrystone represent intense mathematical computing, but lack

sophisticated use of compiler and language constructs. They are often used for estimating

measurements of theoretical CPU performance, such as FLOPS or MIPS.
TEX represents a common but complex application program, exhibiting significant

levels of recursion and opcode proportions in general purpose systems. The GNU C

compiler represents a typical upper-bound (or at least a reasonable bound) of complexity,

both in its static structure and dynamic execution.

1The software supplement to [He90] is available via anonymous FTP at

max.stanford.edu.
2These benchmarks are available via Internet e-mail; send queries to

netlibd@surfer.epm.ornl.gov.

Chapter 6 µ-SCOPE 150

Some of the measurements performed here have also been presented elsewhere.

They are repeated here because it is important to compare the measurements of various

characteristics on a common set of benchmarks, and because some necessary

measurements were not found in the literature, notably the variability in limb length with

various treatments of jump, call, and return instructions, as discussed in detail below.

6 . 1 . P e r f o r m a n c e ga i n s

The performance gain of µ−Net is measured by the extent to which P is less than

either M or F . We need to compare actual measurements in order to make these

measurements. As noted before, there is no incompatibility between conventional caches

and µ−Net, so the comparison is simplified by the assumption that µ−Net also has a

conventional cache inside the Filter Cache. The Filter Cache then behaves like the

conventional cache, with the exception of the one entry which represents the latest

opcode/address pair as received from the incoming communication stream. Further, if

this ‘streaming’ entry is hit, it is copied into a conventional entry, just as when a memory

reply occurs after a conventional cache miss.

In prefetching caches, a miss of a particular datum causes a sequence of data to be

fetched. This is equivalent to the assumption that all opcodes are of type OTHER (as

described in Chapter 5) (i.e., simply increment the PC), and that the memory will send a

number of opcodes equivalent to the line size or lookahead of the cache upon a miss.

Communication can be modeled as a branching stream (as described in Chapter 2).

The branching of this stream is 2 because BRANCH opcodes accommodate 2 alternates.

The limb length of the stream describes the extent to which a particular image value (PC)

remains predictable by transforms. In µ−Net, limb length is the average number of non-

control flow opcodes between control flow opcodes. Opcodes which alter the flow of

control are those that cause branching in the stream (BRANCHes), or that cause a round

trip latency penalty because they are not anticipated (INDIRECT, and opcodes not

anticipated in a given implementation).

Dynamic opcode traces (i.e., execution traces) indicate the following distributions

of opcode classes. I-Call’ and ‘I-Jump’ denote indirect CALL and JUMP opcodes,

respectively; SPARC CPUs have no indirect branches (Figure 6.1). Other published

measurements [Ka91] of troff (GK troff) and cc (GK cc) are included for comparison.

Chapter 6 µ-SCOPE 151

2 01 51 050

GK CC

GK troff

OUR average

TeX

GCC

Dhry

Linpack

Branches

Jumps

I-Jumps

Calls

I-Calls

Returns

Dynamically measured opcodes (%)

Program

FIGURE 6.1
Dynamic control opcode distributions

In the following discussion, INDIRECT refers to the aggregate of all indirect

opcode types. These measurements were made on the actual execution of the benchmarks

on a SPARC (SUN-4), which has no indirect branch opcode. The vast majority of the

indirect opcodes were indirect JUMPs, due to a preference in the C compiler used1.

The code was measured by compiling the benchmarks (using optimization), and

generating SPARC assembler code. The assembler was modified by an AWK script,

which inserted additional instructions to count the various classes of opcodes during

execution, as well as measuring the number of OTHER opcodes between control of flow

instructions, such a JUMP, BRANCH, CALL, and RETURN. Existing tools, such as

PIXIE and PIXIESTATS for the MIPS processor, were not used because the method for

determining basic blocks causes errors in the measurement of opcodes due to the effects

of indirect JUMPs and CALLs. The SUN equivalents, SPIX and SPIXTOOLS, as well as

the SUN SPARC emulator SHADOW, were requested but not available for public use.

See Appendix H for a further discussion on the measurement techniques used here.

1In the test code we measured, the SPARC C compiler generated indirect CALLs

only where structures were returned as function values (4 times), and only in the GNU C

compiler code. Indirect JUMPs appeared in almost all of the test code, in very small

(<0.3%) amounts.

Chapter 6 µ-SCOPE 152

The variance in these measurements is large, due to the arbitrary choice of

canonical code examples, and the variability between benchmarks. Estimates of the

measurements are summarized in Table 6.1. These are verified by similar, albeit more

limited published measurements [Ka91]1.

OPCODE %

Other 84

JUMP 2

CALL 2

RETURN 2

Indirect 0.3

TABLE 6.1
Approximate dynamic opcode distribution

Comparing µ−Net to an architecture without a cache, µ−Net reduces the effect of

latency by the percent of instructions which can be accommodated by the Code Pump

(Figure 6.1, Table 6.2).

These comparisons assume that the majority of time spent in execution is due to

round trip latency, i.e., that r >> t by at least one order of magnitude, preferably at least

two. This necessitates a latency of at least 100 instruction execution times, which in a 1

gigabit/sec pipe, assuming 32-bit instructions, corresponds to a latency of 3,200 bits, or

3.2 µsec, or 960 meters, which is about 6 city blocks. For example, these results apply

where the processor and memory are separated by at least 3 city blocks, which is

completely reasonable for a client/server system located on a small college campus.

1Our method of dynamic tracing, µ-Scope, was developed using methods similar to

those which appear in the Katevenis paper. To use a common euphemism, we reinvented

their wheel, then checked theirs to tune ours. A further discussion of µ-Scope appears in

Appendix H.

Chapter 6 µ-SCOPE 153

Opcode groups
anticipated

% not
predicted

Speedup Caveats

none (conventional) 100 1

Other 16 6.3 x

Other, JUMP 14 7.1 x

Other, JUMP, CALL 12 8.3 x

Other, JUMP, CALL,
RETURN

10 10 x unlimited stack

all but Indirect 0.3 333 x unlimited TreeStack

TABLE 6.2
Approximate speedup in various degrees of implementation

Measurements of cache utilization have appeared often in the literature [He90]

[Sm82]. The miss rate M is approximately 3%, which with prefetching (F) drops to 1.5%.

These assume extremely large (or infinite) caches. A 1K cache has a miss rate of about

20%, a 4K about 12%, a 128K about 5%, and the miss rate approaches 3% only for

caches larger than 256K.

Large (infinite) caches miss mostly due to first time code use, whereas smaller

caches miss both from first time code use and from most control opcodes, because the

cache is so small that changes in control flow are likely to require opcodes not in the

cache. A prefetching cache misses only from control flow opcodes because first time

code use is predicted by the prefetch.

Changes in control flow occur from JUMPs, CALLs, RETURNs, and INDIRECT

opcodes, as well as from half of the BRANCHes, the latter assuming that BRANCHes are

taken about 50% of the time [He90]. Such control opcodes comprise 11.3% of the

instruction stream (JUMP, CALL, RETURN, INDIRECT, and half of the BRANCHes),

so control opcode misses comprise 11.3% of the cache misses, i.e., prefetching caches are

estimated to miss 11.3% of the time.

This estimate can be further refined because branches can be separated into

backward and forward branches, where forward branches are more likely to cause misses.

About 25% of branches are backward (empirically [He90]), because backward branches

Chapter 6 µ-SCOPE 154

are generated for loops, whereas forward branches are generated for IF and CASE

statements, which are more common in source code. Backward branches are more likely

to hit existing cache entries, so a revised formula for misses in small prefetching caches is

10% (JUMP, CALL, RETURN, INDIRECT, and half of 3/4 of the BRANCHes).

Prefetching reduces the miss rate up to 50% for large caches, compared with non-

prefetching caches [Sm82]. Misses occur due to CALLS and RETURNS more than

BRANCHES, because most local code remains in the cache. A small cache has a 20%

miss rate and 50% of these misses are predictable (due to the opcode distribution

difference), so the miss rate of a small prefetching cache is expected to be 10%,

equivalent to our approximation based on opcode distributions.

Cacheing and cache anticipation are compared to µ−Net anticipation, in Table 6.3,

assuming nothing about branch outcome. Opcodes are called JUMP, CALL, RETURN,

BRANCH, INDIRECT, and OTHER for all other types, and labelled respectively J, C, R,

B, I, & O [He90]. The table notes the cache size required to approximate various versions

of µ−Net, based on which sets of opcodes are anticipated. In the Recursion case, storage

is required in the Code Pump of 100 addresses; justification of this figure is discussed

later.

µ−Net Version Opcodes
anticipated

miss rate equivalent
cache

µ−Net storage

Unit Linear O 16% 2K bytes none

Linear O+J+C 12% 4K bytes none

Recursion O+J+C+R 10% 8K bytes 100 addresses

TABLE 6.3
µ−Net implementations and cache equivalents (no branch assumption)

Assuming branches are taken 50% of the time, i.e., that half the branches are

predicted, more dramatic comparisons result (Table 6.4).

A naive comparison of these numbers results in the conclusion that most degrees of

implementation of µ−Net are far worse than either caches or prefetching caches.

Although cache miss rates are often quoted as 3% (1.5% for prefetching caches), these

rates apply only to very large caches. Current microprocessors have small caches (8K for

an Intel 80486, 256 bytes for a Motorola 68030, 4K for a Motorola 68040 and Intel

Chapter 6 µ-SCOPE 155

80860 [Mo89]). In comparison, µ−Net beats most of these on-chip caches, if transmission

latency is large.

µ−Net Version Opcodes
anticipated

miss rate equivalent
cache

µ−Net storage

Unit Linear O 11% 8K bytes none

Linear O+J+C 7% 16K bytes none

Recursion O+J+C+R 5% 50K bytes 100 addresses

TABLE 6.4
µ−Net implementations and cache equivalents (equiprobable branching)

Opcode % of
control

estimated
cache miss
distribution

OTHER - 50 %

JUMP 12 % 6 %

CALL 12 % 6 %

RETURN 12 % 6 %

BRANCH 62 % 31 %

INDIRECT 2 % 1 %

TABLE 6.5
Adjusted dynamic opcode distributions (approx. a cache miss stream)

These results can be extrapolated to a system where µ−Net complements cacheing,

rather than replacing it. Opcode distributions change with the inclusion of a cache, and

measurements including a cache implementation were beyond the scope of this

dissertation. One estimate assumes that the proportions of control opcodes (relative to

each other) remains the same, between a conventional instruction stream and the stream

of cache misses. Assuming that control opcodes increase to a total of 50% of the cache

miss stream [He90], keeping all other relative proportions the same, this results in an

Chapter 6 µ-SCOPE 156

adjusted opcode distribution (Table 6.5), and expected speedup (Table 6.6). The

combined entries (cache with µ−Net) indicate that a resulting miss is the result of the

combination of a cache miss and a failure of µ−Net to have anticipated the request for

that opcode (i.e., the miss and failure rates are multiplied).

Implementation Failure rate Speedup
(ratio to null)

cache alone (large- 256K) 3% 33 x

cache alone (small- 4K) 10% 10 x

prefetch cache (large- 256K) 1.5% 67 x

small cache + µ−Net(O) 10% * 50% = 5% 20 x

small cache + µ−Net(O,J) 10% * 44% = 4.4% 22 x

small cache + µ−Net(O,J,C) 10% * 38% = 3.8% 26 x

small cache + µ−Net(O,J,C,R) 10% * 32% = 3.2% 32 x

small cache + µ−Net(O,J,C,R,B) 10% * 1% = 0.1% 1000 x

large cache + µ−Net(O,J,C,R,B)
[BEST]

3% * 1% = 0.03% 3,333 x

TABLE 6.6
Performance increases where latency dominates design parameters

According to this table, a small cache with a Recursion µ−Net (using 400 bytes of

internal stack space) uses a total of 4.4K bytes of space, but achieves the miss rate

equivalent to a 256K byte cache. Note that the Recursion µ−Net uses the same memory

bandwidth as a system without a cache; only the Branching and Total µ−Nets require

bandwidth higher than the Null design.

These are overestimates of the expected speedup, because the distributions of cache

miss code are different from distributions of overall code use. Misses will be generated

disproportionately by JUMPs, CALLs, RETURNs, and INDIRECTs, because these kind

of control flow changes are not likely to be contained in code already accessed, due to the

principle of locality. Measurements of code distributions in cache misses were

Chapter 6 µ-SCOPE 157

unfortunately beyond the scope of this dissertation, but we do not expect they would

significantly change the conclusion that µ−Net/cache exceeds the speedup capability of

cache/prefetch or cacheing alone.

More sophisticated experiments are required to extend this analysis to the

Branching and Total µ−Net cases, as described later.

6 . 2 . O n t h e f e a s i b i l i t y of im p l e m e n t a t i o n s as
a r c h i t e c t u r e s

The feasibility of these implementations as realizable architectures depends on the

real size of the stack or TreeStack data structures in the Code Pump.

For example, the size of the stack structure in the Recursion µ−Net is equal to the

largest number of pending RETURN opcodes during the entire code execution (i.e., the

depth of recursion). Cumulative percentages of the CALL opcodes at each level of

recursion are plotted in Figure 6.2. For a particular stack size, the plot indicates the

probability of not being able to store a CALL address, for use by its corresponding
RETURN. For example, 85% of CALL/RETURN pairs can be accommodated in the TEX

benchmark by a stack of size 17, whereas the stack would have to be increased to a size

of 50 to handle the same likelihood of overflow in the GCC benchmark.

6050403020100
0

20

40

60

80

100

TeX call %

GCC call %

Dhry call %

Linpack call %

Subroutine call depth (application only)

Calls at or above
plotted depth (%)

FIGURE 6.2
Percent of CALLs occurring at or above a given depth of recursion

Chapter 6 µ-SCOPE 158

Some of these depth measurements are not very accurate because the depth of

pending calls could not be traced within the operating system with µ-Scope (Figure 6.3).

This analysis is similar to that presented in [He90], where their results indicate that C

compiled code has 5% overflow at a depth of 6, LISP at a depth of 7, and SmallTalk at a

depth of 9, so the results depend on the program type as well as language and compiler

characteristics.

100806040200

TeX

GCC

Dhry

Linpack

Static calls not measurable dynamically (%)

Program

FIGURE 6.3
Percent of CALLS not depth-traced (system calls)

Because only RETURN addresses need to be stored, a stack as small as 10 items
will handle all of the Dhrystone and Linpack RETURNs, and miss only 10% of the TEX

RETURNS, although it would fail in 85% of RETURNS in a highly recursive program,

such as the GCC compiler. Increasing the stack to as little as 100 values allows the

Recursion µ−Net to anticipate 100% of the user-code RETURN opcodes. Thus storage

for a stack structure in the Code Pump which is large enough to accommodate all pending

levels of recursion should be trivial to implement.

The size of the TreeStack structure also limits the feasibility of implementations.

The TreeStack represents not only the information in the stack of pending recursions, but

also the information on the expansion of the state space image. In order to estimate the

size of this structure, there are two options. The first involves emulating the Code Pump,

and determining the maximum extent of the structure as the benchmarks were executed.

This level of experimentation was beyond the scope of this dissertation, but may be

considered as a future research area.

Chapter 6 µ-SCOPE 159

The second involves some assumptions. Rather than directly measuring the size of

the TreeStack, an estimate of its size can be made using the same simplifying

assumptions as the branching stream analysis (Chapter 2). Assuming that the state begins

in a finite set of values (i.e., a single PC, in this case), and that the sequence of PCs can

be expressed as a tree, a snapshot of the image of the remote PC at any given time is

expressed by the set of PCs in a level of the tree thus formed.

The branch degree of the tree is 2, modeling only BRANCH opcodes, because

INDIRECT opcodes expand the space infinitely (actually, they expand the space by a

degree of the size of the PC, at which point that level in the tree covers all possible PCs,

as described before). The other relevant tree characteristic is the average limb length,

defined as the number of opcodes between those which cause the tree to either branch or

terminate (due to a terminated modeling).

For example, in the Total µ−Net, limb length is the number of opcodes between

BRANCH or INDIRECT opcodes. In the Branching µ−Net, limb length is measured

between BRANCH, INDIRECT, and RETURN opcodes. Figure 6.4 shows the average

limb length in each benchmark, as measured for different degrees of implementation. In

these graphs, linearity refers to limb length, i.e., linearities in the flow of control in the

opcode stream.

20151050

TeX

GCC

Dhry

Linpack

ALL
BCRi

Bi

Length of linearity (average)

Program

Opcode types
interrupting linearity

FIGURE 6.4
Average limb length (linearity)

Chapter 6 µ-SCOPE 160

For this graph (Figure 6.4), ALL refers to the Unit Linear µ−Net (i.e., all control

opcodes delimit limb lengths). BCRi refers to the Linear µ−Net (BRANCH, CALL,

RETURN, and INDIRECT), and Bi refers to the Total µ−Net. Other combinations were

not measured, but would be interpolations of these values (e.g., Branching µ−Net and

Recursion µ−Net), because the Total µ−Net exhibits the longest possible limb length, and

Unit Linear exhibits the smallest. Modeling JUMP instructions (ALL/Unit Linear vs.

BCRi/Linear) increases the average length by 10-20% from around 6 to around 7

opcodes, but that modeling CALLs and RETURNs (Recursion) increases the averages by

about 40% (or as much as 100%), to around 9 (Figure 6.5).

100806040200

TeX

GCC

Dhry

Linpack

jump %
jump, call, return %

Increase in linearity (%)

Program
Opcodes added
to linearity group

FIGURE 6.5
Percent increase in limb length (linearity), adding calls and returns

The distributions of limb lengths was also measured because the variance in these

averages was very large (greater than 100%). These figures plot cumulative probabilities,

i.e., for a given length, the ratio of the number of limbs at that length or less to the total is

plotted, so that the point indicates “the probability that a random limb is shorter or equal

to the limb length indicated” (Figures 6.6, 6.7, 6.8, 6.9). The mode of these distributions

can be read directly from these plots, as the 50% value (i.e., 50% of the arm lengths are

less than or equal to the plotted value).

In this set of plots, ALL indicates the limb length distribution of the Unit Linear

µ−Net, BCRi indicates the limb length distribution of the Linear µ−Net, and Bi indicates

the limb length distribution of the Total µ−Net. Linpack exhibits a jump in limb length

statistics, presumably because it consists primarily of a set of nested FOR loops, and data

from the inner portion of these loops overwhelms the statistics. The scientific programs

(Linpack and Dhrystone) exhibit large limb length increases if CALLs and RETURNs are

Chapter 6 µ-SCOPE 161

accommodated within the limbs, because the repetitious structure of the code ensures

interleaving of CALL/RETURN opcodes with BRANCHes; if CALLs and RETURNs are

then included within the limb, limb length increases.

4035302520151050

0

20

40

60

80

100

Dhry ALL %

Dhry BCRi %

Dhry Bi %

Length

% shorter
or equal

Dhrystone

FIGURE 6.6
Dhrystone limb length distribution

4035302520151050

0

20

40

60

80

100

GCC ALL % W

GCC BCRi % W

GCC Bi % W

Length

% shorter
or equal

GCC Weighted

FIGURE 6.7
GCC (weighted) limb length distribution

4035302520151050
0

20

40

60

80

100

Linpack ALL %

Linpack BCRi %

Linpack Bi %

Length

% shorter
or equal

Linpack

FIGURE 6.8
Linpack limb length distribution

4035302520151050
0

20

40

60

80

100

TeX ALL %

TeX BCRi %

TeX Bi %

Length

% shorter
or equal

TEX

FIGURE 6.9
TEX limb length distribution

Cumulative branch arm length distributions of various benchmark programs

Rather than using the complete distributions shown above to evaluate the effects of

branching on channel utilization, the mean and median of these distributions are used

(Table 6.7). These measurements can be used to compare the effects of limb length

increases on the Total µ−Net implementation. In effect, the performance of the Total

µ−Net is compared to a Total µ−Net without recursive accommodation, called Total-

Recursive, and to a Total µ−Net without either recursive or linear accommodation (i.e.,

Branching µ−Net without linear accommodation), called Branching-Linear.

Now that reasonable values for limb length (Table 6.7), and branch degree (2)have

been measured, µ−Net’s channel utilization can be evaluated. µ−Net utilization is

determined by the miss rate of the µ−Net anticipation mechanism; Equation 6.1 describes

Chapter 6 µ-SCOPE 162

the performance measure, and Equation 6.2 is the miss probability component which has

been simplified for a branch degree of 2.

µ−Net
implementation

Limbs delimited by Mean L Median L

Branching-Linear BRANCH, CALL,
RETURN, JUMP,
INDIRECT

7 4.3

Total-Recursive BRANCH, CALL,
RETURN,
INDIRECT

8 4.75

Total BRANCH,
INDIRECT

10 5.8

TABLE 6.7
Mean and median limb lengths for µ−Nets implementing branching

Equation 6.1: T = N * t + 1−
logD

r * OP_ BW * D −1()
L * D

+ 1







r

t

















* r

















where OP_BW = opcode bandwidth, i.e., opcodes per unit time
D = branch degree (usually 2)
L = limb length, in number of opcodes
N = total number of opcodes executed
T = resulting execution time
r = round trip time

t = time to execute an opcode =
CPI

cpu_ speed

Equation 6.2: µNet_ miss_ rate =
log2

r * OP_ BW

L
+ 1




−1

r

t

The anticipatory miss probability is determined by the sum of the probability of an

INDIRECT opcode occurring (0.3%) and the probability that the Code Pump has

insufficient bandwidth to send all the possibly requested opcodes. Performance is

proportional to the channel utilization, which is proportional to hit probability, which in

Chapter 6 µ-SCOPE 163

turn is equal to 1-miss_probility. The performance of the three variations of anticipation

(Branching-Linear, Total-Recursive, Total) can be plotted vs. bandwidth (OP_BW) round

trip latency (r), with branch lengths as indicated above (Table 6.7). Figure 6.10 describes

the Branching-Linear µ−Net (limb length L=7), Figure 6.11 describes the Total-

Recursive µ−Net, and Figure 6.12 describes the Total µ−Net. These figures allow

comparison of mean limb length values.

The graphs show how performance (i.e., channel utilization) decreases as latency

increases, and increases as bandwidth increases. They also indicate that small increases in

average limb length, as derived from more complete implementations of the Code Pump,

achieve large increases in utilization. Increases in bandwidth compensate for increases in

latency, although a linear increase in latency requires a corresponding exponential

increase in bandwidth (see shaded areas).

FIGURE 6.10
Mean limb length (L = 7) hit

probablity vs. BW vs. rtt.

FIGURE 6.11
Mean limb length (L = 8) hit

probablity vs. BW vs. rtt.

FIGURE 6.12
Mean limb length (L =10) hit

probablity vs. BW vs. rtt.

µ−Net anticipatory hit probability vs. bandwidth (OP_BW) and round trip latency (rtt)

In order to better compare these three graphs, 2-dimensional slice of each graph

were plotted together. µ−Net anticipation channel utilizations are compared for fixed

values of bandwidth (OP_BW = 2), and for the mean and median values of branch length

(Table 6.7). µ−Net is compared against a non-anticipatory protocol in which only a fixed

deterministic prefix (of length 7) can be prefetched. The non-anticipatory protocol is

denoted by the solid curve, and Branching-Linear, Total-Recursion, and Total µ−Net

versions achieve increasing channel utilizations, as indicated by wide-dashed, narrow-

dashed, and dotted lines (Figs 6.12, 6.13).

Chapter 6 µ-SCOPE 164

Round Trip Latency

Channel
Utilization

NONE

TOTAL
L=10

BRANCHING-LINEAR
L=7

TOTAL-RECURSION
L=8

FIGURE 6.12
Mean limb length rtt. vs. utilization

Round Trip Latency

Channel
Utilization

NONE

TOTAL
L=5.8

BRANCHING-LINEAR
L=4.3

TOTAL-RECURSION
L=4.75

FIGURE 6.13
Median limb length rtt. vs. utilization

A view of the above, for OP_BW=2 (mean, median, for each of 3 implementations)

Examination of the ratio of the µ−Net channel utilizations to the non-anticipation

prefetch shows the utilization increases possible (Figs. 6.14, 6.15). The initial utilization

increase is linear, representing the µ−Net anticipation of the entire tree of possible

opcode streams. There is a point in the stream when the entire tree cannot be transmitted

given the available bandwidth; at this point the utilization increase is logarithmic as

latency increases.

Round Trip Latency

Utilization
(ratio to NONE)

NONE

BRANCHING-LINEAR
L=7

TOTAL
L=10

TOTAL-RECURSION
L=8

FIGURE 6.14
Mean relative performance

Utilization
(ratio to NONE)

Round Trip Latency

NONE

BRANCHING-LINEAR
L=4.3

TOTAL
L=5.8

TOTAL-RECURSION
L=4.75

FIGURE 6.15
Median relative performance

Relative performance, vs. non-anticipatory implementation

There may be optimizations to the Code Pump which would further constrain the

size of the TreeStack. In some cases, especially those of short branch jumps, the state

space collapses back down. If the set of all addresses currently in transit is known, further

Chapter 6 µ-SCOPE 165

messages with those addresses may be omitted. Consider the opcode sequence in Figure

6.16.

-other1-
conditional branch to X
-other2-
-other3-

X: -other4-
-other5-

FIGURE 6.16
Short forward branch opcode sequence

The PC image, after the execution of the conditional, evolves into two identical but

temporally shifted sub-images. One image expresses the branch not taken, the other

expresses the branch taken. It would be more efficient for the Code Pump to recognize

this shift, sending the opcodes as if the branch were not taken, thus covering all code for

both branches. The drawback in this scheme is that the opcodes must be scheduled as if

all were executed; they cannot be interleaved as if they were two mutually exclusive

opcode sequences, each at the rate of execution, resulting in a higher sent rate (utilizing

high bandwidth). As a result, there are times (when the branch jump is taken) when the

processor is idle, but this is still often less than the time which would have been incurred

by not implementing the branch as a sent message.

For example, if the round trip time is 100 instruction execution times long and the

branch jump is less than 100 opcodes long, the above simplification, of sending opcodes

as if no branch occurred, remains more effective than waiting for a round trip time before

replying with the opcodes. This simplification further reduces the size of the image in the

Code Pump, reducing its storage and computational requirements.

A proper analysis of the effective size of the TreeStack structure will require an

emulation of the architecture because there are many dependant characteristics of the

code stream which affect the results. These include the way in which the size of the

TreeStack structure depends on the number of pending branch operations down all

possible computational paths, and the ways in which the existence of a code cache at the

processor affects the distribution of opcodes requested from memory. An emulation of

the TreeStack in the Code Pump was beyond the scope of this dissertation.

Chapter 6 µ-SCOPE 166

6 . 3 . Ob s e r v a t i o n s

There are some observations which were discovered through the process of casting

the processor/memory communication architecture into the Mirage model. These include

a better understanding of the ways in which opcode classes affect the communication

channel, and the ways in which the µ−Net solution fails and the reasons why it fails.

6.3.1. Kinds of instructions

Opcodes have been partitioned into classes based on the ways in which they

transform the image of the PC in memory. Most opcodes only increment the current PC,

and so transform the PC image by moving it through state space in a linear fashion. Other

classes of PCs transform the space non-linearly, either by a simple function (old PC →

new PC), by a function with memory (old PC → new PC + state memory), or by a set

mapping (old PC → set of new PCs).

6.3.1.1. Regular opcodes (OTHER) and JUMPs

Usually the PC image is transformed by a simple mapping function, e.g., by the

addition of a constant to the current PC values. For regular opcodes (i.e., OTHER), the

constant is implied and fixed, with a value of 1 (i.e., to increment the PC); for JUMPs the

constant is contained in a field in the opcode, and is called an offset (PC-offset JUMP). In

other kinds of JUMPs, the PC values can be completely replaced by the fixed constant in

the opcode (direct JUMP).

These opcodes also perform a function in terms of the ways in which they alter the

path traversed in state space. Regular opcodes provide the default traversal of the state

space, a linear sequence. JUMPs permit discontinuities in the path, and are means of

permitting paths to evolve which are not dependant on the natural ordering of the space.

Backward JUMPs provide only for code reuse because the code could have been repeated

at the location of the JUMP. Forward jumps skip over code which must be otherwise

accessible, i.e., they permit use of places in the state space which other paths otherwise

ignore. JUMPs permit the efficient use of a linear address space to contain a nonlinear

path.

Chapter 6 µ-SCOPE 167

6.3.1.2. BRANCHES

Branch transformations are conditional upon the state of the processor. The PC is

incremented by a value which depends on whether the branch is taken; if it is, the

increment is contained in the opcode, if not, the increment is fixed and has a value of 1.

Branches behave as either a regular opcode or as a JUMP, depending on the processor

state. Memory in µ−Net does not model the entire processor state, only its PC value; as a

result, BRANCHes induce an ambiguity in the transformation upon the memory’s image

of the processor’s PC.

The processor PC undergoes one of two transformations; here modeled as a set

mapping from one PC value to two, so that the size of the PC image doubles as a result.

The particular resulting PC remains unknown, but it is one of a finite and explicit set, so

the transformation is modeled as an expansion of the image.

Later, when the processor communicates the need for an opcode that is on the

resultant path of one of these PC values, the other PC path precedents can be omitted. As

memory sees it, the PC image becomes two images, which are collapsed down to a single

image after later communication.

The communication which collapses the image can be made explicit, by making the

Filter Cache encode and send only branch decisions to the Code Pump, in which case the

reduction in the size of the image would be that proscribed by the communication limit

(Chapter 2). Instead, the interface is simplified by having the Filter Cache transmit entire

addresses (PC values) to the Code Pump, where the decision as to how the image is

affected is subsequently determined.

BRANCHes implement a level of context sensitivity, where the actions of the Code

Pump are affected by some portion of the state of the processor not modeled. This is a

minimal context sensitivity because PC image is partitioned into two resultant PC images

as the result of the branch execution. BRANCH context sensitivity derives from the

implementation in code of Dijkstra’s guarded commands [Di76]; communication stream

context sensitivity parallels BRANCHes in Mirage, via guarded messages.

6.3.1.3. INDIRECT

Indirect opcodes provide a level of context sensitivity which may be too powerful

for most intents. A PC value is transformed by the execution of the indirect instruction

into any PC value. There is no information in the opcode which restricts this

transformation, as occurs in a JUMP or BRANCH (because they contain fixed PC offsets

Chapter 6 µ-SCOPE 168

or fixed new PC values). Whereas a BRANCH is modeled as transforming a PC into one

of two resultant PCs, an INDIRECT opcode transforms a PC into the set of all PCs.

The net effect of an indirect opcode is to partition the PC image into an infinite

number of components, each of which may be the result of its execution. Actually,

because the size of a PC is fixed, the size of this set is also fixed, but the partitioning

results in a set of SIZEOF(PC) components, which is effectively infinite to the µ−Net

model.

In attempting to model the transformation of its PC image by the transmission of an

INDIRECT opcode, the Code Pump fails. It cannot sufficiently partition the resulting

image (which encompasses the entire PC state space), in order to send messages

(opcodes) pertaining to portions of it. Indirect opcodes introduce too much information to

model effectively. The Code Pump is required to wait for a message from the Filter

Cache, indicating the destination of the indirect opcode. An indirect opcode expands the

PC image to completely cover the state space, so the size of this message must be the log

of the size of the space (i.e., the size of the PC value), in order to collapse the image

down to a single value.

Indirect opcodes permit the PC path to be completely dependant on part of the state

of the processor which is not modeled, which means that a round trip time is required in

order to obtain that (unmodeled) state information.

These assertions require qualification. As mentioned, there is no information in an

INDIRECT opcode, or in the entire opcode stream, which limits the destination of an

INDIRECT offset, other than to the raw size of the address (i.e., the entire PC space). In

some compilers, INDIRECT address destinations are restricted to explicitly labelled

destinations. In this case, µ−Net would suggest that the INDIRECT jump be compiled

into a table lookup of existing label destinations, i.e., a fixed JUMP handler. Using such a

JUMP dispatch table, the INDIRECT jump’s potential destinations are reduced from

infinite (or SIZEOF(PC)) to some small constant. This table also permits the Code Pump

to provide anticipation of the fixed branching of the data stream, rather than being

thwarted by the (effectively) infinite branching of INDIRECTS.

6.3.1.4. CALL and RETURN

CALLs and RETURNs are, respectively, entry and exit points to recursive state

space instances. A CALL behaves like a combination of an entry point to this space (in

terms of its effect on the stack in both the Code Pump and at the processor), and a JUMP,

Chapter 6 µ-SCOPE 169

in the way it specifies an address at which to enter this recursive space. Within the

recursive space, most opcodes transform the space as usual, not affecting the parent space

(i.e., the space of the source of the CALL opcode); a RETURN is the only exception, it

being the lone exit point from that space (back to the parent space).

Subroutines, as facilitated by CALLs and RETURNs, provide a structure for code

reuse, which does not affect this analyses. They also permit a spatial recursion which is

relevant because our modeling of them emulates this recursion in the management of the

PC image, via the TreeStack structure.

6.3.2. Other observations

There are a few other observations that can be made. Comparing our method of

sender anticipation in the Code Pump vs. the anticipation made by prefetching of branch

targets is equivalent to comparing breadth-first search (BFS) vs. depth-first search (DFS)

techniques. The BFS method utilizes increased bandwidth requirements of the µ−Net

domain, and also avoids the need to backup or cancel the code search, because opcodes

are sent as isopotent sets (each level of the BFS).

Also, µ−Net has a problem with pointers. Fortunately, it is not alone in this regard;

pointers also inhibit many types of static code analysis as well. Indirect opcodes are code-

space pointers, and these opcodes are advantageous only if they outweigh the latency

they necessarily induce. Opcodes should be limited to only the required degree of

branching of the code stream, i.e., limit indirection to multi-way jumps where possible.

µ−Net indicates the difference between sender-anticipation and prefetch caches.

The latter assumes a correlation between past and future code use (via the cache), and

anticipation assumes infrequency of some types of control opcodes. µ−Net system uses

semantic information about the traversal of the code space, i.e., by actually determining

the effect of each opcode on the code space sequencing (i.e., PC values).

6 . 4 . R e l a t i o n t o pr i o r w o r k

µ−Net is a unique system of anticipation, derived from the abstract Mirage model of

communication in the presence of latency. Since its invention, the literature has been

investigated for comparable processor/memory mechanisms, and very few of these

references were applicable.

Chapter 6 µ-SCOPE 170

An analog to the Code Pump was investigated in early microprocessor research,

which has since been abandoned (Instruction Issue Logic). Current trends in system

architecture research have returned to this area (SPA), but use a restricted form of

µ−Net’s TreeStack structure for control. Prior research, both past and present, has been

developed from empirical evidence alone, whereas µ−Net was derived from the abstract

Mirage model.

6.4.1. Instruction Issue Logic (Code Pumping)

‘Instruction-issue logic’ is the closest precursor to the Code Pump mechanism in

µ−Net. One of the first ‘instruction-issue logic’ implementations is the Fairchild F8

system (1976), another more recent investigation was the Distributed Logic Instruction

Issue System (1987). Most of these schemes differ from µ−Net’s Code Pump in that

multiple branches are not accommodated.

The most recent version of this research is the Sustained Performance Architecture

(1991), which is guided by the need to investigate active memory architectures (coined

proactive therein). All of these versions of implementation can be considered restricted

instances of the more general µ−Net concept, however none mentions such an abstract

version. There are also ways of extending each of these implementations to accommodate

opcodes not currently handled, which would not complicate their design, and were not

investigated.

Further, µ−Net is derived from the consequences of applying the Mirage protocol

model to the processor-memory interface domain. All these prior designs were created

via other means, i.e., engineering issues such as simplified system design (F8), or

arbitrary visions of appropriate memory interfaces.

6.4.1.1. Fairchild F8

The Fairchild F8 was a microcomputer system based on a 3850 CPU and 3851

Program Storage Unit (PSU) [Fa76b],[Fa76c],[Os76]. Its goal was to reduce the overall

chip count, from 7 in a typical Intel 8080A or Motorola 6800 design to 2, at the expense

of partitioning the CPU according to the complexity of its components into a separate

ALU and instruction sequencer. Other comparable microprocessor chip sets were

partitioned along functional lines. The F8’s low chip count helped it lead world sales of

CPUs in 1977, when it became a dominant embedded controller in consumer products.

Chapter 6 µ-SCOPE 171

The F8 chip set was complemented by the Mostek 3870, a single chip combination

of the 2-chip set which was not extensible, but isolated the CPU/PSU interface from the

designer and was thus more accepted in competition with traditional microprocessors.

Although the F8 was first noted as an “offbeat product with a strange set of chips

and a ridiculous instruction set”[Fa76c], it is examined here for its CPU/PSU interface,

especially in its similarity to µ−Net. The 3870 CPU has no program counter, as in current

CPUs; instead, the function of instruction sequencing has been relegated to separate

devices on the bus, implemented by instances of the 3851 PSU. The advantages of

removing the memory access logic from the CPU are reduced pin count (no address lines

needed), and availability of additional real estate on the CPU.

The communication between the CPU and PSU is provided by a set of control lines,

ROMC 0-4, and a pair of clock signals. Each PSU has an internal PC, and a factory-

preset mask (upper 6 of 16 bits). The PC in each PSU contains the PC that would have

occurred in the CPU, at all times. Operations which affect the PC, i.e., load the PC from

the data bus, write the PC to the data bus, increment the PC, add the offset on the data bus

to the PC, etc. affect all PCs in all PSUs identically. When the CPU, by the control lines,

requests an opcode, any PSU whose mask matches the PC’s high bits responds by placing

the opcode on the data bus.

This can be interpreted as hardwiring each PSU to respond only to its own mapped

address space, even though the entire PC is imaged in every unit. The internal mask acts

like an address decoder and tri-state output enable together.

The similarity to the µ−Net design is obvious; each memory unit has its own Code

Pump (PSU), which models only increment transformations. Other transformations occur

only in direct response to messages from the CPU. The PSUs need only model a single

point in state space (i.e., a single PC value) and send a single opcode out, because latency

is not a design criterion. Recursion of the state space image is modeled, but only one

level of pending recursion; this is sufficient because it was intended for interrupt

servicing (where interrupts are not subsequently interruptible, in this design), and it was

assumed that further PC storage to accommodate recursion of the normal execution

would be provided in software, i.e., in external storage which was not part of the PSU

design.

Chapter 6 µ-SCOPE 172

6.4.1.2. Distributed Logic Instruction Issue

The Distributed Logic Instruction Issue System (DLII) [Ha87] implements a Code

Pump where conditional branches are modeled, as well as regular (OTHER) opcodes.

Only one pending branch is permitted, and opcodes are buffered at the processor, rather

than in the communication stream. The design was intended to accommodate access

latency induced by bus contention, rather than transmission delay. The system can also be

interpreted as a prefetch, where both alternates of a branch are prefetched.

The intent was to move instruction logic to the memory module, as was done in the

F8 (on which the idea was based). In contrast to µ−Net, no instruction addresses are

transmitted, this being substituted by a bit indicating to which arm of a conditional each

opcode belongs (branch taken/not taken). This implements the minimal encoding of

message guards because the PC image space is permitted to grow to only two points in

space. Consequently, only one bit of reply information from the processor is required to

collapse the space to the PC actually used.

DLII partitions opcodes into 5 classes: JUMPs, CALLs, RETURNs, BRANCHes,

and regular (OTHER) opcodes. INDIRECT opcodes, and their effect on the instruction

stream, were not considered separately. It also recognized the ability to predict the

successor to JUMPs and CALLs, and also RETURNs, the latter-most with the addition of

a stack in the program storage module (PSM, akin to our Code Pump/program storage).

The PSM stack implements the Recursion µ−Net, with one addition.

The PSM also contains two PCs, the set of which is similar to a limited version of

our PC image, as maintained by the TreeStack structure in the Code Pump. The

instructions accumulate in a dual buffer in the CPU, which executes instructions from one

side of the buffer at a time. When a branch is indicated, the CPU switches to the indicated

buffer (i.e., either remains or switches), and clears the contents of the alternate, because

those opcodes are no longer needed. The PSM is notified of this selection, and the unused

PC is cleared and released for reuse.

Subroutine return addresses are contained in the PSM and only the PSM and CPU

need know of their existence, so that no other copies of the stack exist. The PSM

transmits both the RETURN opcode and the destination address, in effect, translating the

opcode into a direct JUMP. This may be a useful modification to the Code Pump design,

although it requires modification of the CPU design. Proposed µ−Net designs do not

require CPU modification.

Chapter 6 µ-SCOPE 173

The PSM also recognizes short loops, such that repetitions of instruction sequences

that are capable of being held completely in the CPU cache are omitted. This is a useful

optimization of the Code Pump, but necessitates a more intelligent (or Code Pump/Cache

aware) compiler. Again, although there may be benefits, the optimization requires that

the compiler writer be familiar with the architecture. µ−Net performs the same

functionality and also permits the compiler to be independent of the mechanism (the

mechanism is hidden in the abstraction).

Similar to µ−Net, the PSM assumes its memory is read-only code. Opcode loops

are permitted to have only one internal branch, or a branch which may jump to the

opcode immediately following the loop only; if these conditions are violated, the

instruction issue waits. If either instruction stream (of the two possible, emanating from

the two possible PC values), encounters a loop start (i.e., set of instructions assumed to

remain within the cache), call, return, or subsequent branch, the instruction issue again

waits until the opcodes at the CPU are completely consumed.

The restriction that only one return address stack is managed, and that only one

pending branch is permitted (and only at the top of that stack), means that here the

TreeStack data structure is reduced to a simple stack. The internal entries of the stack

contain single PC values, whereas the top of the stack is contained in the pair

{PC1,PC2}, i.e., a stack whose top element only may contain a tree with one branch only.

The analysis of the architecture is similar to that of µ−Net, although indirect

opcodes are not considered. Their effect on the architecture is identical to that of loop

starts, jumps, etc. in the presence of a pending branch - that the PCU waits until the

opcode in question is executed by the CPU before proceeding further. There is no

mention that indirect opcodes by their nature require such latency, whereas the latency

incurred by other opcodes in this design are the result of the limited implementation of

the TreeStack structure.

PSM proponents further acknowledge the speedup that is the result of the

parallelism in the anticipation mechanism in the PSU being decoupled from the CPU.

Additionally, communication between the PSU and CPU is reduced by as much as half

because addresses need not always be sent with the opcodes from the PSU. It is not clear

that a complete instance of the TreeStack structure would result in a similar bandwidth

savings, because µ−Net’s message guards are complete addresses to simplify

implementation. The communication per opcode is reduced by half, and the resulting

bandwidth (and any additional available bandwidth) is used by the transmission of two

Chapter 6 µ-SCOPE 174

code streams (i.e., two alternative opcodes). This shows a method where the necessary

additional bandwidth required is created by the design, whereas µ−Net assumes a further

bandwidth surplus exists.

6.4.1.3. The Sustained Performance Architecture

There is an excellent overview of existing instruction sequencing methods which

has just recently appeared in the literature [Kr91]. These include methods of prefetching,

branch prediction, and cacheing. In the conclusion, the authors allude briefly to their

vision of the future of instruction sequencing, where they define proactive memory,

where “...memory should produce the correct instruction before the execution unit needs

it...”.

In the event of concurrent potential opcode sequences, “...the program-flow graph

can be used during program execution to initiate the prefetch of all instruction

sequences...”. This architecture has been named the “Sustained Performance

Architecture.” [Do89]

The SPA paper describes the conditions under which opcodes can be predicted by

memory, and notes the need for a stack to store return destinations, and also notes that

indirect opcodes require round trip communication regardless of any type of prediction.

The goal of this architecture, as in µ−Net, is to avoid main memory access latency.

They do not discuss the complexity involved with the maintenance of the PC image

in their version of the Code Pump, the Instruction Decode Unit (IDU). They acknowledge

the need for a stack structure to store return destinations, but do not note the interaction

between pending conditional branches and levels of recursion.

They claim a 30-40% increase in processor performance, for the levels of latency

they envision (about 2-8 opcodes), and also claim that sequences of opcodes without

control flow changes have an average length of 7 and a median length of 4 (this includes

branches not taken). Our measurements differ, but not substantially (average 6, increasing

to 9 if jumps, calls, and returns are not considered control flow changes, with respective

medians of 4 and 6). They also achieve multiple instruction streams by replication of the

IDU; the problem with this design is that an IDU is associated exclusively with a single

opcode sequence. Their Program Execution Controller (PEC) is charged with the task of

controlling this exclusivity, prefetching the actual instructions from memory. In essence,

the PEC is our Code Pump, and each IDU manages a stack in the TreeStack, which is

Chapter 6 µ-SCOPE 175

here restricted to a tree of stacks (i.e., a tree whose elements are stacks). The wiring and

control of the IDUs implements a hardwired tree structure.

This is, therefore, a more restricted form of the general TreeStack structure, because

it cannot handle branching subsequent to recursion. A branch instruction causes one side

of the branching stream anticipation to be relegated to a separate IDU, thus partitioning

the anticipation between two IDUs; subsequent rebranching causes the IDUs to organize

into a tree structure, as in the TreeStack. This opcode organization is common in OS

handler subroutines, a monitor program, or a dispatcher. It is a reasonable tradeoff, but

the general TreeStack structure is not acknowledged in the SPA, nor are the reasons for

its existence.

Once recursion occurs, a stack is required. In µ−Net the stack structure would be

analogously created by adjoining a stack of IDUs, whose interior elements would be

inactive. SPA notes the necessity for a stack to manage recursion, and for a tree structure

of IDUs to manage branching, but does not indicate where the stack would exist. Were

the stack within the IDUs, the occurrence of a CALL would inhibit subsequent

branching, because such branch alternates could ‘pop’ at different times. This would

cause inconsistencies in the IDU stack. µ−Net explicitly specifies the structure of the

mechanism required to handle branching and recursion together.

Further, the PEC is guided by the program call graph, which is loaded at run time.

This introduces another level of complexity, especially if two concurrent processors

attempt to use the same PEC, or if the call graph of a program were superseded by the

call graph of the interrupt handler, or operating system, or other intervening code. µ−Net

determines all requisite control information from the instruction stream itself, and can

dynamically reallocate resources for multiple pending branches because it is monolithic

in design, and manages the data structure centrally.

The SPA appears to be an empirically derived, specific instance of the more

general, more abstractly derived µ−Net architecture. This research, although state-of-the-

art for architecture design, is presented with no abstract basis. µ−Net was developed

concurrently to and without knowledge of the SPA, as the logical consequence of the

protocol interaction between the processor and memory and the limitations of such

communication as latency grows.

Chapter 6 µ-SCOPE 176

6.4.2. Cache issues

As discussed before, there are similarities between some cache issues and our Code

Pump, especially if the Code Pump is viewed as complementary to a cache, with which it

should be coupled. Some similarities exist between the anticipatory nature of the Code

Pump to that of cache prefetching, as implemented explicitly in hardware, or in software,

or as partially effected by widening cache lines.

6.4.2.1. Prediction/prefetching

As was discussed in the general Mirage model, the expansion of state spaces can be

further specified by attaching a probability distributions function (PDF) to the expansion.

If guarded messages are sent, utilization of the communication channel can be optimized

by sending messages which affect the most likely subspace, as indicated by the guard.

The limit of this analysis is explicit prediction, i.e., assuming all branches are taken, not

taken, or that their behavior is static over time (i.e., if a branch was taken last time, it will

be taken this time). The assumptions of probability behavior and extrapolation from a set

of events to a future event depends on whether the average is temporal or ensemble, as

discussed earlier.

As also mentioned before, ensemble averages predict individual behavior from

behavior of a group, i.e., within a single execution of a program, if most branches are not

taken then it is likely a given branch is not taken. In branch prediction, this translates to

the assumption, given statistics gathered over all executions, that branches in general are

not taken, and governs the use of that assumption in the absence of temporal information.

Temporal averages predict future behavior of a branch based on its own past

behavior, which may have been measured during prior executions or at some earlier time

in the current execution. Temporal average information translates into the assumption

that whatever way a branch went in the past, it is very likely to do the same in the future.

Tag bits associated with each branch encode the last path through it, and are used by

prefetching mechanisms to predict the current most likely path. This information usually

encodes the last two execution paths because it would be undesirable to override the

dominant probability due to a single prior event of lower probability.

Branch prediction achieves [Le84] 90-95% accuracy, using temporal average

information. Indirect jumps can also be predicted, using temporal averages only because

Chapter 6 µ-SCOPE 177

ensemble averages are meaningless. These are less effective, achieving between 50-75%

[Wa91] accuracy, but these estimates are completely useless if the prediction fails,

because failure does not imply a result address.

6.4.2.2. Wide lines

Wide cache lines have a similar effect to linear prefetching. Consider a line size

which accommodates 4 opcodes. A miss on an opcode fetch from the cache generates a

request of that opcode and the opcodes that surround it in the line. If the instructions

execute linearly, the miss on the first opcode causes the next 3 to be fetched as well.

The normal cache fetch of one opcode causes a prefetch of the next three opcodes.

Such a mechanism would be optimal where the prefetched opcode sequence was at least

as large as the expected length of a linear sequence of opcodes; this is borne out by

empirical results, as the analysis of cache line sizes shows the most effective size

between 4-16 opcodes [Sm82], whereas some measurements claim a mean linearity of 6

and a median of 4 [Kr91], and our results indicate a mean of 7 and a median of 4.

Cache line size is related to prefetching, but a prefetching cache is more effective

than an equivalent non-prefetching cache with twice the line size. Doubling the line size

is beneficial only where opcodes execute in linear order, otherwise the width of the lines

causes larger sets of opcodes to be swapped out when a miss occurs. In addition,

increasing the cache line size only prefetches within the line (i.e., prefetches the

subsequent opcodes from the head of the line), which indicates that a miss penalty is

incurred when each new line is loaded. Prefetching can retrieve the next cache line when

the last opcode in an existing line is used, removing this penalty.

6.4.2.3. Software

Software prefetching has also been suggested as a means to avoid memory access

latency [Ca91]. The system assumes a model where the processor prefetches its own

opcodes (as in standard caches and prefetching caches), rather than having them sent

ahead by the memory (as in µ−Net). It differs from both regular and prefetching caches in

the way in which opcode fetches are guided.

Regular caches reuse code already executed, and prefetching caches retrieve

opcodes in linear sequence only. Software prefetching uses compile-time information to

anticipate the future needs of the processor, and initiates the prefetching by an explicit

Chapter 6 µ-SCOPE 178

instruction. Pseudo-opcodes in the stream control the prefetch mechanism, and are

executed by the cache mechanism, and never reach the processor.

Software prefetching has been suggested as a general scheme for guiding

prefetching. A more specific kind of software prefetching was developed for the TI-ASC

supercomputer [Wa72]. Its compiler (for FORTRAN) generates prepare-to-branch

instructions, in order to quicken loop execution.

By comparison, long cache lines are an implied prefetch, but sustain a hit penalty

when the first item in a line is accessed, and prefetch only where access proceeds in

sequence. Hardware prefetching, as it is commonly implemented, fetches a line whenever

the address preceding that line is accessed, i.e., whenever address (i) is accessed in the

cache, address (i+1) is tested and fetched if missing. The hardware avoids the hit penalty

of long cache lines, but again works only where accesses are sequential.

Software prefetching avoids the need for sequential access as a precondition to

successful prefetching. The compiler initiates a fetch in advance of code use by inserting

explicit cache load instructions; this works because it has prior knowledge of static code

sequences, regardless of their order, at compile time. As a result, an execution cycle is

spent communicating an upcoming sequence of address accesses.

The mechanism requires a cache supporting a list of pending access requests, which

in our system corresponds to the sequence stored in the round trip latency. This form of

prefetching has been implemented only for data accesses, where ‘DO-loop’ structures

inform the compiler of data access patterns which can be easily translated into prefetch

instructions. Software prefetching can be applied to code prefetching as well, using a

static opcode lookahead in the compiler (i.e., peephole optimizer). This would not exceed

µ−Net’s performance, as µ−Net can look ahead into the instruction stream at runtime

almost as easily as software prefetching can do at compile time, and µ−Net incurs no

runtime penalty for prefetching. Software prefetching incurs a penalty of one instruction

execution time for each prefetch, in order to communicate the prefetch information which

µ−Net extracts from the code sequence at runtime.

6.4.2.4. Prefetching vs. cacheing

Prefetching has been compared to caching, although the two can be complementary,

because cacheing assists in reducing latency in accessing instructions already issued,

whereas prefetching assists during its first use. Another way to view the comparison is

that caches look into the past, whereas prefetching looks into the future.

Chapter 6 µ-SCOPE 179

Cacheing and prefetching have been compared as alternates [Le87]. In the cases

measured, prefetching performs at least as well as cacheing, in cases where memory

access has high latency.1 This makes sense because caches cannot remove the first hit

penalty, whereas prefetching can work both in first use and reuse cases.

6.4.2.5. Prefetch v.s pre-reply

Prefetching is distinct from the pre-reply proscribed in µ−Net. Prefetching is

processor-directed, receiver based anticipation, whereas pre-reply is memory-directed,

sender based anticipation. Some versions of prefetching [Le87] perform as detailed a

management of future state as the Code Pump, but there are several reasons for our

placing the Pump at the memory side of the communication channel.

µ−Net’s partitioning permits a reasonable distribution of work. The anticipation

mechanism is off-loaded from an already overloaded side of the channel; other research

in general protocols (e.g., the Universal Receiver Protocol [Fr89]) suggests that such

balanced systems are more effective because neither side of the mechanism is unduly

overloaded.

Also, receiver-based anticipation involves twice the managed lookahead of the

sender-based equivalent because the sender can collapse half the lookahead into the

image. In effect, the receiver would work with a single large tree of possibilities, whereas

the sender works only with parts of some branches.

6.4.2.6. Guarded messages

Guarded messages permit multiple streams of opcodes to be issued by the memory,

where only one stream is actually used. A similar form of conditional labelling of

opcodes occurs in pipelined processing, where “conditional branches can be converted to

guarded jumps...” [Hs86], and store instructions are converted to guarded stores, to avoid

delaying the store in the pipeline.

These techniques are usually associated with pipeline scheduling, either with

additional hardware support or compiler participation. Guarded communication differs

1Clearly caches outperform prefetching where memory access is restricted by

bandwidth, because cacheing reduces memory bandwidth use, whereas prefetching

increases memory bandwidth.

Chapter 6 µ-SCOPE 180

from guarded execution, but the principle of using extra power (bandwidth or pipeline

stages) to overcome latency is the same.

6.4.3. Other related architectures

Prefetching has been examined in other architectures. The IBM Stretch implements

branch prediction, where failed predictions are backed over later on. The IBM 360/91

prefetches both arms of a conditional, but down only 2 branch arms, and neither

prefetched arm is executed.

Prefetching down both arms of a conditional branch has been called “branch

bypassing” and “multiple prefetching.” [Li88]. Predictions from existing code estimate

that branch bypassing benefits vary with the level of bypassing performed [Ri72]. Code
execution is speeded by a factor of j , where j pending branches are bypassed, at a cost

of 2 j . These performance increases are the result of empirical estimates, based on

FORTRAN and CDC-3600 assembler, and are not the direct result of utilizing latency for

prefetches. The more primitive languages tested in this research exhibit branching largely

as the result of loop statements of explicit conditionals in the source code, rather than

being generated by the compiler to express complicated nested structures or data access

mechanisms.

6.4.3.1. IBM Stretch (7030) - one of the first prefetch

One of the first computer architectures to implement opcode prefetching was

Project Stretch, which resulted in the design of the IBM 7030 computer [Bu62]. At the

time (1955), IBM had produced several computers, including the 650, 704, and 705. This

project was intended to stretch (thus the name) the capabilities of the existing technology,

in order to design a computer with a performance of 100x its immediate predecessor.

The IBM Stretch has several similarities to the methods shown here. It had two

prefetch units, one performs operand prefetch up to 6 instructions linearly consequent to

the current PC, which are then in various stages of decoding. The other, called the

Lookahead Unit, prefetches operands for up to 4 of these opcodes, and provides the

required interlocking to maintain execution integrity.

Thus the Lookahead Unit prefetches data, whereas the instruction unit prefetches

opcodes. The instruction unit models branch instructions as regular opcodes, and forces a

flushing of its cache when this assumption fails (i.e., when the branch is taken, because it

Chapter 6 µ-SCOPE 181

assumes branches are not taken). This system was designed to compensate for the

disparity in access time of the memory and execution time of the CPU. The high memory

delay was due to the storage technology of the time (2.1 µs core memory, 1.5 µs add time

via 10-20 ns gate times), and the propagation time through a series of switches and

registers which manage access to components (much like a single bus controller).

The addition of prefetching was examined, varying the amount of prefetch [Bu62].

The result was a marked performance increase out to a prefetch of 8, with further

prefetching of little advantage. This result is similar to our analysis, which concluded that

prefetching was useful only to the average (?? expected) branch arm length. The

performance increase found with prefetch was between 20% and 200%, depending on the

benchmark application measured.

6.4.3.2. IBM 360/91 - dual prefetch

The IBM 360/91 [An67] instruction unit attempts to fetch opcodes faster than they

are used, so that when branches occur, the gap can be accommodated by emptying the

buffer while the branch is resolved. The design goal was a buffer (linear lookahead) of 6

instructions, because memory access is 6x slower than instruction execution; this goal

was extended to a 10-instruction prefetch on startup, and the implementation provides for

a total of 16 opcodes of prefetch.

Branches in the opcode sequence cause both paths to be prefetched: the not-taken

path continues down the lookahead of 16, whereas the branch-taken path is prefetched

with a lookahead of 4. Forward branches are handled this way, as are backward branches

beyond the scope of the lookahead buffer. Backward branches which refer to existing

lookahead entries (i.e., which refer to targets less than 15 opcodes away), signal a ‘loop

mode’ in the prefetch unit, and instruction prefetching ceases. The loop mode permits

unimpeded use of instructions in the prefetch buffer, providing enhanced performance for

some code; this feature occurs in the cache and instruction fetch units of some current

microprocessors, including Motorola’s 680x0, (68010 and later), and latter versions of

Intel’s 80x86 CPUs as well.

The 360/91 thus implements a Code Pump where regular opcodes are modeled, as

well as 1 pending branch. The TreeStack structure consists only of the tree component,

whose main trunk (root trunk and major branch) are limited to a total length of 16, and

whose minor branch arm is limited to a length of 4. Other opcodes halt the prefetching

Chapter 6 µ-SCOPE 182

because they are not modeled; this includes jump and call instructions which could have

been modeled with only an additional adder in the instruction unit, as in µ−Net.

6.4.3.3. Rope multiple prefetch

Pipelined and very long instruction word (VLIW) CPU research has lead to the

need to overcome memory latency as well. The Ring Of Prefetch Elements project

(ROPE) is aimed at alleviating memory latency and the difficulties in prefetching caused

by conditional branches, without the need for complex hardware scheduling [Ka86],

[Ka85]. It also provides a new prefetch mechanism which supports multi-way branching,

which we discussed in µ−Net as a viable alternative to most uses of indirect opcodes.

ROPE recognizes that “caches offer no speedup for loops larger than the cache

size,” and so looks for other ways to alleviate memory latency. They abandoned the

µ−Net methods, claiming that the prefetching of all branch destinations is prohibitive in

communication costs; we accept that conclusion because we are designing an architecture

where the communication bandwidth is very high.

ROPE reduces memory latency and removes the need to flush the pipeline when

conditional jumps fail, because each opcode prefetch path is supported by a separate

prefetch unit. Control passes cyclically around the ring, where each opcode is fetched in

turn by its corresponding unit. Explicit prefetch instructions (similar to those of software

prefetching), initiate the fetching of branch targets in two or more prefetch units. When a

branch occurs, control can pass either to the next unit in the cycle, or it can jump to the

unit fetching the destination of the branch; control is automatically assumed by the

appropriate prefetch unit because all scan their condition masks to the datapath, and only

one subsequently replies with an opcode.

ROPE handles regular opcodes, and binary branches (multiway as well, with some

modifications). Jumps and calls are not handled, although they could have been. There is

no local memory to the prefetch element ring because it would have to be distributed

among the elements but commonly accessible, so a shared or central stack cannot be

managed, and return opcodes cannot be accommodated.

The utility of multiway branching is supported by the measures that code is 15-33%

branches, and many optimization algorithms (trace scheduling, and percolation

scheduling) tend to cluster these decision points. The ability to evaluate simultaneously

several binary branches in a multiway branch can reduce the branch occurrence by as

much as the fanout of the multiway, in some cases.

Chapter 6 µ-SCOPE 183

The ROPE research measured an increased execution rate of up to 5x conventional

architectures, which is consistent with a 6.3x increase predicted for architectures which

prefetch only regular opcodes (Unit Linear µ−Net, see Table 6.2).

Both the ring architecture and cyclic transfer of control would evolve naturally from

the µ−Net architecture, if we assume that prefetch requests managed by the Code Pump

occurred through a pipelined set of memory access registers. µ−Net provides a

mechanism for the management of both multiple pending branches and multiple pending

levels of recursion, whereas ROPE provides for only a single pending branch. ROPE also

requires compiler cooperation via the insertion of software prefetch instructions, whereas

µ−Net is self-managing from existing code.

6.4.3.4. Access / execute architectures

Access/execute architectures decouple instruction fetching from ALU operation; in

this way, they are similar to the partitioning exhibited in µ−Net [Sm84], [Be91]. There

are various implementations of A/E architectures, most notably the IBM RS/6000, the

Intel i860, and other less general purpose systems. There are two aspects to these designs:

first, instructions and data are communicated between the instruction unit and the ALU

via queues, and second, most utilize multiple functional units, usually complementary

integer and floating point units. Many of the performance increases cited result from the

combination of parallelism and pipelining which this organization achieves, but we are

concerned only with their functional partitioning.

The queue communication between the ALU and instruction fetch unit (IFU) is

similar to the buffering provided by the communication channel in µ−Net, although in the

A/E mechanism the buffer length varies with load. Due to the restricted communication

across the partition, branches were computed by the IFU wherever possible; a side-effect

of this decision was the ability to permit the ALU to continue ahead of the IFU, which in

turn permits the IFU to reduce opcode fetch delays associated with the branch. In our

design, this was an engineered result.

Further, only branch decisions and actual opcodes are sent across the partition, as

our design confirms to be required. Some studies also examined the effect of the A/E

architecture on memory latency tolerance, but most focus on dedicated compiler issues,

rather than generalizations to hardware implementation, as in µ−Net.

Chapter 6 µ-SCOPE 184

6.4.3.5. IBM RS/6000

The IBM RS/6000 System [IB90], [Ba90b], [Oe90] implements dual branch stream

lookahead, and provides 1 level of pending recursion in the prefetch processor, called

therein the “Branch Processor.” The branches provided by the CPU permit indirect

jumps, calls, and conditional branches, as well as instructions as complex as indirect

conditional calls; this is a result of a design where a branch can be conditional or not,

indirect or not, and provide a return address or not.

The Branch Processor has been designed so that it is logically independent from the

rest of the processor, so that all branch functions use and modify registers and condition

codes local to it which would facilitate its replication in the Code Pump of µ−Net.

The processor provides some level of instruction prefetch, but there is insufficient

information in the published literature to determine its exact extent. The instructions are

placed into a 32 entry 2-way TLB, so it appears the lookahead is limited to 16

instructions in each of 2 possible paths, at best.

The RS/6000 implements a TreeStack 2 levels deep, where the first level is a simple

stack entry, and the second level permits one pending branch. The prefetch appears to

provide a total of 16 outstanding opcodes, cumulative to all levels of the TreeStack. The

result is a very limited and restricted implementation of prefetching, which is of limited

use in highly latent systems.

6.4.4. Remote Evaluation

Remote evaluation (REV) is a version of remote procedure call (RPC), which

examines variations which avoid the conventional RPC tradeoffs of performance vs.

generality of interface [St90]. RPC traditionally permits the movement of work to a

remote location, for execution there, with collected and returned results. REV also

permits the movement of code to the data, which reduces memory bandwidth

requirements for some applications, notably data collection and reduction in database

systems. This research, in conjunction with file server systems such as NFS, provide

justification for the domain chosen for µ−Net, where read-only code is temporally remote

from the processor/RAM set.

Chapter 6 µ-SCOPE 185

6.4.5. Multiple alternates

µ−Net (and Mirage, in the ‘abstract’) and its version of exploring multiple possible

states of a remote node differs from conventional forms of the exploration of alternates.

Exploring branch alternatives is commonly done depth-first, such that some path in the

tree of possible executions is fetched in advance of the decision of which branch is

actually desired.

Similarly, the Code Pump advances beyond the known state of the receiver (i.e., last

state communicated). The way in which it advances, suggests a breadth-first exploration

instead, as a direct result of the description of the stability of the communicating system,

and the conditions under which such stability can be ensured (Chapter 2).

Another method of anticipating multiple paths is to instantiate each path uniquely,

then remove those which are not used later. The idea, described in [Sm89], is to spawn

multiple processes, each exploring a different path, such that results are collected from

the process which terminates first, the others being destroyed at that time. In µ−Net, this

is analogous to the way in which the Code Pump sends multiple instruction streams, in

the hope that one stream will be of use.

The difference between this exploration of alternates and µ−Net’s is that [Sm89]

relies only on the members of the set being mutually exclusive, whereas µ−Net relies on

the entire set covering the space of alternates. This cover-set principle is used in the

stability equations, where stability is based on the ability to send messages to the entire

space of alternatives (communicability). Once messages have been sent to the entire

current state, the Code Pump progresses to the next state (or set of states) and can ignore

the possibility of backing up to a previous state. The Code Pump doesn’t wait for any

single alternate to terminate; it waits for additional bandwidth with which to send further

messages, or for state resolution information from the remote state.

6 . 5 . C o n c l u s i o n s

Now that µ−Net has been described (Chapter 5) and measured via µ-Scope (here, in

Chapter 6), some conclusions can be discussed. µ−Net was intended to provide a vehicle

for the description and elaboration of components of Mirage that were not exemplified in

Chapter 6 µ-SCOPE 186

the discussion of existing protocols (Chapter 4). To that end, issues of communicability,

guarded messages, and isopotency were all applicable to µ−Net, and so the purpose was

served.

Beyond its use as an example, µ−Net also exhibits the advantage of the Mirage

model as a method for reexamination of existing disciples with a new viewpoint, another

goal of any model. We have applied for a patent for the designs of µ−Net [To91b], as the

result of these investigations. The application of the Mirage model to the domain of

processor/memory communication led to the independent discovery of ‘proactive’

memory, and the description an instance (µ−Net) which generalizes current proactive

memory research. µ−Net also indicated the the complementary nature of caches and this

proactive memory, because caches handle reuse of code, whereas proactive memory

handles first use.

6.5.1. Notes for designers

As a design for implementation, µ−Net provides a design for shared code systems

to reduce the effects of latency. µ−Net requires that the executed code be read only (i.e.,

not self-modifying), and that the bandwidth-delay product of the communication network

be an order of magnitude larger than the local memory available at the processor (i.e.,

workstation). For a 33 Mhz 32-bit RISC processor, and a 1 Gigabit channel, this implies a

distance of about 3 city blocks between the workstation and the server, so that the speed

of light propagation is 6 blocks. Further, µ−Net reduces the effects of latency, but does

not reduce the bandwidth requirements on the code memory; µ−Net requires that the

access bandwidth of the code memory is the same as the bandwidth of the

communication channel.

µ−Net is a feasible design, given current technology. Preliminary measurements

indicate that a substantial gain in speed (8x) is possible, assuming transmission latency

dominates execution time by at least two orders of magnitude. The implementation of

µ−Net mechanism is reasonable because even a design which models only JUMP, CALL,

RETURN, and OTHER opcode types can achieve substantial speedup, with as little as

400 bytes (100 addresses) of additional storage. Extension of this design to handle a

limited amount of BRANCH pre-reply would further increase performance, but

measurements have not yet been made which allow us to predict the extent of this

increase. The limit of the performance has been measured at near 330x.

Chapter 6 µ-SCOPE 187

The limitation of implementation is due to both the space complexity of the

TreeStack, and the time complexity of the associative leaf- and node-matching required

within the Total implementation. The set of active leaves is known, so the size of the leaf-

matching required in Converger can be sufficiently restricted, and a reasonable

implementation may be possible. Internal node-matching required for the TreeStack to be

collapsed are more difficult to estimate, but the virtue of the design is that a delay in

pruning is managed by an overgrowth in the TreeStack, and a subsequent halting in the

Diverger. The system is thus self-controlled, and the communicability is constrained by

the ability of the implementation to keep up with the communicating entities.

µ−Net indicates that INDIRECT opcodes are an impediment to an anticipation

mechanism. Indirect opcodes are very infrequent (0.3%), have a very high penalty (1

round trip latency), and µ-Scope measurements indicate that these opcodes usually

implement a table-lookup, and could be replaced by a dispatching procedure that avoids

their use. Further, the removal of these opcodes may simplify processor design as well.

6.5.2. Notes for researchers

As a research vehicle, µ−Net demonstrates the utility of the abstract Mirage model.

Memory management methods were confirmed by thinking of the µ−Net domain in terms

of the Mirage model. µ−Net indicates a proactive memory version of Amdahl’s law

limiting parallelism speedup, and can also be viewed as another interpretation of the

missing class of MISD in Flynn’s taxonomy.

6.5.2.1. Memory management

Possible partitions of the state space permit stability, as discussed in Chapter 2.

There are three obvious ways in which to partition the state space, and they have

architectural analogs which were obvious upon such examination.

The state space of opcodes (i.e., the address space of a system) can be partitioned

many ways, but a few are most obvious. The first is according to a finite state space

volume, i.e., to partition the space uniformly, regardless of the probability density within

that volume. This loosely corresponds to the way in which paged memory models handle

the address space. The second corresponds to a partition which separates volumes of

equal density, i.e., such that the probabilities (i.e., integral of the PDF within the

partition) are uniform among the partitions. There is unfortunately no clear architectural

Chapter 6 µ-SCOPE 188

analog of this partitioning. The last most obvious partitioning is based on semantic

information, in a way which is an attempt to emulate equiprobable partitions, under the

assumption that the programmer semantically partitions the problem nearly equally. This

is analogous to segmented memory, where partitioning of the address space corresponds

to the semantic partitioning of the program.

6.5.2.2. Opcode anticipation Amdahl’s Law

Communication is limited by interrupts or indirect opcodes which cause arbitrary

discontinuities in flow path. This can be considered a communications version of

Amdahl’s Law, which describes the limit in execution speedup under unlimited

bandwidth, space, and lookahead power, in the presence of time delays. It states that

indirect instructions must incur a round-trip time cost, whereas any other instruction can

be predicted, given sufficient capability. The limitation in speedup is expressed in

Equation 6.3.

Equation 6.3: SPEEDUPmax =
1

percent_ indirect

6.5.2.3. Flynn’s taxonomy

Finally, it is possible that µ−Net’s contributes to Flynn’s taxonomy. There have

been other claims of discovery of a real instance of the 4th category of the taxonomy,

MISD. In some cases, A/E (Access/Execute) architectures are claimed to exhibit MISD

characteristics, because many employ multiple ALU units, such that two instructions are

executed on different streams of data within the CPU during a single cycle. The claim is

that because the data set in the CPU (i.e., one data item per ALU) doesn’t change during

the execution of two opcodes, this is MISD; by that argument, any MIMD system can be

considered MISD where the multiple data elements are considered a single set.

Another proposed MISD contender is that of VLIW (very long instruction word)

machines. They operate as if multiple instructions are send in parallel to the processor.

Unfortunately, the scheduling of these instructions is static; opcodes are paired for

storage in the instruction word at compile time, not dynamically adjusted during

execution, as our streams are.

We believe µ−Net is one of the closest attempts to a true MISD architecture, from

the memory’s point of view. The Code Pump sends multiple instructions to the processor,

Chapter 6 µ-SCOPE 189

where, although only one is executed, the set permits execution at rates which a single

instruction stream could not achieve. Our speedups are the result of sending a set of

instructions to the processor, so µ−Net relies on the MISD nature of the system for

performance.

Chapter 7 CONCLUSIONS 190

C H A P T E R 7

Conclusions

This dissertation is the first evaluation of Mirage as an abstract model. We have

discussed the impetus for the model and described the components of the model. Mirage

has been described by its application to an existing protocol to exemplify its abstract

components, and has been used to design a new protocol to illustrate components not

manifested in existing protocols.

The Mirage model has been useful in refining our questions as to why existing

protocols may fail in the gigabit, wide-area domain. Mirage has also presented one

possible solution to the predicted failure. Further, the model was used to design a novel

processor-memory interface, for which a patent has been applied.

7 . 1 . R e v i e w

Before we elaborate on these conclusions, a review of previously presented

conclusions may be useful, especially because of the conglomeration of discussions

contained herein.

Chapter 7 CONCLUSIONS 191

7.1.1. New questions

Mirage began with a discussion based on the question of whether existing protocols

would ‘fail’ in gigabit, wide-area networks. We concluded that existing protocols will

exhibit a performance failure in domains where information separation is high, due to

their inability to accommodate variability in the communicated data stream.

Existing protocols are largely based on connection establishment and management,

whereas we define the protocol as facilitating the communication of the data itself. This

leads to our description of the limitation of interaction in the presence of latency, based

on the limitations of the channel, and the extent to which the interaction is known to be

constrained.

“What we have here is a failure to communicate” - the
Warden, in Cool Hand Luke

This discussion led to the formulation of the domain in which the Mirage model is

applicable. This domain is based on a set of tenets, listed in Chapter 2, and repeated

below.

TENET 1: Communication is logical information synchrony among information
separated entities

TENET 2: A protocol is a mechanism for maintaining communication

TENET 3: Information separated entities are separated in time*space, in units
of pending-information

TENET 4: Bandwidth-delay product is a measure of information separation

7.1.2. The model

The Mirage model was described in terms of transformations on state space subsets.

This description led to our definitions of stability and communicability. Communicability

in turn led to the development of guarded messages to partition the state space, and

isopotency as the description of the way in a set of physical guarded messages represents

a single logical message.

Chapter 7 CONCLUSIONS 192

Mirage describes how error and latency are conjugates, and that the tradeoff

between them is determined by the extent of existing constraints, the variance in behavior

of a remote entity, the latency with which that behavior is measured, and the precision to

which that behavior is modeled.

7.1.3. Existing protocols

Existing protocols were used to exemplify the components of the abstract Mirage

model. Describing the model components of Mirage as they applied to NTP showed the

violation of layering in the protocol, because the internal, optional algorithms were

required for the description of the state space transformations and partitioning. Some of

the constraint conditions were also modified as the result of this work.

Analysis of NTP also indicated that Mirage applied not only to fixed latency

variable state systems, but also fixed state variable latency systems. This demonstrated

the equivalence between variance in state and variance in latency.

Finally, the measurements of NTP were verified from the Mirage model by using

the probability density function (pdf) interpretation of the Mirage constraint equations,

where the set-notation version of the temporal transformation is expressed in terms of pdf

convolutions.

7.1.4. New protocols

Mirage was also applied to a new domain, that of processor-memory interaction, to

exhibit some of its components which existing protocols did not manifest. The result,

µ−Net (MicroNet) showed the use of guarded messages, isopotency, and anticipation of

the Mirage model. Measurements indicate that the simple branching stream model of

Mirage was reasonable for a real instance of a protocol, and that an implementation of

µ−Net was feasible.

Comparisons of the anticipation of µ−Net indicate that a version with as little as

400 bytes of storage can reduce the effects of latency as well as a 50K byte cache. µ−Net

reduces the penalty of latency using data management, anticipation, and increased

bandwidth utilization (both channel and memory bandwidth).

The application of Mirage has resulted in a novel design, for which a patent has

been applied. Various levels of implementation were described, corresponding to various

Chapter 7 CONCLUSIONS 193

partitions of the state space, as proscribed in the Mirage communicability and stability

criteria.

Furthermore, existing research in anticipatory memory interfaces was extended

through the application of Mirage. Finally, we developed a formula describing the

speedup limitations, with respect to existing protocols (a Mirage version of Amdahl’s

Law).

7 . 2 . Ev a l u a t i o n

The description of Mirage and the applications to which Mirage was applied were

presented here in chronological order. This was an exercise in the creation of an abstract

model to describe a phenomenon, although the phenomenon was expected and not

observed. We predict that the performance failure of existing protocols will be due to an

increase in information separation. Under this assumption, the Mirage model is an

effective model, both to describe the failure and to indicate methods to avoid it.

This research differs from many other gigabit protocol analyses because it is based

on initial principles of communication and interaction, rather than as an extension to

existing protocol instances. Mirage shows that layering is detrimental to high speed

protocols, not only on performance grounds, but because it is semantically incompatible

with state space partitioning required for communicability and stability constraints.

7.2.1. And the answer is...

We began this discourse with a set of 6 questions, discussed in Chapter 1, and

repeated, and addressed below.

1) Existing protocols show substantial drops in channel utilization in domains
with high bit-latency.

The performance failure in existing protocols is due to their inability to anticipate

sufficient information to occupy the round trip latency. The drop in channel utilization is

the result of this inability; protocols that are able to anticipate can surpass the

performance of existing protocols. The limitation of anticipation protocols is the result of

an unmanageable expansion in the state of the receiver, and thus represents a constraint

of the communication itself, rather than the protocol mechanism chosen.

Chapter 7 CONCLUSIONS 194

2) The advantages to modeling the endpoints of the link, rather than the
channel itself.

If the channel is modeled, as in Shannon’s communication model [Sh63],

transmission errors can be accommodated (i.e., corrected). If the endpoints are modeled

(Mirage), latency can be accommodated (i.e., compensated via anticipation).

3) Why we conclude that the sender should anticipate the receiver.

Sender anticipation is the consequence of partitioning the state space of the sender’s

perception of the receiver. Communicability is possible when the partition is efficient,

and when that partition is used by the sender to maintain stability.

4) How this results in a tradeoff between error and bit-latency.

The tradeoff between error and latency is a tradeoff between communicability and

stability. If a larger state space (i.e., larger error) is considered the stable set, then more

latency can be tolerated. Reduction of errors is facilitated by constriction of the stability

state, corresponding to a lower bit-latency over which state expansion must be

compensated.

5) Why achieving increased channel utilization necessitates avoiding layered
protocols, i.e., why we need to look inside packets.

If the partitioning cannot be determined, latency cannot be tolerated. Layering

prohibits the efficient partitioning of the state space via semantic information of the

temporal transformation expansion. In effect, layering clouds the description of the

expansion of the perception of a remote state; if the expansion is hidden, it cannot be

predictably anticipated or managed.

6) There is a limit to how well we can get around things, which is a function of:

a) variability in the receiver state
b) bit-latency
c) power of the sender to accommodate this variability
d) ability of the channel to accommodate this variability

The limit to “how well we can get around things” is communicability, which is a

measure of the extent to which stability can be maintained. Communicability decreases

with bit-latency increases or with increases in receiver variance, because either permits

the perception of the remote state to expand more rapidly. The power of sender

accommodation is determined by the degree to which an efficient partition of this

Chapter 7 CONCLUSIONS 195

perception can be determined. Channel accommodation is determined by bandwidth, in

its ability to transfer the entire isopotent set in the latency given.

7.2.2. Is Mirage useful?

Mirage provides a model for understanding the effects of latency on

communication. It differs substantially from existing models, and was useful both in the

description of an existing protocol and in the design of a new protocol. Mirage reduces to

conventional models where information separation approaches zero, because it is an

extension of finite state models into a state space subset model.

“It is better to debate a question
without settling it

 than to settle a question
without debating it.”

- Joseph Joubert, 1754-1824,
 in In Search of Schrödinger’s Cat [Gr84]

The most important result of this work is the questions that were asked. Mirage is a

model in which the effects of latency can be considered, and in which performance

failures of existing protocols can be considered. Issues of layering, stability, and the

limitation of communication in the presence of high bandwidth-delay products can be

discussed though the use of the Mirage model.

7 . 3 . F u t u r e D i r e c t i o n s

This dissertation presented the Mirage model, and provided some examples of its

use in protocol analysis and design. The model can be further developed as an abstract

medium for protocol science. Mirage can also be applied to other protocols, to analyze

their effectiveness or examine their limitations in the presence of latency. The protocol

developed as part of this research, µ-Net, can also be further investigated, and an

implementation developed.

7.3.1. Abstract studies

Mirage was described as an abstract model for latency. The Mirage model concept

transcends the actual model description; it is the incorporation of imprecision and

Chapter 7 CONCLUSIONS 196

temporal constraints to existing models. The description in this dissertation was presented

as an extension to existing finite state machine models (and elaborated in Appendix E),

but can be described in terms of other existing models as well. One such example uses

Petri Nets as the corresponding existing model (Appendix F). The Mirage model can also

be interpreted as an extension of Shannon’s communication model, as a temporal

extension to that work. Preliminary description of this interpretation appears in Appendix

A.

Mirage was developed by applying intuition from analogs in physics, notably

particle interactions, to communication issues. The correlation between Mirage and

physics may also be of more formal interest. A discussion of some analogs used in the

development of the model appears in Appendix B.

The TreeStack is another abstract component of Mirage which may have more

general application. Further investigation of this data structure, and whether it exists or is

useful in other domains, may prove useful.

7.3.2. Protocol studies (analysis)

Mirage can be used to analyze protocols that are more intricate than NTP. Current

protocol research is focusing on issues of flow control, both anticipatory and reactive.

Application of Mirage to flow protocols may assist in this analysis.

7.3.3. Implementation studies (design)

Mirage can also be used to design other new protocols, as it was used herein to

develop µ-Net. Future work on µ-Net includes emulation to measure the feasibility of a

Total anticipatory design, to determine the space requirements for a given latency. An

implementation of µ-Net, either in software or directly in hardware, would also be useful

in further analysis of the benefits of this protocol.

Chapter 8 BIBLIOGRAPHY 197

C H A P T E R 8

Bibliography

[Ag83] Aggarwal, S. and Kurshan, R.P., “Modeling Elapsed Time in Protocol
Specification.” In Protocol Specification, Testing, and Verification. North-
Holland, Rudin, H. and West, C.H., (Eds), pp. 51-62, 1983.

[An67] Anderson, D.W., Sparacio, F.J., and Tomasulo, R.M., “The IBM System/360
Model 91 Machine Philosophy and Instruction-Handling.” IBM Journal of
Research and Development (Jan. 1967), pp. 8-24.

[An88] Anderson, D.P., “Automated protocol implementation with RTAG.” IEEE
Transactions on Software Engineering V. SE-14, N.3 (Mar. 1988), pp. 291-300.

[As56] Ashby, W. Ross, An Introduction to Cybernetics, Methuen, London, (1956).

[Ba90a] Balraj, Timothy S. and Yemini, Yechiam, “PROMPT - A Destination Oriented
Protocol for High Speed Networks.” In Participant's Proceedings,
International Workshop on Protocols for High-Speed Networks, IFIP WG
6.1/WG 6.4, Palo Alto, CA, Nov. 1990.

[Ba90b] Bakoglu, H.B. and Whiteside, T., “IBM RISC System/6000 Hardware
Overview.” IBM Journal of Research and Development (1990).

[Be87] Bertsekas, Dimitri and Gallager, Robert, Data Networks, Prentice-Hall (1987).

[Be91] Benitez, Manuel E. and Davidson, Jack W., “Code Generation for Streaming:
an Access/Execute Mechanism.” In ASPLOS-IV, ACM, 1991, pp. 132-141.

[Bo78] Bochmann, Gregor V., “Finite State Description of Communication Protocols.”
Computer Networks, N.2 (1978), pp. 361-372, Pub. by North-Holland.

[Bu62] Buchholz, Werner, (Ed), Planning a Computer System: Project Stretch,
McGraw-Hill (1962), pp. 229-248.

Chapter 8 BIBLIOGRAPHY 198

[Ca70] Carr, C.S., Crocker, S.D., and Cerf, Vint G., “HOST-HOST Communication
Protocol in the ARPA Network.” In Spring Joint Computer Conference,
AFIPS, 1970, pp. 589-597.

[Ca91] Callahan, David, Kennedy, Ken, and Porterfield, Allan, “Software
Prefetching.” In ASPLOS-IV, ACM, Also: SIGARCH Computer Architecture
News, V. 19, N. 2; SIGOPS Operating Systems Review, V.25 Special Issue;
SIGPLAN Sigplan Notices, V. 26, N. 4, Apr. 1991, pp. 40-52.

[Ch81] Choi, Tat Y. and Miller, Raymond E., “Protocol Analysis and Synthesis by
Structured Partitions.” Computer Networks, N.6 (1981), pp. 367-381, Pub. by
North-Holland.

[Ch86] Cheriton, David R., “VMTP: A Transport Protocol for the Next Generation of
Communication Systems.” In Communications Architectures and Protocols,
ACM Sigcomm, ACM Press, Stowe, VT, Also Computer Communication
Review, V. 16, N. 3, Aug. 1986, pp. 406-415.

[Ch88a] Chesson, Greg, Eich, Brendan, Schryver, Vernon, Cherenson, Andrew, and
Whaley, Al, XTP Protocol Definition Revision 3.0. Tech. Rept. Protocol
Engines, Inc., 1900 State Street, Suite D, Santa Barbara, CA 93101, Jan., 1988.

[Ch88b] Cheriton, David, VMTP: Versatile Message Transaction Protocol . Tech. Rept.
RFC-1045, DARPA Network Working Group Report, Stanford University,
Feb., 1988.

[Ch89] Cheriton, David R. and Williamson, Carey L., “VMTP as the Transport Layer
for High-Performance Distributed Systems.” IEEE Communications Magazine
(Jun. 1989), pp. 37-44.

[Ch91] Cheriton, David, Dissemination-Oriented Communication Systems. Mar. 1991,
Presented at the DARPA Networking Principal Investigator's Meeting,
Monterey CA.

[Cl87] Clark, David D., Lambert, Mark L., and Zhang, Lixia, NetBlt: A Bulk Data
Transfer Protocol. Tech. Rept. RFC-998, DARPA Network Working Group
Report, MIT, Mar. 1987.

[Cl89] Clark, D., Jacobson, V., Romkey, J., and Salwen, H., “An analysis of TCP
processing overhead.” IEEE Communications Magazine V. 27 (Jun. 1989), pp.
23-29.

[Co91a] Comer, Douglas E., Internetworking with TCP/IP - Principles, Protocols, and
Architecture, Prentice-Hall, Englewood Cliffs, NJ, Vol. 1 (1991).

[Co91b] Comer, Douglas E., Internetworking with TCP/IP - Principles, Protocols, and
Architecture, Prentice-Hall: Englewood Cliffs, NJ, Vol. I (1991), pp. 199.

[Cr89] Cristian, Flaviu, “A Probabilistic Approach to Distributed Clock
Synchronization.” In Ninth IEEE International Conference on Distributed
Computing Systems, IEEE, Jun. 1989, pp. 288-296.

[De73] DeWitt, Bryce and Graham, Neill, (Eds), The Many-Worlds Interpretation of
Quantum Mechanics, Princeton University Press, Princeton, NJ (1973).

[Di76] Dijkstra, E.W., A Discipline of Programming, Prentice-Hall, NJ (1976).

[Do77] Doyle, Jon, Truth Maintenance Systems for Problem Solving . Tech. Rept. MIT
AI Lab TR-419, MIT, Cambridge, MA, Sept., 1977.

Chapter 8 BIBLIOGRAPHY 199

[Do79] Doyle, Jon, “A Truth Maintenance System.” Artificial Intelligence V. 12, N.3
(1979).

[Do89] Dollas, Apostolos and Krick, Robert F., “The Case for the Sustained
Performance Computer Architecture.” Computer Architecture News V. 17, N.6
(Dec. 1989), pp. 129-136.

[Do90] Doeringer, Willibald A., Dykeman, Doug, Kaiserswerth, Matthias, Meister,
Bernd Werner, Rudin, Harry, and Williamson, Robin, “A Survey of Light-
Weight Transport Protocols for High-Speed Networks.” IEEE Transactions on
Communications V. 38, N.11 (Nov. 1990), pp. 2025-2039.

[Fa76a] Farber, David J. and Pickens, John R., “The Overseer: A Powerful
Communications Attribute for Debugging and Security in Thin-Wire
Connected Control Structures.” In IEEE International Communications
Conference, IEEE, 1976.

[Fa76b] F8 Guide to Programming, Fairchild Camera and Instrument Corporation,
Mountain View, CA, 1976.

[Fa76c] F8 User's Guide, Fairchild Camera and Instrument Corporation, Mountain
View, CA, 1976.

[Fe90a] Feldmeier, David C., “Multiplexing Issues in Communication System Design.”
In Communications Architectures and Protocols, ACM Sigcomm, ACM Press,
Also Computer Communications Review, V. 20, N. 4, Sept. 1990, pp. 209-219.

[Fe90b] Ferrari, Domenico and Verma, Dinesh C., “Real-Time Communication in a
Packet-Switching Network.” In Participant's Proceedings, International
Workshop on Protocols for High-Speed Networks, IFIP WG 6.1/WG 6.4, Palo
Alto, CA, Nov. 1990.

[Fe90c] Feldmeier, David C. and Biersack, Ernst W., “Comparison of Error Control
Protocols for High Bandwidth-Delay Product Networks.” In Participant's
Proceedings, International Workshop on Protocols for High-Speed Networks,
IFIP WG 6.1/WG 6.4, Palo Alto, CA, Nov. 1990.

[Fr89] Fraser, A.G., “The Universal Receiver Protocol.” In Protocols for High-Speed
Networks, Rudin, Harry and Williamson, Robin, (Eds), IFIP, North-Holland,
1989, pp. 19-25.

[Ga65] Gamow, George, Mr. Tompkins in Paperback, Cambridge University Press,
NY (1965).

[Gi79] Gifford, D.K., “Weighted Voting for Replicated Data.” In Symposium on
Operating System Principles, ACM Sigops, Dec. 1979, pp. 150-159.

[Go] Gouda, M.G., Sabnani, K.K., and Netravali, A.N., Self-stabilizing and
Correctness Properties of a New Class of High Speed Transport Protocols. (To
appear).

[Go86] Gove, Philip Babcock, (Ed), Webster's Third New International Dictionary of
the English Language, Unabridged, Merriam-Webster, Springfield, MA
(1986).

[Go88] Gotzhein, Reinhard, “Knowledge-oriented consideration of communication
protocols.” In Protocol Specification, Testing, and Verification. North-Holland,
Aggarwal, S. and Sabnani, K., (Eds), pp. 295-306, 1988.

Chapter 8 BIBLIOGRAPHY 200

[Go90] Golestani, S. Jamaloddin, “A Stop-and-Go Queuing Framework for Congestion
Management.” In Communications Architectures and Protocols, ACM
Sigcomm, ACM Press, Also Computer Communication Review, V. 20, N. 4,
Sept. 1990, pp. 8-18.

[Gr84] Gribbin, John, In Search of Schrödinger's Cat, Bantam Books, Toronto (1984).

[Gr87] Graham, William R., “Research and Development Strategy for High
Performance Computing.” In Report of the Executive Office of the President.
Office of Science and Technology Policy, Nov., 1987.

[Ha28] Hartley, R.V.L., “Transmission of Information.” Bell System Technical Journal
V. 7 (1928), pp. 535-563.

[Ha84] Halpern, Joseph Y. and Moses, Yoram, “Knowledge and Common Knowledge
in a Distributed Environment.” In Symposium on Principles of Distributed
Computing, ACM Sigops-Sigact, ACM Press, Aug. 1984.

[Ha87] Halang, Wolfgang A., “A Distributed Logic Program Instruction Prefetching
Scheme.” Microprocessing and Microprogramming V. 19 (1987), pp. 407-415.

[Ha88a] Halsall, Fred, Data Communications, Computer Networks, and OSI, Addison
Wesley, Second (1988).

[Ha88b] Hawking, Stephen W., A Breif History of Time, Bantam Books, Toronto
(1988).

[Ha91] Halliwell, Jonathan J., “Quantum Cosmology and the Creation of the
Universe.” Scientific American (Dec. 1991), pp. 28-35.

[He90] Hennessy, John L. and Patterson, David A., Computer Architecture: A
Quantitative Approach, Morgan Kaufmann, San Mateo, CA (1990).

[Hi56] Hill, T.L., Statistical Mechanics, McGraw-Hill, NJ (1956).

[Ho78] Hoare, C.A.R., “Communicating Sequential Processes.” Communications of
the ACM V. 21, N.8 (1978).

[Hs86] Hsu, Peter Y.T. and Davidson, Edward S., “Highly Concurrent Scalar
Processing.” IEEE Computer Architecture (1986), pp. 386-395.

[IB90] Assembler Language Reference for IBM AIX Version 3 for RISC System/6000,
IBM Corporation, Austin, TX, 1990.

[II87] III, Jacob J. Wolf and Ghosh, Biswadip, “Modeling Very Large Area Networks
(VLAN) Using and Information Flow Approach.” In Symposium on the
Simulation of Computer Networks, IEEE Computer Society, IEEE Computer
Society Press, Aug. 1987, pp. 36-44.

[IS88a] ISO, LOTOS - a formal description technique based on the temporal ordering
of observational behavior. Tech. Rept. ISO-8807, International Organization
for Standardization, 1988.

[IS88b] ISO, Estelle - a formal description technique based on an extended state
transition model. Tech. Rept. ISO-8807, International Organization for
Standardization, 1988.

[Ja55] Jacobson, Homer, “Information, Reproduction and the Origin of Life.”
American Scientist V. 43, N.1 (Jan. 1955), pp. 119-127.

Chapter 8 BIBLIOGRAPHY 201

[Ja84] Jay, Frank, (Ed), IEEE Standard Dictionary of Electrical and Electronics
Terms, IEEE Inc., NY, ANSI/IEEE Standard 100-1984 (1984).

[Ja88a] Jacobson, V. and Braden, R., TCP Extensions for Long-Delay Paths. Tech.
Rept. RFC-1072, DARPA Network Working Group Report, Lawrence
Berkeley Labs and Information Sciences Institute, CA, Oct., 1988.

[Ja88b] Jacobson, Van, “Congestion Avoidance and Control.” ACM Computer
Communication Review (Oct. 1988), pp. 314-329.

[Ja89] Jain, Raj, “A Delay-Based Approach for Congestion Avoidance in
Interconnected Heterogeneous Computer Networks.” ACM Computer
Communication Review V. 19, N.5 (Oct. 1989), pp. 56-71.

[Ja90] Jain, Raj, Myths About Congestion Management in High-Speed Networks.
Tech. Rept. DEC-TR-726, Digital Equipment Corp., Littleton, MA, Oct. 1990.

[Je85] Jefferson, David R., “Virtual Time.” ACM Transactions on Programming
Languages and Systems V. 7, N.3 (Jul. 1985), pp. 404-425.

[Ka85] Karplus, Kevin and Nicolau, Alexandru, “Efficient Hardware for Multi-way
Jumps and Pre-fetches.” IEEE Micro V. 18 (1985), pp. 11-18.

[Ka86] Karplus, Kevin and Nicolau, Alexandru, “Getting High Performance with Slow
Memory.” In 31st IEEE Computer Society International Conference, IEEE,
1986, pp. 248-253.

[Ka91] Katevenis, Manolis and Tzartzanis, Nestoras, “Reducing the Branch Penalty by
Rearranging Instructions in Double-Width Memory.” In ASPLOS-IV, ACM,
1991, pp. 15-27.

[Kl75] Kleinrock, Leonard, Queueing Systems: Theory, Wiley, NY, Vol. 1 (1975).

[Ko90] Ko, Keng-Tai, Mishra, Partho P., and Tripathi, Satish K., “Predictive
Congestion Control in High-Speed Wide-Area Networks.” In Participant's
Proceedings, International Workshop on Protocols for High-Speed Networks,
IFIP WG 6.1/WG 6.4, Palo Alto, CA, Nov. 1990.

[Kr85] Kritzinger, Pieter S., “Analyzing the Time Efficiency of a Communication
Protocol.” In Protocol Specification, Testing, and Verification. North-Holland,
Yemeni, Y., Strom, R., and Yemeni, S., (Eds), pp. 527-539, 1985.

[Kr91] Krick, Robert F. and Dollas, Apostolos, “The Evolution of Instruction
Sequencing.” IEEE Computer (Apr. 1991), pp. 5-15.

[La82] Lam, Simon S. and Shankar, A. Udaya, “An Illustration of Protocol
Projections.” In Protocol Specification, Testing, and Verification. North-
Holland, Sunshine, C., (Ed), pp. 343-360, 1982.

[La86] Lam, Simon S., “Protocol Conversion – Correctness Problems.” In
Communications Architectures and Protocols, ACM Sigcomm, ACM Press,
Stowe, VT, Also Computer Communication Review, V. 16, N. 3, Aug. 1986,
pp. 19-29.

[La90] Larus, James R., Abstract Execution: A Technique for Efficiently Tracing
Programs. Tech. Rept. #912, Computer Sciences Technical Report, University
of Wisconsin-Madison, Madison, WI, Feb. 1990.

Chapter 8 BIBLIOGRAPHY 202

[Le84] Lee, Johnny K.F. and Smith, Alan Jay, “Branch Prediction Strategies and
Branch Target Buffer Design.” IEEE Computer V. 17, N.1 (Jan. 1984), pp. 6-22.

[Le87] Lee, Roland L., Lew, Pen-Chung, and Lawrie, Duncan H., “Data Prefetching in
Shared Memory Multiprocessors.” In International Conference on Parallel
Processing, IEEE, 1987, pp. 28-31.

[Li87] Lin, F.J., Chu, P.M., and Liu, M.T., “Protocol Verification Using Reachability
Analysis: The State Space Explosion Problem and Relief Strategies.” In
Communications Architectures and Protocols, ACM Sigcomm, ACM Press,
1987, pp. 126-135.

[Li88] Lilja, David J., “Reducing the Branch Penalty in Pipelined Processors.” IEEE
Computer (Jul. 1988), pp. 47-55.

[Ma84] MacGregor, Doug, Mothersole, Dave, and Moyer, Bill, “The Motorola
MC68020.” IEEE Micro V. 4, N.4 (Aug. 1984), pp. 101-118.

[Ma85] Marzullo, Keith and Owicki, Susan, “Maintaining Time in a Distributed
System.” ACM Operating Systems Review V. 19, N.3 (Jul. 1985), pp. 44-54.

[Me76] Merlin, Phillip M. and Farber, David J., “On the Recoverability of
Communication Protocols.” In IEEE International Communications
Conference, IEEE, 1976, pp. 21-26.

[Mi80] Milner, R.E., A Calculus of Communicating Systems, Springer-Verlag, Berlin,
Germany (1980).

[Mi85] Mills, David L., Network Time Protocol. Tech. Rept. RFC-958, DARPA
Network Working Group Report, M/A-COM Linkabit, Sept., 1985.

[Mi88] Mills, David L., Network Time Protocol (Version 1), Specification and
Implementation. Tech. Rept. RFC-1059, DARPA Network Working Group
Report, University of Delaware, Jul., 1988.

[Mi89a] Mills, David L., Internet time synchronization. Tech. Rept. RFC-1129,
DARPA Network Working Group, University of Delaware, Oct., 1989.

[Mi89b] Mills, David L., Network Time Protocol (Version 2), Specification and
Implementation. Tech. Rept. RFC-1119, DARPA Network Working Group
Report, University of Delaware, Sept., 1989.

[Mi90a] Mills, David L., “Internet Architecture Workshop: Future of the Internet
System Architecture and TCP/IP Protocols.” ACM Computer Communication
Review V. 20, N.1 (Jan. 1990), pp. 6-17, Report of workshop chair..

[Mi90b] Mills, David L., Network Time Protocol (Version 3), Specification and
Implementation. Tech. Rept. RFC-xxxx, DARPA Network Working Group
Report, University of Delaware, Jul., 1990.

[Mo82] Moli, Gesualdo Le, Palazzo, Sergio, and Andreoni, Gaetano, “A Model of
Entity for the Definition of Protocols, Services, and Interfaces.” In Protocol
Specification, Testing, and Verification. North-Holland, Sunshine, C., (Ed), pp.
249-258, 1982.

[Mo89] MC68040 User's Manual, Motorola, 1989.

Chapter 8 BIBLIOGRAPHY 203

[Ne90] Netravali, Arun N., Roome, W.D., and Sabnani, K., “Design and
Implementation of a High-Speed Transport Protocol.” IEEE Transactions on
Communications V. 38, N.11 (Nov. 1990), pp. 2010-2024.

[Ni91] Nicholson, A., Golio, J., Borman, D.A., Young, J., and Roiger, W., “High
Speed Networking at Cray Research.” ACM Computer Communication Review
V. 21, N.1 (Jan. 1991), pp. 99-110.

[Oe90] Oehler, Richard and Groves, Randy D., “IBM RISC System/6000 Processor
Architecture.” IBM Journal of Research and Development V. 34, N.1 (Jan.
1990), pp. 23-36.

[Ok86] Okumra, Kaoru, “A Formal Protocol Conversion Method.” In Communications
Architectures and Protocols, ACM Sigcomm, ACM Press, Stowe, VT, Also
Computer Communication Review, V. 16, N. 3, Aug. 1986, pp. 30-37.

[Os76] Osborne, Adam, An Introduction to Microcomputers: Some Real Products,
Adam Osborne and Associates: Berkeley, CA, Vol. 2 (1976), Chapter 2.

[Pa90a] Partridge, Craig, “How Slow is One Gigabit Per Second?.” ACM Computer
Communication Review V. 20, N.1 (Jan. 1990), pp. 44-53.

[Pa90b] Partridge, Craig, Workshop Report: Internet Research Steering Group
Workshop on Very-High-Speed Networks. Tech. Rept. RFC-1152, DARPA
Network Working Group Report, BBN Systems and Technologies, Apr., 1990.

[Pa91] Partridge, Craig, Late Binding (working title), Ph.D. dissertation, in progress,
Harvard University, 1991.

[Pe62] Petri, C.A., Communication with automata, Ph.D. dissertation, Darmstadt
Institute of Technology, Bonn, Germany, 1962.

[Pe77] Peterson, J.L., “Petri Nets.” ACM Computing Surveys V. 9, N.3 (Sept. 1977),
pp. 223-252.

[Pe80] Pease, M., Shostak, R., and Lamport, L., “Reaching Agreement in the Presence
of Faults.” Journal of the ACM V. 27, N.2 (1980), pp. 228-234.

[Pe89] Penrose, Roger, The Emperor's New Mind, Oxford University Press, Oxford
(1989).

[Pl80] Plotkin, G.D., “Dijkstra's Predicate Transformers and Smyth's Powerdomains.”
In Abstract Software Specifications. LNCS 86, Bjørner, D., (Ed), 1980.

[Po80] Postel, Jon, User Datagram Protocol. Tech. Rept. RFC-768, DARPA Network
Working Group Report, USC Information Sciences Institute, Aug., 1980.

[Po81a] Postel, Jon, Transmission Control Protocol. Tech. Rept. RFC-793, DARPA
Network Working Group Report, Information Sciences Institute, CA, Sept.,
1981.

[Po81b] Postel, Jon, Internet Protocol - DARPA Internet Program Protocol
Specification. Tech. Rept. RFC-791, DARPA Network Working Group Report,
USC Information Sciences Institute, Sept., 1981.

[Po81c] Postel, Jon, Internet Control Message Protocol. Tech. Rept. RFC-792, DARPA
Network Working Group Report, USC Information Sciences Institute, 1981.

[Po83] Postel, Jon, Time Protocol. Tech. Rept. RFC-868, DARPA Network Working
Group Report, USC Information Sciences Institute, May, 1983.

Chapter 8 BIBLIOGRAPHY 204

[Po88] Postel, Jon, “Summary of National Communcation Initiative Issues.” In Report
on the Advanced Computer Communication Workshop. Information Sciences
Institute, pp. 43-44, CAMar., 1988.

[Ra78] Randell, R., Lee, P.A., and Treleaven, P.C., “Reliability Issues in Computing
System Design.” ACM Computing Surveys V. 10, N.2 (Jun. 1978), pp. 123-166.

[Ra87] Raveche, Harold J., “A National Computing Initiative.” In SIAM Workshop
Report. SIAM, Phila, PA1987.

[Ra88] Ramakrishnan, K.K. and Jain, Raj, “A Binary Feedback Scheme for
Congestion Avoidance in Computer Networks with a Connectionless Network
Layer.” In Communications Architectures and Protocols, ACM Sigcomm,
ACM Press, 1988, pp. 303-313.

[Re91] Renteln, Paul, “Quantum Gravity.” American Scientist V. 79, N.6 (Nov.-Dec.
1991), pp. 508-527.

[Ri72] Riseman, Edward M. and Foster, Caxton C., “The Inhibition of Potential
Parallelism by Conditional Jumps.” IEEE Transactions on Computers (Dec.
1972), pp. 1405-1411.

[Ro90] Rose, Marshall T., The Open Book: A Practical Perspective on OSI, Prentice
Hall (1990).

[Sa89] Sabnani, K. and Netravali, A., “A High-Speed Transport Protocol for Datagram
/ Virtual Circuit Networks.” In Communications Architectures and Protocols,
ACM Sigcomm, ACM Press, Also Computer Communications Review, V. 19,
N. 4, Sept. 1989, pp. 146-157.

[Sa90] Sanders, Robert M. and Weaver, Alfred C., “The Xpress Transfer Protocol
(XTP) - A Tutorial.” ACM Computer Communication Review V. 20, N.5 (Oct.
1990), pp. 67-80.

[Sc82a] Schwartz, R.L. and Melliar-Smith, P.M., “From State Machines to Temporal
Logic: Specification Methods for Protocol Standards.” In Protocol
Specification, Testing, and Verification. North-Holland, Sunshine, C., (Ed), pp.
3-19, 1982.

[Sc82b] Schwartz, Richard L. and Melliar-Smith, P.M., “From State Machines to
Temporal Logic: Specification Methods for Protocol Standards.” In Protocol
Specification, Testing, and Verification. North-Holland, Sunshine, C., (Ed), pp.
3-19, 1982.

[Sh63] Shannon, Claude E. and Weaver, Warren, The Mathematical Theory of
Communication, University of Illinois Press, Urbana, IL (1963).

[Sh82] Shankar, A. Udaya and Lam, Simon S., “On Time-Dependent Communication
Protocols and Their Projections.” In Protocol Specification, Testing, and
Verification. North-Holland, Sunshine, C., (Ed), pp. 215-233, 1982.

[Sh85] Shankar, A. Udaya and Lam, Simon S., “Specification and Verification of
Time-Dependent Communication Protocols.” In Protocol Specification,
Testing, and Verification. North-Holland, Yemeni, Y., Strom, R., and Yemeni,
S., (Eds), pp. 215-226, 1985.

[Sh88] Shimony, Abner, “The Reality of the Quantum World.” Scientific American
(Jan. 1988), pp. 46-53.

Chapter 8 BIBLIOGRAPHY 205

[Si82] Simon, Gerald A. and Kaufman, David J., “An Extended Finite State Machine
Approach to Protocol Specification.” In Protocol Specification, Testing, and
Verification. North-Holland, Sunshine, C., (Ed), pp. 113-133, 1982.

[Si89] Simpson, J.A. and Weiner, E.S.C., (Eds), The Oxford English Dictionary,
Clarendon Press, Oxford, Vol. III, 2nd (1989).

[Si91] Sidhu, Deepinder, Chung, Anthony, and Blumer, Thomas P., “Experience with
Formal Methods in Protocol Development.” ACM Computer Communication
Review V. 21, N.2 (Apr. 1991), pp. 81-101.

[Sm82] Smith, Alan Jay, “Cache Memories.” ACM Computing Surveys V. 14, N.3
(Sept. 1982), pp. 473-530.

[Sm84] Smith, James E., “Decoupled Access/Execute Computer Architectures.” ACM
Transactions on Computer Systems V. 2, N.4 (Nov. 1984), pp. 289-308.

[Sm89] Smith, Jonathan M., Concurrent Execution of Mutually Exclusive Alternatives,
Ph.D. dissertation, Available as Computer Science Department technical report
CUCS-241-89, Columbia University, 1989.

[St87] Stallings, William, Handbook of Computer-Communications Standards: The
Open Systems Interconnection (OSI) Model and OSI-Related Standards,
MacMillan, Inc., Vol. 1 (1987).

[St88] Stankovic, John A., “Misconceptions About Real-Time Computing: A Serious
Problem for Next Generation Systems.” IEEE Computer (Oct. 1988), pp. 10-
19.

[St90] Stamos, James W. and Gifford, David K., “Implementing Remote Evaluation.”
IEEE Transactions of Software Engineering V. 16, N.7 (Jul. 1990), pp. 710-
722.

[Su88] Sun Microsystems, Inc., RPC: Remote Procedure Call Protocol Specification.
Tech. Rept. RFC-1057, DARPA Network Working Group Report, Jun., 1988.

[Su89] Sun Microsystems, Inc., NFS: Network File System Protocol Specification.
Tech. Rept. RFC-1094, DARPA Network Working Group Report, Mar., 1989.

[Ta88] Tanenbaum, Andrew S., Computer Networks, Prentice-Hall, N J , Second
(1988).

[To87] Toueg, Sam and Srinkanth, T.K., “Optimal Clock Synchronization.” Journal of
the ACM V. 34, N.3 (Jul. 1987), pp. 626-645.

[To89] Touch, Joseph D. and Farber, David J., “Mirage: A Model for Ultra-High-
Speed Protocol Analysis and Design.” In Protocols for High-Speed Networks,
Rudin, Harry and Williamson, Robin, (Eds), IFIP, North-Holland, Available as
Univ. of Penn. Dept. of Computer and Information Science Tech. Report MS-
CIS-89-79 / DSL-1, 1989, pp. 115-134.

[To90a] Touch, Joseph D., Mirage: A Model for Latency in Communication. Tech.
Rept. MS-CIS-90-74 / DSL-3, Dept. of Computer and Information Science,
University of Pennsylvania, (dissertation proposal), Oct., 1990.

[To90b] Tokoro, Mario, Computational Field Model: Toward a New Computing Model
/ Methodology for Open Distributed Environment. Tech. Rept. SCSL-TR-90-
006, Sony Computer Science Laboratory, Inc., Tokyo, Japan, Jun., 1990.

Chapter 8 BIBLIOGRAPHY 206

[To91a] Touch, Joseph D. and Farber, David J., Mirage: An Introduction. Feb. 1991,
(submitted to ACM Computer Communication Review).

[To91b] Touch, Joseph D. and Farber, David J., An Active Instruction Decoding
Processor-Memory Interface. Sept. 1991, Patent applied for, Univ. of
Pennsylvania.

[Ve86] Venkatraman, R.C. and Piatowski, Thomas F., “A Formal Comparison of
Formal Protocol Specification Techniques.” In Protocol Specification, Testing,
and Verification. North-Holland, Diaz, M., (Ed), pp. 401-420, 1986.

[Wa72] Watson, W.J., “The TI ASC: A Highly Modular and Flexible Super Computer
Architecture.” In AFIPS Fall Joint Computer Conference, AFIPS, AFIPS
Press, Montvale, NJ, Dec. 1972, pp. 221-228.

[Wa81] Watson, Richard W., “Timer-Based Mechanisms in Reliable Transport
Protocol Connection Management.” Computer Networks, N.5 (1981), pp. 47-
56, Pub. by North-Holland.

[Wa89] Watson, Richard W., “The Delta-t Transport Protocol: Features and
Experience.” In Protocols for High-Speed Networks. Elsevier Science (North-
Holland), Rudin, H. and Williamson, R., (Eds), pp. 3-17, 1989.

[Wa90] The SPEC Benchmark Report, Waterside Associates, Freemont, CA, Jan. 1990.

[Wa91] Wall, David W., “Limits of Instruction-Level Parallelism.” In ASPLOS-IV,
ACM, Apr. 1991, pp. 176-188.

[Wi48] Wiener, Norbert, Cybernetics: or Control and Communication in the Animal
and the Machine, MIT Press, Cambridge, MA (1948).

[Wo90] Woodside, C.M., Ravinadran, K., and Franks, R.G., “The Protocol Bypass
Concept for High Speed OSI Data Transfer.” In Participant's Proceedings,
International Workshop on Protocols for High-Speed Networks, IFIP WG
6.1/WG 6.4, Palo Alto, CA, Nov. 1990.

[Ye87] Yeh, Y.S., Hluchyj, M.G., and Acampora, A.S., “The Knockout Switch: A
Simple, Modular Architecture for High-Performance Packet Switching.” IEEE
Journal on Selected Areas of Communications V. SAC-5, N.8 (Oct. 1987), pp.
1274-1283.

[Zh89] Zhang, Lixia, A New Architecture for Packet Switching Network Protocols,
Ph.D. dissertation, Massachusetts Institute of Technology, Cambridge, MA,
Jul. 1989.

[Zh90] Zhang, Lixia, “VirtualClock: A New Traffic Control Algorithm for Packet
Switching Networks.” In Communications Architectures and Protocols, ACM
Sigcomm, ACM Press, Also Computer Communication Review, V. 20, N. 4,
Sept. 1990, pp. 19-29.

Appendix A MIRAGE & SHANNON 207

A P P E N D I X A

Mirage & Shannon

In developing a new model for communication protocol analysis, we should

examine the seminal work in the area, by C. Shannon. His work explains the operation of

many communication models. This is a comparison of Mirage to it. It is also hoped that

the Mirage model will reduce to Shannon’s, in the case where latency is negligible

relative to the other communication parameters.

 A . 1 . Th e c h a n n e l

Shannon’s mathematical model of communication defines channel bandwidth and

capacity, and analyzes the capacity of the channel under the constraint of transmission

error [Sh63]. In his model, nodes are connected by channels characterized by bandwidth

alone (latency is ignored). His analysis determines the amount of information transmitted

across a channel, given the transmission errors of that channel.

In this model, the channel can viewed as a pipe between the communicating nodes

(Figure A.1). Bandwidth is a unit of volume of flow in this pipe – bits wide times signal

duration. Note that the propagation (latency) of this volume as it traverses the pipe is

ignored – Mirage adds this factor, in its extension of this model.

Appendix A MIRAGE & SHANNON 208

NODE NODE

BW
(f l o w)

FIGURE A.1
Shannon’s communication channel

Mirage adds a spatial measure to the connectivity measure of Shannon’s

communication theory. In addition to width, the connecting channel thus has a length

(Figure A.2).

NODE NODE

BW
(f l o w)

∆t (latency)

FIGURE A.2
Mirage’s communication channel

One the test of the Mirage model is that it reduce to Shannon’s where latency is

negligible. Mirage adds a latency measure to the channel characterization, but this can be

ignored if the state transformation equations ignore the latency measure, so the reduction

holds.

 A . 2 . St a t e t r a n s f o r m a t i o n s

Shannon’s model is based on a denoting the state of a node as a point in state space,

implying that the values at the node are known precisely at remote nodes. This is implicit

in the communication model, which attempts to emulate the transitions of the transmitter

by equivalent transitions in the receiver (Figure A.3).

The communication is based on a model of the channel as it corrupts information

that traverses it. Each action of a participant alters the state space point by moving it to a

new point. Sending and receiving data are both modeled as motions of single points in

state space. The elapsing of time is not modeled in this scheme.

Appendix A MIRAGE & SHANNON 209

v

v '

FIGURE A.3
State space point transformation

In Mirage, the sender models the receiver as a set of points in state space. The

endpoints of the channel are considered, rather than the channel itself. Each node in the

system models each other, to some extent. These models are sets of points, which, in an

appropriately transformed space, comprise a volume. Transformations on that volume

represent the functions of the communicating system (Figure A.4). When a node sends a

message, its model of the state of the destination of that message expands; when a node

receives a message, its model of the source of that message contracts. Time causes the

model of the remote node to expand, reflecting the increased uncertainty in the

knowledge of the remote state.

Transmit Receive Time

FIGURE A.4
Visualization of state space volume transformations

 A . 3 . Le v e l s of c o m m u n i c a t i o n

In the introduction to Shannon’s work, W. Weaver describes three levels of

communication [Sh63]. These levels define the layering of the communication problem,

each level being dependent on the successful communication of information at the

Appendix A MIRAGE & SHANNON 210

previous level. Associated with each level is a problem, which determines the extent to

which the communication at that level can succeed (Table A.1).

The first level is called the PRECISION level, and it is associated with the

technical problem of determining the transmitted symbol from the received signal.

Communication at this level assures that a mapping is established between the signals on

the opposite ends of the channel. The extent to which the symbol association is

repeatable determines the most fundamental limit of communication.

The second level is called the ACCURACY level, and it is associated with the

semantic problem of identifying the meaning of the symbol received. This determines the

correctness of the received information, relative to the intended information sent.

The third level is called the BEHAVIORAL level, and it is associated with the

effectiveness of the communicated message. Effective communication is correlated with

the desired behavior of the receiver, i.e., if the receiver acts as if it received the correct

information, then we infer that it has.

Level Name Defined
Characteristic

Net result on
communication

technical precision repeatable

semantic accurate correct

effective correlate to
desired behavior

reaction

TABLE A.1
Weaver’s 3 levels of communication

Shannon’s work focuses on the technical problems at the precision level, although

there are applications of his theory to the other levels as well. Each of these levels is

concerned with errors in communication, either in reliability, correctness, or resulting

behavior.

 A.3.1. Extensions for time

In Mirage we are interested in extending Shannon’s theory to its application in high

speed, wide area networks. We have already discussed that the major effort here is to

Appendix A MIRAGE & SHANNON 211

sensitize the problem to communication latency, as such, we consider how to extend

Shannon’s model to account for latency, as it already accounts for error.

One constraint of our extension is that, where latency is negligible, it collapses to

the original model; thus it will be an extension to the model. Other constraints are that the

model be useful, i.e., that it describes the new domain effectively and that it enables the

derivation of protocols that account for this increased latency. We also prefer the model

to exhibit these characteristics by an extension that is minimal, but this is not addressed

here.

 A.3.2. Time vs. error

One of the fundamental results of Shannon’s theory is that any amount of channel

error (below 100%) can be removed by sufficient encoding. Given encodings over

arbitrarily long sequences of transmitted symbols, the effective error of the channel can

be reduced as low as desired (but never removed completely). The effect of error

compensation and reduction is to require encoding, which requires delaying the symbol

stream by the length over which encoding is performed. As such, error reduction is traded

for an increase in propagation delay.

Mirage examines the complement of this, where latency is reduced by increasing

the error across the channel; the error will be exhibited by the imprecision of information

about remote nodes in the network. Error and latency are thus conjugate spaces, where

each may be traded for the other, and some minimal product persists. The error thus

introduced will be constrained, in a ‘well-behaved’ way, which represents the evolution

of imprecision of information caused by elapsed time and other causes.

We define three additional levels of communication, associated with the

introduction of measured latency in the channels, called lag and stability. The lag level is

associated with the timeliness problem, or how to communicate some amount information

within some time delay. The stability level is associated with the synchronization

problem, or whether two sets of information can be synchronized to within some error in

the given time lag (Table A.2). Each level has a corresponding Weaver level, as shown.

Appendix A MIRAGE & SHANNON 212

Level Name Defined
Characteristic

Net result on
communication

Corresponding
Weaver level

timeliness effect within ∆t lag Technical
(repeatable)

synchrony synchronize to
within ∆t

stability Effectiveness
(reaction)

TABLE A.2
Mirage’s 2 levels of latency

 A . 4 . Ob s e r v a t i o n s

This gives a hint at the justification for seeking additional models for protocol

analysis. Current models yield situations in the emerging high speed, wide-area domains

where utilization of the communication capacity can be low. New models may explain

this phenomenon more precisely, and perhaps indicate methods that alleviate such

degradation.

In Mirage, there are three forms of communication: real, virtual direct, and virtual

indirect. Real communication corresponds to Shannon’s communication, where

information is transmitted, and the intent of the sender is decrypted by the receiver.

Virtual indirect communication is derived information about a set of nodes, given global

constraints on the state spaces of all nodes combined with real communication from some

other set of nodes. This is also known as inferred or derived communication, and

corresponds to common knowledge.

Mirage uses a third form of communication, that of virtual indirect. This is

information derived from local constraints about the state evolution of a node and the

absence of other communication from that node. Virtual indirect information is contained

in the state evolution function of a node’s individual perception, i.e., in the time

transformation function of Mirage.

Appendix B MIRAGE & PHYSICS 213

A P P E N D I X B

Mirage & Physics

Mirage was originally conceived of in terms of quantum physics analogs [To89].

These analogies helped develop the Mirage model, so it is useful to present some of these

discussions here, for historical purposes.

B . 1 . Or i g i n s of t h e an a l o g y

The origins of Mirage began with discussions of state space evolution, and with the

imprecisions in that space introduced by communication latency. This latency

corresponds to a latency of interaction, which governs the degree of coupling of systems

separated in time. This is loosely analogous to particle interaction by force-carrier

exchange. Mirage is an attempt to integrate ideas from particle interaction of quantum

physics and information theoretic analysis to develop a communication protocol model,

as depicted in Figure B.1.

Appendix B MIRAGE & PHYSICS 214

Particle / Quantum
Physics

Mirage

Information
Theory

Communication
Protocols

FIGURE B.1
Mirage’s relationship to other sciences

B.1.1. Field interaction as communication

A protocol can be considered analogous to field interaction as explained by particle

exchange in quantum physics (Table B.1). In this analogy, a field is communication, i.e.,

action at a distance. The mechanism of interaction is field quantum exchange, analogous

to packet exchange. Traditional particles in the field are nodes, thus emphasizing the

blurred distinction between particles and field quantum, i.e., between data packets and

nodes. Uncertainty of particle interaction corresponds to latency of interaction, and the

effects of high speed extend the model of interaction, in the manner of relativistic effects.

Physics Protocol / Network

field communication

field quantum packet

particles nodes

relativistic effects high speed

uncertainty latency

TABLE B.1
Physics analogs of protocol components

Appendix B MIRAGE & PHYSICS 215

In physics, interaction between particles is accomplished by the exchange of other,

force-carrying particles. A matter particle emits a force particle by creating it from

nothingness (and is recoiled as a result); that force particle is absorbed, causing an

impulse where absorbed. If the force particle has high mass, it is hard to exchange over

long distances, due to the high temporary energy debt cause by the creation of the force

particle. Force particles are thus virtual, i.e., measurable only by their effect. This is

discussed in further detail in [Ha88b].

B.1.1.1. Four physical forces

There are, in physics, four forces: electromagnetism, the strong nuclear and weak

nuclear forces, and gravity. The strength of the force and distance over which it acts is

governed by the mass of the force-carrying particle. Electromagnetism is effective over

infinite distances, but affects only charged particles. Photons carry the electromagnetic

force, and are bosons (spin-0).

The weak nuclear force governs radioactivity, and is effective over very small

(nuclear) distances, and affects only matter particles (fermions, i.e., spin-1/2 particles, not

bosons, i.e., integral spin particles). This force is carried by spin-1 vector bosons.

The strong nuclear force holds the nucleus together, and is thus effective over only

nuclear distances. It is carried by gluons, which are bosons.

Gravity affects all particles, is weak, and effective over infinite ranges. Further, it

is always attractive. Gravitons, which are bosons, are proposed to carry the gravitational

force.

B.1.1.2. Communication forces

Communication is also effected by an exchange. Intuition is that the larger the

packet of an exchange, the smaller the effective distance of the data of the packet,

because interaction is restricted by latency. Larger packets incur higher latencies.

B.1.2. Further references

The analogies between fields and communication have been examined before, in

the Computational Field Model (CFM) [To90b], as also discussed as Prior Work in

Chapter 3. CFM equates a distributed system with a field and particles, context-switch

overhead with inertia, and communication bandwidth with force. It is used to develop a

Appendix B MIRAGE & PHYSICS 216

self-optimizing process migration system. Mirage differs from CFM by using physics

analogies to guide protocol design, where the analogy ‘homomorphism’ is given semantic

justification.

With regard to the remainder of the discussion, there are a few notable references.

First, [Kl75] contains a good description of the difference between probability density

and distribution functions. A good overview of quantum concepts is contained in [Re91],

[Ha91], [Sh88]. Original discussions of the Many-Worlds principle are contained in

[De73], and an introduction to this principle is given in [Ha91]. An overview of quantum

principles for non-scientists is given in [Ga65]. Lastly, an excellent historical overview

and presentations on quantum principles are given in [Pe89], although this book is more

commonly presented as a discussion of the ‘mental’ capabilities of discrete systems.

B . 2 . Ex i s t i n g an a l o g i e s f r o m ph y s i c s

The existing analogies between communication and physics include similarities

between entropy and information, uncertainty and stability, and the Hamiltonian function

and state change functions.

B.2.1. Entropy

Entropy in physics is related to information in communication, as first noted by

John von Neumann [Ha28]. The two are inverses, so that the negative of entropy is

proportional to information; information is thus sometimes also called ‘negentropy.’

Both are proportional to the logarithm of possible state space, and are additive where

systems are combined. The use of entropy in communications has thus become common.

Some discussions consider physics entropy and information entropy similar but

otherwise unrelated, whereas others consider the two identical. We consider them

identical for the following reason.

In physics, specifically thermodynamics, entropy is a measure of disorder. The

units are calories/degree. Calories are a measure of work, energy, or heat (equivalently).

Temperature is defined as energy per degree of freedom, i.e., a measure of energy

extracted when degrees of freedom are unified.

In information, entropy is a measure of the log of the number of possible states, or

the average number of bits required to specify a state within a partition. Entropy thus

Appendix B MIRAGE & PHYSICS 217

measures imprecision of state, or disorder among elements of a partition that information

removes.

In both cases, entropy measures disorder, and the amount of ‘work’ required to

compensate for the disorder. In physics, ‘work’ is work, heat, or energy, whereas in

communication ‘work’ is information, or bits. Thus we consider physics entropy

equivalent to communication entropy because we consider work equivalent to

information. The only difference is that in physics the degrees of freedom are

continuous1, and in information they are binary.

B.2.2. Uncertainty

One result of the true equivalence between physics entropy and information entropy

observation concerns uncertainty. The Heisenberg uncertainty principle is characterized

by units of ‘action.’ [Gr84] An ‘action’ is defined as energy*time, or work*time; in

communication, this is bits*time, or bit-latency, the unit of ‘distance’ in Mirage.

Uncertainty is a measure of imprecision of state in physical systems, and bit-latency

governs the imprecision of state in communicating systems.

Further, ‘actions’ share a property with entropy – that of observer invariance

[Gr84]. In relativistic physics, some measures are not observer invariant; the length of an

object depends on the relative velocity between the observer and the object. Time-of-

traversal, or distance/time is invariance, because the object shortening is always coupled

with a corresponding decrease in the relative time frames.

B.2.3. Hamiltonian function

The Hamiltonian function describes the state transformation of a physical system

[Pe89]. The quantum equivalent of the Hamiltonian is the wave-function. In Newtonian

(conventional) state space, the Hamiltonian of object location and velocity is denoted by

a pair of partial derivatives, Eqs. B.1 and B.2.

1In thermodynamics, degrees of freedom are continuous-valued; in quantum

physics, they are quantized, further blurring this distinction between information entropy

and physics entropy.

Appendix B MIRAGE & PHYSICS 218

Equation B.1: ṗi = −
∂H

∂xi

Equation B.2: ẋi =
∂H

∂pi

‘H’ denotes the Hamiltonian, ‘p’ denotes the momentum, and ‘x’ denotes the

position. The Hamiltonian encodes both the position and momentum. This will be

augmented in the quantum description of the equivalent of the Hamiltonian. The pair of

equations obey the Heisenberg uncertainty principle, in which the error in position times

the error in momentum is always larger than a fixed constant (Eq. B.3).

Equation B.3: ∆x∆p ≥ h

B . 3 . Qu a n t u m an a l o g i e s

Although there are some analogies between Newtonian physics and

telecommunications, there are others involving quantum physics which have not yet been

exploited.

B.3.1. State sets / multiple worlds

In quantum physics, the state space of a system has a single dimension for each

system variable, and is called a phase space. One point in phase space thus denotes an

entire configuration of the system; multiple points denote copies (or possible copies) of

versions of entire systems [Pe89]. This latter phenomenon has evoked the title Multiple-

Worlds, in which each world contains one system [Gr84]. In Mirage, a node models a

remote state as a set of possible states, or worlds.

One implication of having multiple simultaneous possible states is that of state

collapse, in which a single definite state among the possible is denoted. The denotation

occurs because of some external event. In Mirage, this event is the reception of a

message from the remote state being modeled.

The canonical physics example of simultaneous state is Schrödinger’s Cat

experiment [Gr84]. In this experiment a delayed choice is modeled in one of two possible

Appendix B MIRAGE & PHYSICS 219

ways – either there are two possible worlds in which the cat is correspondingly dead and

alive, or the state of the cat (dead, alive) is superimposed in the single world of the

experimenter. In the former case, the state of the cat is known precisely in whatever

world exists; it is the lack of information in the experimenter that causes the confusion in

the choice of the correct world. In the latter, so-called Copenhagen interpretation, the cat

exists in two superimposed states, and the delayed opening of the box causes the state

vector to collapse.

Mirage is based on the Multiple-Worlds interpretation of quantum interaction,

although we often denote the choice of the correct world as ‘state collapse’, because we

model state as an expanding set that message reception collapses. The distinction is that

the collapse occurs in the mind of the observer only in Multiple-Worlds, whereas that

collapse is a property of the actual state of the system in the Copenhagen interpretation.

One interesting characteristic of the Multiple-Worlds interpretation is that the state

of the system can be determined by the actions of the observer, in certain cases. When

physical experiments were designed that emit particles (i.e., light quanta), and then the

experimental apparatus is modified while the quanta are in transit, the results of the

experiment change. The answer depends on the questions.

Compare the observer-creation of results with a game of Twenty-Questions, in

which the participants agree not to select a goal object. The participants create replies that

are random, but necessarily consistent with previous replies and some possible object.

The result is that the random choices and the questions asked determine the final object,

delaying the choice of the goal object (as in the delayed-choice cat experiment).

B.3.2. State set collapse

The collapse of the state set occurs in the perception of the observer or in the actual

system state. In either case, the evolution of the state space set is governed by the so-

called wave-function, ψ, and the Hamiltonian describing this evolution in Newtonian

physics becomes Schrödinger’s wave equation, Eq. B.4. In this equation, the partial of the

wave-function with respect to time is the same as the Hamiltonian of the wave-function

[Pe89] (with appropriate constants).

Equation B.4:

ih

∂
∂t

ψ = H ψ

Appendix B MIRAGE & PHYSICS 220

The wave-function thus denotes the evolution of the system over time, even when a

set of states describes the possible system states. The wave-function describes the Time

Transformation of Mirage.

B.3.3. Virtual pairs

One model for interaction in quantum physics uses virtual particles. A particle is

virtual if it can be measured only indirectly, through its effect on other, real (directly

measurable) particles. One form of virtual particle is a member of a virtual pair, a particle

and its negative image, which can be temporarily created in a vacuum by creating a

temporary energy debt in the vacuum.

A second form of virtual pair denotes the two possible paths of a single particle in

space. Consider the canonical double-slit experiment, using electrons rather than light. A

single electron is a real particle, that should go through only one of the two slits, by

Newtonian laws.

In quantum physics, the real electron becomes a set of virtual, mutually-exclusive

electrons. These virtual particles travel through all paths in space-time from the emitter

to the detector. Two of these paths go through the two slits. The virtual electron going

through one slit interacts with the virtual electron going through the other slit, forming an

interference pattern. The seeming paradox is that a single real, measurable particle

apparently must go through two paths in space-time simultaneously for the interference

pattern to occur.

“Any other situation in quantum mechanics, it turns out, can always be explained
by saying, ‘You remember the case of the experiment with the two holes? It’s the
same thing.’”

- Feynman, quoted in [Gr84]

In Mirage, this latter form of virtual, mutually-exclusive particles corresponds to the

possible paths in state-space-time. These virtual paths and particles are denoted more

explicitly in the application of Mirage to Petri Nets, in Appendix F.

B.3.4. Feynman path integrals

Real particle paths are the integral of the mutually-exclusive virtual particle paths

and interactions therein. Richard Feynman described these path integrals in quantum

physics [Gr84].

Appendix B MIRAGE & PHYSICS 221

In quantum interactions, the virtual splitting is not restricted, so a real particle path

is described by the integral of an infinite number of virtual particle paths. This introduces

an infinity that can be removed by Feynman’s technique of renormalization.

Mirage uses a direct analog of Feynman paths in the description of the computation

function governing Time Transformations, i.e., in the wave-equation. Mirage does not

require renormalization, because the remote state being modeled is equivalent to a Turing

Machine (TM). Over a finite time interval, a fixed number of TM state changes occur,

and each state change is finitely bounded, so the resulting number of possible state paths

of the TM is also bounded. This prevents the need for renormalization, because infinite

path lengths and numbers are not possible.

B . 4 . Ob s e r v a t i o n s f r o m t h e an a l o g y

There are a few useful observations from these analogies between physics and

communication, and particularly involving quantum interactions. Some of these

observations have been presented in the Mirage model description (Chapter 2), in Prior

Work (Chapter 3), and in the Mirage extension of Petri Nets (Appendix F). Other

observations include the relationship between error and latency, and the interpretation of

stability as denoted by these analogies.

B.4.1. Error and latency as conjugates

Error and latency are conjugates, in which the units of the product of such

conjugates are ‘actions’, as described before [Gr84]. The limitation of the product in

communication is the bit-latency of the channel. This limit determines the smallest error

in stability, in the absence of other constraint information.

B.4.2. Stability

Stability in Mirage consists of either traditional stability, or entropic stability

(Chapter 2). Traditional stability guarantees constraint of state evolution over time to a

fixed subset of possible states. Entropic stability guarantees the evolution of the size of

the possible states over time, but doesn’t restrict the state values to a fixed set. The Time

Transformation indicates the evolution of the state space over time.

Appendix B MIRAGE & PHYSICS 222

In physics, the Hamiltonian function denotes each point in phase space as a vector

to the subsequent point, i.e., ‘H’ defines a vector field on phase space. Stability exists

when a phase space region is closed with respect to the vector field, i.e., no vector exits

the region [Pe89].

The Liouville theorem indicates that the volume of a region of phase space remains

constant, but permits the size of the region to grow. The volume of a region is a measure

of the number of possible states in the region, whereas the size of the region is a measure

in relation to the extremes of the dimensions. The components in the region can disperse

throughout phase space, but the total number of components cannot decrease; this latter

view is described as the incompressibility of the vector field flow.

By the Liouville theorem, if no vector exits a region, no vector can enter either.

This implies that stability violates the theorem. An example of this paradox is shown in

the Hawking box.

A Hawking box is a box in thermal equilibrium, containing one black hole [Pe89].

The Hamiltonian in the box has vectors converging in the hole, i.e., there is a confluence

(compression, merging) of flow lines. By the Liouville theorem, there must be a

corresponding divergence of flow lines, because flow lines remain constant in overall

number (incompressible flow of the Hamiltonian).

Hawking himself noted that, “I am indeed claiming that it is an objective (sic)

quantum-mechanical process of state-vector reduction…which causes the flow lines to

bifurcate…”[Pe89] – implying that flow lines can converge (lose information) or diverge

(create alternatives).

This may seem contradictory with Mirage’s interpretation of information creation

as divergence, and information reception (state-vector reduction) as convergence. This

states that state vector-reduction causes flow lines in the Hamiltonian to bifurcate,

whereas we claim that the reduction causes state alternatives to collapse (reducing the

entropy of the state).

Divergence of flow lines corresponds to a collapse of the state space, because 1

previous state with imprecision becomes one of 2 with precision, i.e., 1 large space

becomes 1 of 2 small spaces. The large → small transformation represents the collapse

of the space and the increase in information (decrease in entropy). The 1 to 1 of 2

transformation corresponds to the bifurcation of the flow lines.

Appendix B MIRAGE & PHYSICS 223

Mirage thus resolves the paradox with the creation of information by an external

party, i.e., the user. A similar paradox removal involves the introduction of information to

a formerly closed system by biological participants [Ja55].

Appendix C UPPER BOUND 224

A P P E N D I X C

Upper Bound

This is an analysis of the comparison of the exact and continuous channel utilization

formulae from Chapter 2. It will show that the complete discrete formula of channel

utilization under finite branching of the message stream (Equation C.1, as repeated

below) is bounded by the continuous form (Equation C.2, also as repeated below). We

claim that the continuous form is an upper bound for the complete discrete form.

Equation C.1: %util =
L + tree_ depth  * B +

D frac tree_ depth() −1
D −1

* B

rtt

Equation C.2: %util =
L + tree_ depth * B

rtt

In order for Equation C.2 to be an upper bound to Equation C.1, Equation C.3 must

hold. This simplifies (via Eqs. C.4, C.5) to Equation C.6. If Equation C.6 holds under the

domain of the original formula, then the upper bound is proven.

Equation C.6 has at least two zeroes, at the endpoints (x=0, x=1) of the domain. It is

also positive at arbitrary points within the domain, and continuous within the domain. Its

derivative (Equation C.7) has only one zero, i.e., there is only one zero of the slope in the

domain. Equation C.6 has two zeroes at the endpoints, is continuous, positive between

Appendix C UPPER BOUND 225

those endpoints, and its slope has only one zero (a maximum), thus we conclude that it

holds for all points in the interior of the domain.

Equation C.3:
L + tree_ depth * B

rtt
≥

L + tree_ depth  * D +
D frac tree−depth() −1

D −1
* D

rtt

Equation C.4: tree_ depth ≥ tree_ depth  +
D frac tree_ depth() −1

D −1

Equation C.5: frac tree_ depth() ≥ D frac tree_ depth() −1
D −1

Equation C.6: x −
D * Dx −1()

D −1
≥ 0

where x ∈ [0,1)

D ≥ 2

Equation C.7: ′x = logD

D −1
ln D()

+ 1










Equation C.6 is presented graphically below (Figure C.1), denoting the difference

between the upper bound and the exact formula. ‘Fraction’ denotes FRAC(tree-depth);

note that as branch degree increases from 2, the deviation increases, and the upper bound

becomes less exact, especially for larger values of FRAC(tree-depth).

Branch
Degree

(B)
Fraction

(lost by floor function)

Channel
Utilization
Deviation

FIGURE C.1
Error between upper bound and exact channel utilization

Appendix D THE LIOUVILLE THEOREM 226

A P P E N D I X D

The Liouville Theorem

The Liouville theorem is a result of statistical mechanics, which states constraints

on the temporal evolution of state space volumes in models of closed systems [Hi56].

The terminology used here is different from that of statistical mechanics (SM), where the

theorem is usually presented. What Mirage call state space, SM calls phase space. Mirage

refers to a volume in that state space as representing a subset of that space that denotes a

set of possible system values; SM refers to the probability density function as describing

this set, and its distribution in phase space.

In our notation, the Liouville theorem states that the volume of state space

representing the local state of a node cannot add or delete points. The theorem claims that

every point in the original state space lies on a unique trajectory of points, of a system as

it evolves in time. A system’s trajectory is completely described by one such point,

because other constraints on the system completely determine its subsequent state from

its current.

This indicates that, whereas the points in the original volume may later spread out

in space, the overall number of points (the integral of this volume) remains constant. If

the integral were to decrease or increase, it would imply that two trajectories merged,

indicating that the system had been incompletely described by the state space variables

and transformation rules. A closed system is permitted to move through state space, but

Appendix D THE LIOUVILLE THEOREM 227

never to bifurcate into two system instances. Volumes in the state space represent

‘competing’ instances of a system, but only one actually exists. Each system instance has

its own unique trajectory, so whereas the volume can move through state space (by

translation or deformation) the integral (number of possible state values in the volume)

must remain constant.

The theorem applies only to closed systems; the integral of the volume of state

space representing remote nodes is not part of such a system, and it thus is not a violation

to speak of that volume as expanding (increasing the integral) or collapsing (decreasing

the integral). The theorem is meant to convey the notion that information, in a closed

system, is neither created nor destroyed over the long term. Within a node, however,

information can be created. This occurs whenever I/O occurs at the node, such that the

state of the system is now enhanced by external information.

The quantum aspect of this phenomenon is necessitated by the discrete values of the

variables in our system – the integral is more properly a (discrete) summation. The

theorem applies to the quantum domain in a similar, though distinct fashion. The

implications of maintaining this theorem as it applies to Mirage will be discussed more

completely in subsequent research.

Appendix E MIRAGE IN SET NOTATION 228

A P P E N D I X E

Mirage in Set Notation

Mirage uses state space volumes to describe the possible states of a remote node.

One instance of this model is a description in terms of sets of states, so that each set

represents a ‘volume’ in state space. This set notation can be extended by including a

probability for each state. The continuous form of state sets with probabilities is a

probability density function (pdf). The following is an elaboration of the definition of the

state space volume description of Mirage from Chapter 2, in terms of sets.

E . 1 . D e f i n i t i o n s

Consider the set of nodes in the network. These nodes are herein completely

connected, each pair (i,j) connected with a finite maximum communication bandwidth
(BWi, j) and a finite minimum communication delay (∆ti, j). The following definitions

will be used; the ‘equations’ below represent these definitions.
Mi denotes a node’s finite storage. This storage is used both to denote the node’s

dedicated local storage and perceptions of the storage of remote nodes.
Si denotes the local state of the node i, the local component of its storage.

Appendix E MIRAGE IN SET NOTATION 229

Pi, j denotes node i’s perception of node j, which is some subset of the set of all

states of node j, namely Si (Eq. E.1).

Vi denotes node i’s view of the network, comprised of its own local state Si and the

set of perceptions Pi, j of the other nodes (j) in the network (Eq. E.2).

The only constraint thus far is that the size of the node be sufficient to store its view

(Eq. E.3). Note also that mutually recursive knowledge is permitted, provided that the

recursion is bounded and finite, as required by the fixed size of local storage at each

node.

Equation E.1: Pi, j ⊆ Powerset Sj()

Equation E.2: Vi = Si U Pi, j
j≠ i
U










Equation E.3: Vi ≤ Mi

E . 2 . Ti m e Tr a n s f o r m

Time transforms the perception by expanding it, thus reducing the precision in the

knowledge of the state of the remote node. The temporal transformation of a perception

of a remote node P over the interval ∆t is denoted by a function C[∆t, P](t) ; this function

describes the known bounds on the state space evolution as a function of time. A node’s

view thus changes over time as its local state changes, and as the time transformations of

its perceptions change (Eq. E.4).

Equation E.4: Vi t + ∆t() = Si t + ∆t()U Cj ∆t, Pi, j[] t()
j≠ i
U










The extent to which the remote node is correctly modeled depends on the precision

of this function, as characterized by the amount of state space expansion per unit time, a

Appendix E MIRAGE IN SET NOTATION 230

form of induced entropy1, E. The ratio of the volumes describes the expansion, equivalent

to the entropy increase (Eq. E.5). The imprecision describes the difference between node

j’s actual state and node i’s model of that state. The entropy change per unit time is a

measure of the minimum bandwidth required to compensate for the entropy change (Eq.

E.6).

Equation E.5: ∆Ei, j = − log2

old_ volume

new_ volume









 = − log2

Pi, j t()

Cj ∆t, Pi, j[] t()













Equation E.6: Bandwidth =
∆Entropy

∆t

The computation function, C, which describes the evolution of the space over time

as viewed at a distance, is a combination of the remote space evolving over time and the

messages that it can receive over that time. Analysis of this function can be complex,

since all possible permutations of messages and computing intervals must be accounted

for. The computation function encodes known internal computation at the node j, known

bounds on the information received by node j, and known message emissions from node j

(i.e., all known constraints on node j).

The formula is derived by taking the union over all possible time intervals (so we

include inaction over the remainder of each interval), of the way in which any point

(union over all points p in P) can be transformed by any computation function c in C,

such that the computation function can occur in the specified interval (Eq. E.7).

Equation E.7:

Cj ∆t, Pi, j[] t() ⊆ c p()
c∈C j

time c()≤ ′t

U












p∈Pi, j ′t()

U














′t ≤∆t

U

Equation E.7 denotes the computation constraint in terms of state space volume

transformation. In the case where the time transformation is expressed by a probability

density function (pdf), this function reduces to a convolution of the entire set of remote

nodes (p’s) over the set of probability density functions (pdfs) of the transformations of

individual messages that can be received (c’s) and the a time transformation pdf

1The notion that state reduction and volume ratios are related to entropy is not new;

it has been discussed before, in [ShWe63] and [Ha28].

Appendix E MIRAGE IN SET NOTATION 231

(Equation E.8). This reduction to convolutions requires that the time transformation is

time invariant, i.e., it depends on the interval of elapsed time, but not the absolute time at

which the interval occurs (Equation E.9).

Equation E.8: Cj ∆t, Pi, j[] = Pi, j ⊗Ci, j

Equation E.9:
t1 ,t2

∀ Pi, j t1 + ∆t() = Pi, j t2 + ∆t()

E . 3 . R e c e i v e Tr a n s f o r m

Receiving information collapses the perception of a remote node to a subspace of its
former volume. Rk denotes a message sent from node k, when it is received (i.e., this

notation is used only within the node receiving that message).
Rk affects node i’s perception of node k, denoted by Pi,k :Rk . The total view of node

i is affected only in the perception of the source of the message, so that the effect of Rk

on node i’s view contains the unchanged local state and other perceptions, and the

transformed perception of the message source (Eq. E.10).

Once constraint on the receive transform is that the transformed perception is a

subset of the original perception, otherwise the perception was in error (Eq. E.11).

There is a limit to the amount to which the message can reduce the volume of the

perception (Eq. E.12) (on average), since the volume reduction caused by the incoming

information is bounded by the information content of that message, since volume

reduction is equivalent to reduction in entropy.

Equation E.10:

Vi:Rk = Si U Pi, j t()
j≠k , j≠k
U









 U Pi,k :Rk

Equation E.11: Pi,k :Rk ⊆ Pi,k

Equation E.12: Rk ≥ log2

Pi,k

Pi,k :Rk











Appendix E MIRAGE IN SET NOTATION 232

E . 4 . Se n d Tr a n s f o r m

Sent messages expand the state of the message source by expanding the volume of

the source’s perception of the recipient of the message. A transmitted message is denoted
as Tk , i.e., as a message transmitted to node k. This notation is used in the context of the

source of the message, i.e., within node i.
Tk affects a node’s view by transforming the perception of the remote node it is

sent to (Eq. E.13), using notation similar to that of received messages. Again, the

information contained in the sent message is limited by the transformation it effects, in

terms of the relative volumes of state spaces indicated (i.e., entropy) (Eq. E.14).

Equation E.13: Vi:Tk = Vi U Pi,k :Tk

Equation E.14: Tk ≥ log2

Pi,k

Pi,k :Tk











E . 5 . Ob s e r v a t i o n s

The set notation interpretation of the abstract Mirage model is largely composed of

additional notational constructions. The result of this exercise supplants this notation

with formal relationships among bandwidth, message length, and the volume ratios of the

original and transformed components of the state spaces. The description of the time

transformation in terms of a computation function emphasizes the dependence

communication on the application-layer semantics of the function of the remote node.

The computation function description also led to the observation that the probability

density function analog of the time transformation is pdf convolution, if the time

transformation is time-offset invariant.

Appendix F MIRAGE & PETRI NETS 233

A P P E N D I X F

Mirage & Petri Nets

To introduce the effects of the Mirage model on protocol analysis, we demonstrate

its effect on the Timed Petri Net model. The Mirage model suggests a version of Petri

Nets where tokens replicate, and later annihilate each other, similarly to the interactions

of virtual pairs of particle in quantum physics.

F . 1 . P e t r i N e t A n a l o g s

As another instance of the Mirage model’s application, we have selected Timed

Petri Nets [Me76]. Here these nets are extended to describe the state expansion and

collapse that is integral to Mirage, while preserving the graphical/formal properties of the

original network.

A Petri Net is a network of nodes, called places and transitions, and arcs. The net is

bipartite with respect to the sets of places and transitions; arcs connect places to

transitions or transitions to places. Nodes are depots for objects called tokens, and

transitions denote rules for the movement of tokens from places at the input arcs to places

at the output arcs. A transition can move tokens if it is enabled, if there is at least one

Appendix F MIRAGE & PETRI NETS 234

token matching the source of each input arc to the transition. Once enabled, the transition

consumes these enabling tokens, and places a token at the places indicated by the output

arcs [Pe77], [Pe62]. Timed Petri Nets include temporal constraints on the persistence of

enabled transitions and the propagation of tokens along arcs [Me76].

To compose a Petri net analog of the Mirage state space subset model, consider the

Petri Net (PN) normally associated with a protocol in a node. Places in this net represent

conditions in the protocol, and the transitions represent transformation of sets of

conditions into other conditions (Figure F.1). A marking of this net represents a

particular, unique state of the node operating that protocol (Figures F.2A-E).

FIGURE F.1
Petri Net (unmarked)

A

B C

D E

s t a r t

FIGURE F.2
Petri Net markings

Mirage needs to represent subsets of states, i.e., more than just single states. For a

particular protocol PN, there is an associated finite state machine, called a token machine

(TM) of that net (Figure F.3). The states of the TM correspond to the unique markings,

Appendix F MIRAGE & PETRI NETS 235

and the transitions in the TM represent the transformation of one marking into another,

by action of the movement of tokens associated with the firing of active transitions of the

PN. The state space of a Petri Net is the set of markings of that net.

A

B C

D

E

FIGURE F.3
Token machine of a Petri Net

Consider now the PN whose places correspond to the states of the TM, and whose

transitions correspond to the arcs of the TM (Figure F.4). This is also a valid model of the

protocol; we call this a meta-Petri net, or MPN.

A

B
C

D

E

FIGURE F.4
Meta-Petri Net of a Token Machine

The protocol would begin in a single marking in the original PN, so there would be

one token in the initial marking of the MPN, indicating that marking. Tokens in the MPN

thus indicate entire markings in the original PN, which denoted states of the protocol.

Note that in taking the TM of a PN into a MPN, the number of tokens of the MPN must

be conserved after each firing in the MPN, because a PN firing results in only one

resulting PN marking, even though the choice of which firing occurs from a given

marking can be nondeterministic.

Appendix F MIRAGE & PETRI NETS 236

The conservation of tokens results from the construction of the machine. No

transition contains more than one output, so tokens are never replicated.

For these diagrams, we consider only markings where a place is in one of two states

– marked, containing a token, or unmarked, empty, a binary Petri Net. This simplifies the

diagrams; Petri Net places normally are defined to contain an any number of tokens, in

which case a different net could be developed which observes token conservation after

some point, which this does not. In the (binary) example, state C goes to state D only

once; the conventional (non-binary) PN would go to a next state that was a version of C

with two tokens in the lowermost place, which is distinct from marking C.

Mirage implements transformations on the MPN that will enable the MPN to model

multiple PN markings, by allowing it to violate the token conservation, under certain

conditions. In the Mirage MPN, the number of tokens in the marking of a MPN reflects

the entropy of the state of the node that the MPN is modeling.

F.1.1 Communication channel

So far, a Petri Net is considered a model of the entire network. In designing the

Mirage-based transformations on the Meta-PN, the nodes are considered as separate

subnets in the original Petri Net. One way of separating the network Petri Net is to

consider a partition of the MPN into node nets and communication channel nets (Figure

F.5).

ChannelNode A Node B

FIGURE F.5
Network MPN partitioned into channels and nodes

Appendix F MIRAGE & PETRI NETS 237

In partitioning the MPN, the resulting partial MPNs are incomplete, as they have

input and output arcs which are not connected. The input and output arcs of the node

MPN’s are their interface to the communication channel. One of the simplest

partitionings results in a channel MPN consisting of only transitions (i.e., having no

places) (also Figure F.5).

The partitioning is required so that we may differentiate the state of a node from the

its communication with other nodes; the reason for this difference will be shown later.

Tokens in the node MPN denote the state of the node, whereas tokens in the channel

MPN denote communication among the nodes.

F.1.1.1 Basic block

Further manipulation of the MPN requires the use of some definitions. We define a

basic block as a subgraph of a MPN that is completely within the subgraph of a node, and

which has one entry for tokens from that node, and one exit for tokens to that node

(Figure F.6). It can have any number of token entries and exits to the communication

channels to other nodes. The conservation of state tokens represents the point

transformation model in Shannon’s theory, where one point in state space (i.e., a single

token in a single place in the MPN) is transformed into another point. Communication

tokens have no similar constraint.

f r om
comm

channel t o
comm

channel

from
node A

to
node A

FIGURE F.6
Basic block

Appendix F MIRAGE & PETRI NETS 238

F.1.1.2 Virtual tokens

Mirage uses a MPN where indeterminism exists, where an advantage can be gained

by running the MPN into the ‘future’, with virtual tokens. A virtual token is one of a set

created which causes indeterminism in a MPN. Rather than having a one token continue

on a single path, a virtual token is created for each path possible (Figure F.7). These

tokens then belong to a codependent set. At some later time, if any of these tokens is to

be considered real, all codependents of that tokens set and all ancestors of all tokens in

that set must be destroyed (Figure F.8). A token is real if it is the lone token in a MPN.

FIGURE F.7
Token virtualization

real rea lv i r tua ls

FIGURE F.8
Token realization

In token virtualization and realization, and the definition of removal of

codependents is similar in principle to the visual process of a Feynman diagram. This is

not a coincidence, as these operations were patterned after concepts from quantum

physics. The number of simultaneous virtual tokens is also related to the size of the

partition K in the Mirage stability criterion.

Appendix F MIRAGE & PETRI NETS 239

Token virtualization and realization can be introduced by a graph transformation in

the MPN. This transformation introduces two tokens for each entering token, yet allows

only one token to be emitted. In this way, virtualization and realization are implemented

in the MPN.

The transformation works by the following principle. There exists a

nondeterministic bifurcation into two basic blocks before the transformation (Figure F.9).

After the transformation, two tokens, X and Y, are created. They affect their respective

basic blocks, and exit the blocks accordingly. At that point, they are virtual tokens. They

enter a mechanism that permits the first virtual token to pass, and be ‘measured’ (acted on

by the rest of the T-MPN). That passage creates the measurable ‘hat’ token, and creates a

token of the complement. The complement annihilates the opposite codependent token,

thus maintaining the singular realization constraint (Figure F.10).

A B

A' B'

FIGURE F.9
MPN subgraph (before transform)

For example, if Y gets to the gate mechanism first, it passes, creating Y-hat, and X-

bar. X-bar annihilates the next X token to reach the gate, causing the codependent virtual

token to be destroyed. The rest of the T-MPN is permitted to act on the ‘hat’ tokens only.

The feedback mechanism permits only one pair of virtual tokens from participating in the

gate at one time.

Note that the messages emitted in the transformed MPN are guarded messages,

where the conditional label on the message indicates which of the virtual tokens caused

that message. Guarded messages are denoted by the form X:A, where X is a guard

condition and A is a message.

In the pre-transformed subgraph, it is assumed that the inputs to the basic blocks

have not yet arrived, so the token waits at the root (top) of the graph, and no further

communication ensues. The transformation permits the messages to be sent in

anticipation with appropriate guards. Later, the inputs match the virtual tokens at the meet

Appendix F MIRAGE & PETRI NETS 240

points, where token realization is modeled. The inputs arriving first permit realization of

the virtual token on their side of the subgraph.

X Y

X Y

YX

X Y

A B

VIRTUAL

MEET

REAL

SPLIT

X:A' Y:B'

FIGURE F.10
MPN subgraph (after transform)

F.1.2 Equivalences to Mirage transformations

Now we show the equivalent transformations on the MPN of time, transmission,

and reception of information in the network.

F.1.2.1 Time

Time is simply the token virtualization of a subgraph of a MPN of a particular node,

representing the state of the remote node. This indicates that, as far as the state of the

local node is concerned, the remote node is seen as being in multiple states at once. This

reflects the increase in entropy of a system when information about the state of that

system is absent, and the system is known to evolve over time.

Note that the only restriction imposed by Mirage on the virtualization is that the

virtual tokens remain in the MPN representing a single remote node. As soon as any of

these tokens interacts with a token from the representation of another node, or the state of

the local node, it must be realized, and all codependents of the virtual disappear. Local

Appendix F MIRAGE & PETRI NETS 241

interactions involve real tokens, but remote node knowledge looks into the future with

virtual tokens.

The other restriction of time virtualization is the existence of indeterminism in the

MPN graph. This requires a structure as was shown for the virtualization process above.

The increase in the number of tokens in the MPN indicates the increase in entropy of the

state of a node, due to the increase in the state space of the perception of a remote node.

F.1.2.2 Send

Sending information similarly causes token virtualization, due to the possible loss

of the transmitted message. The node sending the information must operate under the

dual assumptions that the message has been correctly received and also that it has been

lost (considering non-Byzantine errors only). This involves a recursive form of token

virtualization, where one virtual token remains where the original real token was, and the

codependent token flows through the graph ahead (Figure F.11). The virtualization is

called recursive because one of the virtual tokens is placed where the original real token

had been, and that virtual token is in a position of being re-virtualized (although this is

possible, there may be other considerations).

X2:message

X X1

X2

FIGURE F.11
Sending introduces virtualization

This form of virtualization does not require indeterminism in the MPN; it

introduces it to account for the potential loss of information by the channel. The basic

block must have at least one output, to describe the information sent into the channel.

Before the transformation, a simple message would be sent; after the transform, a

guarded message is sent instead.

Appendix F MIRAGE & PETRI NETS 242

One consequence of this transformation is that certain PN models of protocols are

changed into machines that continually emit guarded messages. This is especially true in

request/reply protocols based on finite databases, whose MPN is a very shallow, highly

branched tree of such basic blocks. This may hint at an analytic justification for the

efficiency of ‘blasting’ protocols in such domains, where continual emission of the

database is preferable to an explicit request/reply.

F.1.2.3 Receive

Reception of information causes collapse of the state space of a remote node, from

which information was received. This implies that the MPN of the representation of the

remote node contained a set of virtual tokens, and that these tokens are meeting the

arriving messages. When a message arrives, the state of the remote node is realized, and

virtual tokens disappear (Figure F.12).

The decrease of the number of tokens caused by realization indicates the reduction

in entropy caused by the reception of information. This decrease affects the entropy of

the perception of the node from which information was received.

message

real

FIGURE F.12
Reception causes realization

F . 2 . C a p a c i t y in a P N

Even though we can define a communication channel as a PN, the notion of channel

capacity has a time dimension, so we must use Timed Petri Nets, where there are

Appendix F MIRAGE & PETRI NETS 243

temporal constraints on the maximum and minimum times that conditions may persist at

a transition before it fires, with similar bounds on the firing action itself. The definition of

channel capacity would then be a function of the number of unique markings of this PN,

in a given amount of time.

One definition of the maximum channel capacity involves operations on the MPN.

The MPN can be extended into a Timed-MPN by analysis on the time conditions of the

original net. The bandwidth of the T-MPN is related to the average number of branches in

a cycle in the T-MPN, divided by the time to complete the cycle. The number of branches

indicates the communication choices in the cycle, a measure of its information capacity.

This capacity, over the time taken to communicate it, defines the bandwidth. The MPN

must have been initiated from any of the possible markings of the input to the channel.

If we restrict a channel to a set of transitions, the capacity of the channel is defined

as the number of patterns (N#transitions – for Boolean PNs this becomes 2#trans) divided

by the sum of times of transition for each pattern. The time of transition for a pattern is

defined as the time of the slowest enabled transition in the pattern.

The channel has input and output patterns, the capacity of the channel can be

determined by considering the unique output patterns derived from the set of unique input

patterns. These input/output sets can be analyzed by conventional Shannon techniques.

Appendix G THE TREESTACK 244

A P P E N D I X G

The TreeStack

The TreeStack is an abstract data structure that combines the characteristics of a

stack and a tree into a monolithic entity. It was developed to facilitate the µ-Net

description (Chapter 5), but may have more general application. We have not investigated

the TreeStack as a formal data structure, nor have we determined whether it is novel;

such investigations will be included in future work.

This is a description of the TreeStack as a formal data structure. Basic operations

that define access to the structure are enumerated. One defining characteristic of the

TreeStack is that it reduces a conventional tree or a conventional stack, under particular

constraints.

G . 1 . C o m p o n e n t s

A TreeStack consists of three basic elements: a binary node, a unary node, and a

leaf (Figure G.1). Binary nodes represent branchings, unary nodes represent stack

elements, and leaves are the only terminal elements.

Appendix G THE TREESTACK 245

Binary Node Unary Node Leaf

FIGURE G.1
TreeStack components

G . 2 . Op e r a t i o n s

The operations of the TreeStack consist of the operations on a stack (Push, Pop) and

the operations on a tree (Branch, Select Subtree). If Push and Pop operations are

prohibited, then a conventional binary tree results. If Branch and Select Subtree

operations are prohibited, then a conventional stack structure results.

G.2.1. Push

The Push operation indicates a recursion entry point, whose exit is the

corresponding later Pop. A Push operation replaces a leaf with a unary node copy of that

leaf, and places the leaf as a child of the unary node (Figure G.2). A Push is defined only

as a transformation on a leaf. The cost of a Push is O(1) .

Before Push After Push

FIGURE G.2
TreeStack Push operation

Appendix G THE TREESTACK 246

G.2.2. Pop

A Pop operation indicates the exit of a recursion. Pops are defined only on subtrees

terminating in a unary node & leaf pair. The leaf is discarded, and the unary nodes

internal value is used to create a new replacement leaf, which is attached where the pair

had been (Figure G.3). The cost of a Pop is O(1) .

Before Pop After Pop

FIGURE G.3
TreeStack Pop operation

G.2.3. Branch

A Branch operation allows equivalent alternates to be represented in the data

structure. A Branch replaces a leaf with a binary node, whose two children are two new

leaves which are copies of the replaced leaf (Figure G.4). The cost of a Branch is O(1) .

Before Branch After Branch

FIGURE G.4
TreeStack Branch operation

Appendix G THE TREESTACK 247

G.2.4. Select subtree

Subtree selection indicates a substructure of the TreeStack, which contains all the

equivalent alternates of the children of the selected internal node of the structure. In a

conventional tree a subtree is selected. In a TreeStack, a selection (i.e., the X in Figure

G.5) indicates the extraction of the superior tree (i.e., children, indicated by the dotted

oval), along with a path of unary nodes back to the root (the dotted path). This path

denotes the recursion return information encoded in the TreeStack, such that the resulting

extracted substructure is self-contained. The cost of a Branch is between O(log(N)) and

O(N), where N is the number of overall elements in the tree, depending on whether the

TreeStack is dominated by (respectively) binary or unary nodes.

A

B

C

D

E

F

A

B

E

F

Subtree selection indicated Subtree selection extracted

FIGURE G.5
TreeStack Subtree Selection operation

Appendix G THE TREESTACK 248

G.2.5. Equivalence transforms - Twinning and UnTwinning

It is possible that a TreeStack structure evolves to a state where a Pop cannot be

executed, even though a corresponding Push exists. Consider the case where a Push is

followed by a Branch. The subsequent Pop on either leaf of the binary node is not

defined. There is an equivalence between TreeStack substructures which permits a Pop to

occur, given some intermediate transformations.

A unary node whose child is a binary node is equivalent to a binary node whose

children are two identical copies of that unary node (Figure G.6). Conversion from the

unary node/binary child to a binary node/pair of unary children is called Twinning, and

the reverse transformation (where possible) is called UnTwinning. The cost of either

transform is O(1) .

A

A A

UnTwinned Twinned

FIGURE G.6
TreeStack Twinning and UnTwinning

G.2.6. Canonical forms

There are two canonical forms of the TreeStack, one that is maximally Twinned, the

other that is maximally UnTwinned. A Twinned TreeStack is efficient at Push and Pop

operations, but has a high Branch cost and is inefficient in its space requirements,

whereas an UnTwinned Stack is efficient in its use of space, Push, and Branch

operations, but costly for Pop operations. The costs for Subtree Selection are equivalent

in either form.

Appendix G THE TREESTACK 249

G.2.6.1. Twinned TreeStack

The result of Twinning is to move the binary nodes closer to the root, eventually

becoming a tree of binary nodes originating at the root. The ‘leaves’ of the binary node

tree are strings of unary nodes, terminating in leaves. The binary tree structure represents

an encoding of the choices of alternates, i.e., alternate worlds, and the unary strings

represent a conventional stack local to each world. Thus the composite structure of the

TreeStack can be transformed into a conventional tree of conventional stacks (Figure
G.7). The cost of transforming an arbitrary TreeStack to canonical form is at most O 2N(),
i.e., if the original structure is a stack of trees.

FIGURE G.7
TreeStack canonical form - maximally Twinned

A Twinned TreeStack is inefficient in its use of space, because stack elements are

replicated among the tree alternates, to maintain strict independence among the

alternates. A Pop operation costs O(1) because Twinning transformations are not

required at the time of the Pop, but Branch operations are very costly, i.e., O 2k() where k

is the depth of the individual stacks of the alternates. In that case the entire recursion

stack must be replicated in its entirety, even though much of it may never be accessed

independently of other alternates.

G.2.6.2. UnTwinned TreeStack

Twinning is costly, because stack components may be unnecessarily replicated. In

the case where the operations consist of a sequence of Pushes, followed by a sequence of

Branches, the structure becomes a stack whose top element is a tree. Conversion of this

structure to canonical form replicates elements exponentially in the depth of the stack. If

Appendix G THE TREESTACK 250

the structure is left in original form, replication of internal unary nodes occurs only where

Pops require them, and so some economy of time and space is achieved. UnTwinning (to

the extent possible) decreases the cost of access and storage of the TreeStack (Figure

G.8).

FIGURE G.8
TreeStack form - maximally UnTwinned

An UnTwinned TreeStack is efficient in its use of space, because the stacks of

overlapping alternates are maintained as a single structure until Twinning is required.
Branch operations cost O(1) , but Pop operations cost O 2k() where k is the depth of the

path back to the root, because of the Twinning required back along that path.

G.2.7. The Graft transform

One optimization uses an alternate storage method. In the TreeStack described thus

far, a stack whose last element is a tree can cause unnecessary replication when one leaf

of the tree Pops multiple levels of recursion, but where the other leaves do not Pop
(Figure G.9). In the equivalence transformation, a set of k Pops would cost O 2k() in

space and time replication (Figure G.10). Space optimization would suggest that the

equivalent structure that was not accessed should be UnTwinned (Figure G.11).

Appendix G THE TREESTACK 251

A

B

C

FIGURE G.9
Multiple Pops in max-Twinned TreeStack (before Pops)

AA

B

C

A

B

C

A

B

C

FIGURE G.10
Multiple Pops after Twinning and Pops

A

B

C

AA

B

C

FIGURE G.11
Multiple Pops after subsequent UnTwinning

Appendix G THE TREESTACK 252

Rather than performing the transformations only to undo some portion of them

later, we have developed an equivalent encoding for a Pop through binary nodes, called a

Graft. A leaf of an arbitrary TreeStack is Popped by traversing the TreeStack back

towards the root, through binary nodes, stopping at the first unary node found. That node

is then preceded by a binary node, whose one child is the unary node, and whose other

child is a leaf copied from the data of the unary node (Figure G.12). The leaf where the

Pop occurred is considered a null unary node (lined out in the figure), whose child is the

leaf thus grafted in (the arrow in the figure). The cost of a Graft is O(log(N)) , due to the

search for the unary node.

A

B

C

A

FIGURE G.12
A Graft

The Graft has the advantage of permitting a Pop to occur while retaining the

original branching structure that led to the leaf that popped, so that a Select Subtree can

choose a subtree within that popped structure. The null unary node permits the grafted

leaf to appear as a child within the selected subtree, even though that leaf is actually an

alternate on a path back to the root that would normally have been removed in the subtree

selection (Figure G.13). The disadvantage is that the entire tree remains after all leaves

have popped, thus relying on the Select Subtree operation to prune the TreeStack

structure down to its currently accessible elements. We have not analyzed the increased

cost of a Grafted TreeStack subtree selection operation, or the reduction in cost due to the

omission of equivalence transformations.

Appendix G THE TREESTACK 253

A

B

C

A

A

B

C

A

Graft with selection indicated Extracted subtree selection

FIGURE G.13
A Graft Subtree Selection

Appendix H µ-SCOPE METHODS 254

A P P E N D I X H

µ−Scope Methods

Measurements were required to analyze the µ-Net variations, to specify parameters

of the branching stream model and to determine the requirements for reasonable

implementations. These measurements included limb length, recursion depth, and opcode

type distributions. Existing tools performed only some of these measurements, so a

method was devised to perform all the required measurements in a single environment.

H . 1 . Ex i s t i n g To o l s

There are several tools that could have been used for some of these measurements.

They can be grouped into four basic classes, as listed below:

• Hardware

• Software emulation

• Block tagging

• Opcode interleaving

Appendix H µ-SCOPE METHODS 255

Hardware methods were considered initially for these measurements. Most current

microprocessors provide sufficient internal status on external pins that opcodes can be

distinguished from other information on the data bus. A device can be designed which

monitors the bus and these signal pins, and increments local counters as required. A

design that does not affect performance can be implemented with existing PLA

technology. The advantage to this method is that all opcodes executed are measured, the

measurements are done in real time, and any executable code can be measured. The

disadvantage was that our existing hardware base did not support student hardware

access, and that reasonable software schemes would be more portable and more quickly

implemented.

Software emulation was not possible, because of the size of the benchmarks to be

tested. Software emulation reduces execution time by a factor of 50-200 (approximately),

and some benchmarks used required several minutes of direct execution time. Emulation

would have required hours of CPU time, which was not available here. Further,

measurements we required would have necessitated modification of any existing

emulator, or the design of an entire new emulator. The former was precluded by the lack

of access to the source code of commercial emulators, such as SHADOW1, and the latter

was precluded by time limitations.

Current opcode measurement techniques have focused on block tagging methods. In

these schemes, basic blocks are determined by a preprocessor, and opcodes are inserted

which measure the execution of the basic blocks only. After execution of the tagged code,

statistics on individual opcode types are computed from block execution statistics and the

opcode listings of each basic block. This technique adds only 10-20% to the execution

time and code size of the measured program. Block tagging measurement tools include

PIXIE2 and SPIXTOOLS3; the former was not used because we had only one DECSTATION

51004 computer, and the latter was not publicly available5.

1SHADOW is a SPARC emulator of SUN MICROSYSTEMS. We requested access to

SHADOW from SUN in Feb. 1991, either in source or executable only form, and were told

that SHADOW is a commercial product, and so the source code was not available, even for

educational uses with our offered nondisclosure.
2PIXIE is a DIGITAL EQUIPMENT CORPORATION program which does block tagging

on MIPS object code.

Appendix H µ-SCOPE METHODS 256

Another version of block tagging is called Abstract Execution (AE) [La90]. AE

both saves execution time of the measured code, adding 50-80% to the execution time,

and compresses measured data by several orders of magnitude. In AE, ‘interesting’

events are measured during an initial execution of the program. This trace is used to

direct more detailed measurement of ‘interesting’ portions of the original program; the

final measurements are scaled according to the trace proportions to produce the final

output. AE thus focuses detailed measurements on statistically significant components of

the original program. It was not used here because opcode interleaving provided

sufficient measurements with tolerable degradation. AE’s major benefit is that unlikely

portions of the source code don’t waste measurement resources, and that huge amounts of

measured data are compressed. We are not concerned with resource optimization, and do

not measure data address access, so we do not require trace data compression.

Block tagging was insufficient to perform the measurements we require. Block

delineation is performed by static code analysis, where destinations of branch, jump, and

call opcodes determine block beginnings, and any control transfer (branch, call, jump, or

return) determines a block end. Dynamic opcodes are not analyzed in this method,

because the destination of dynamic control transfers (call, jump, branch) cannot be

predicted before runtime without additional assumptions. Further, the basic block defines

the limb length; its measurement cannot be sufficiently modified to accommodate basic

blocks whose interiors contain jumps, calls, or returns, as some of our measurements

required.

Instruction interleaving was the final classification of measurement methods.

Interleaving can be static, i.e., by modification a-priori of the object code, or

dynamically, using software interrupts.

3SPIXTOOLS is a program of SUN MICROSYSTEMS, which performs block tagging

on SPARC object code.
4The DECSTATION 5100 is a product of DIGITAL EQUIPMENT CORPORATION.
5Again, SUN MICROSYSTEMS was contacted in Feb. 1991 concerning access to

SPIXTOOLS for these experiments. We were told that SPIXTOOLS had not yet been

released as a product, and would not be available, even under a nondisclosure agreement,

for our research. Because of ‘proprietary access’, we felt it inappropriate to compare our

results to even published measurements made with this inaccessible tool, since such

experiments are by definition “not repeatable.”

Appendix H µ-SCOPE METHODS 257

Software interrupts can be used dynamically to interleave the opcode stream with

execution of the measurement code. In a SPARC the dual instruction pointers can be used

to replace the next opcode with a trap instruction, where the software interrupt caused by

the trap causes the measurement code to execute. This method also slows execution by

two orders of magnitude.

We chose static instruction interleaving on a Sun SPARCstation, due to

accessibility of the workstation (five were used for these experiments). The method was

chosen to permit measurement of limb length statistics under various definitions of basic

block delineations, and to perform more conventional opcode occurrence statistics in a

dynamic instruction sequence.

H . 2 . Th e m e t h o d

µ−Scope (i.e., MicroScope) is a sequence of steps that performs dynamic opcode

traces on a SPARC CPU. The current method is designed any language, provided that

intermediate SPARC assembler code is accessible by µ−Scope.

If the source code is in C, the MSCOPE.h C-language file is included at the

beginning of the source code, to prevent warning messages; equivalent assembler

directives could have been determined from this C-code and included in the final

assembler output.

 The SPARC assembler output is passed through two AWK scripts. The first script,

INSERT_SYMBOLS, adds temporary placeholders for various measured opcode types

and limb sequences. Every type of opcode measured is followed by a placeholder. Limb

lengths are measured by inserting limb length calculation placeholders whenever an

opcode occurs which terminates a limb of a particular type. For example, branches cause

all types of limbs to terminate, whereas returns cause only some categories of limb

measurements to indicate a limb end. The placeholders are pseudocodes for operations,

which include increment, increment by 2, decrement, and index; the latter pseudocode

increments a value at some offset in an array (with bounds checking).

The second script, INSERT_OPCODES, replaces inserted placeholders with

SPARC assembler that tabulates measurements as indicated. Opcode type occurrences

cause global counters to increment, whereas limb length occurrences cause an increment

in a histogram of limb lengths of the type of limb terminated, and a resetting of that limb

Appendix H µ-SCOPE METHODS 258

length counter. The limb counters allow limb lengths to be calculated across calls,

subroutines, and jumps, as some types of limb measurements required. Opcode type

occurrences add 3 opcodes for every opcode occurrence; limb occurrences add up to 16

opcodes for each limb end occurrence. In the benchmarks we measured, these two scripts

added an average of 7 to 10 opcodes for each original opcode, i.e., the object code was

increased by 7-10x, and execution time was similarly increased.

This method of opcode interleaving was proposed independently, but is a specific

example of a general technique of source code debugging and measurement. We noted an

identical method published concurrently with our development [Ka91]; we then contacted

the authors of this work, who provided us with extensive source of their tools. These

tools and AWK scripts were used to debug and verify our techniques. Our scripts are

believed more efficient and compact, and perform types of measurements of particular

interest herein, whereas their scripts measure other data not required here. We use their

compensation for SPARC “annulled” instructions in our method.

The final SPARC assembler code contains all measurements code inline with the

original opcodes, and a final call to the output routine is also included. This routine is

written in C-language code (MSCOPE.c), and is compiled separately, and linked after the

assembly of the SPARC code. It computes and outputs the statistics in the desired format.

Other files developed included an AWK script to measure the static opcode

distributions of SPARC assembler (STATIC_COUNT), and various scripts to take given

dynamic and static output files and merge the statistics. These latter scripts were written

on a personal computer, in a script not suitable for linear ASCII output, and are not

included here.

Appendix H µ-SCOPE METHODS 259

H . 3 . Ob s e r v a t i o n s

There were several observations made in the process of the development of

µ−Scope. First, the entire technique required approximately two weeks of programming,

and the resulting measurements increased static code sizes and execution times each by

7-10x. The largest file was the GNU C compiler, which took approximately 10 hours of

SPARC CPU time on our workstations, which was reduced to 2.5 hours by distribution of

the process across 5 CPUs (parallelization was not evenly distributed due to quantization

of the compilation phases). The original C compiler object code was 1 Megabyte in size,

whereas the self-measuring object code was 8 Megabytes.

Static opcode distributions were compared to dynamic opcode distributions, and

were nearly equivalent. We attribute this equivalence to size of the selected benchmarks,

such that initialization code did not unduly skew the static distributions in comparison,

and to the uniformity of the dynamic executions in traversing a uniform distribution of

component blocks of static opcodes.

Indirect opcodes occurred less than 0.3% in the dynamic opcode measurements, and

not at all in some of the benchmarks. Inspection of the SPARC assembler code indicated

that the GNU C compiler (an unmodified version of which is the usual compiler on our

systems) generated indirect opcodes only where C source code required a subroutine to

return a C-language data structure rather than a conventional predefined C-language data

type. Indirect calls were used there; the SPARC has no indirect branches, and indirect

jumps were not found in any benchmark.

The UNIMP SPARC opcode, representing unimplemented instructions, was also

generated by the compiler in response to the same condition. The UNIMP instruction was

inserted to force a software interrupt when the destination of the indirect instruction

failed to modify the executable code; this device permitted detection of the use of a non-

standard C-language feature in environments that may not have supported it. A sufficient

supporting environment would overwrite the UNIMP instruction, thus preventing the

interrupt, whereas a deficient environment would result in a software failure.

Finally, the use of “annulled” instructions complicated the design of µ−Scope

substantially. These architectural methods, along with internal pipelining, inhibit

measurements of this kind. Future architectures that include hardware for direct

Appendix H µ-SCOPE METHODS 260

measurement of opcode streams would be useful, and have been proposed, but

unfortunately have not affected consumer-level CPU designs.

H . 4 . A W K sc r i p t s an d C - l a n g u a g e c o d e li s t i n g s

The following are the AWK scripts and C-language code listings. They are

available from the author for research use.

H.4.1. MSCOPE.h - C-language ‘include’ file
/* Joe Touch 5/11/91 - added for tracing */

#include <stdio.h>

extern long JTbranch;
extern long JTjump;
extern long JTret;
extern long JTcall;
extern long JTjumpI;
extern long JTcallI;
extern long JTreccall;
extern long JTtotal;
extern long JToldall;
extern long JToldbcr;
extern long JToldb;
extern long JTlinearall[1024];
extern long JTlinearbcr[1024];
extern long JTlinearb[1024];
extern long JTcalldepth;
extern long JTcallall[256];
extern long JTretall[256];

/* Joe Touch -end */

H.4.2. INSERT_SYMBOLS - AWK, inserts signals in SPARC
assembler
branches (always direct)

/^ b((n?(e|z))|((g|l)e?u?)|((c|v)(c|s))|(n|pos)|(neg)),a / {
branch = 1;
annul = 1;
}

/^ b((n?(e|z))|((g|l)e?u?)|((c|v)(c|s))|(n|pos)|(neg)) / {
branch = 1;
}

Appendix H µ-SCOPE METHODS 261

/^ fb((u?(g|l)e?)|(n?(e|z))|(ue?)|(n|o|lg)),a / {
branch = 1;
annul = 1;
}

/^ fb((u?(g|l)e?)|(n?(e|z))|(ue?)|(n|o|lg)) / {
branch = 1;
}

/^ cb((0?1?2?3?)|(n)),a / {
branch = 1;
annul = 1;
}

/^ cb((0?1?2?3?)|(n)) / {
branch = 1;
}

jumps

/^ ((jmp)|((f|c)?)b(a?)),a / {
jump = 1;
ba_annul = 1;
}

/^ ((jmp)|((f|c)?)b(a?)) / {
jump = 1;
}

calls

/^ (call|jumpl) / {
call = 1;
}

#/\#PROLOGUE\# 0/ {
local_call = 1;
}

returns
/^ ret((l|t)?)/ {

ret = 1;
}

/^ call \.stret4/ {
call = 0; # cancel call
ret = 1; # treat as a return
}

/\.proc/ {
new_proc = 1;

insert local call code after the next label
}

(new_proc == 1) && /.+\:/ {
new_proc = 0;
print $0;
printf "JT_OP inc _JTreccall\n";
printf "JT_OP inc _JTcalldepth\n";
printf "JT_INDEX _JTcalldepth ZERO _JTcallall 0xFF\n";
next;
}

Appendix H µ-SCOPE METHODS 262

check for indirect calls and jumps

((jump == 1) || (call == 1)) {
if ($0 ~ /\%[gGlLiIoO]?[0-9]+.*/)

indirect = 1;
}

use the following flags instead of repeating elaborate conditionals

(branch == 1) || (call == 1) || (ret == 1) || (jump == 1) {
delaynext = 1;
}

(branch == 1) || (call == 1) || (ret == 1) || (jump == 1) {
resetALL = 1;
}

(branch == 1) || (call == 1) || (ret == 1) || (indirect == 1) {
resetBCR = 1;
}

(branch == 1) || (indirect == 1)) {
resetB = 1;
}

modes - branch, call, jump, ret, annul, delaynext, delayed, etc.

early abort

/ unimp / {
print $0;
next;
}

($0 !~ /^ ?!/) && ($0 !~ /:/) &&
($0 !~ /^(|())*\./) && ($0 !~ /\=/) {

if (delayed == 1) {
print $0;
if (annul == 1)

printf "JT_OP dec _JTtotal\n";
if (ba_annul == 1)

printf "JT_OP inc _JTtotal\n";
ba_annul = 0;
annul = 0;
}

if (branch == 1) {
printf "JT_OP inc _JTbranch\n";
}

if (jump == 1) {
if (indirect == 1) {

printf "JT_OP inc _JTjumpI\n";
}

printf "JT_OP inc _JTjump\n";
}

Appendix H µ-SCOPE METHODS 263

if (call == 1) {
if (indirect == 1) {

printf "JT_OP inc _JTcallI\n";
}

printf "JT_OP inc _JTcall\n";
}

if (local_call == 1) {
printf "JT_OP inc _JTreccall\n";
printf "JT_OP inc _JTcalldepth\n";
printf "JT_INDEX _JTcalldepth ZERO _JTcallall 0xFF\n";
}

if (ret == 1) {
printf "JT_OP inc _JTret\n";
printf "JT_OP dec _JTcalldepth\n";
printf "JT_INDEX _JTcalldepth ZERO _JTretall 0xFF\n";
}

if (resetALL == 1) {
printf "JT_INDEX _JTtotal _JToldall _JTlinearall 0x3FF\n";
resetALL = 0;
}

if (resetBCR == 1) {
printf "JT_INDEX _JTtotal _JToldbcr _JTlinearbcr 0x3FF\n";
resetBCR = 0;
}

if (resetB == 1) {
printf "JT_INDEX _JTtotal _JToldb _JTlinearb 0x3FF\n";
resetB = 0;
}

if (delayed != 1) {
if ((delaynext == 1) && (ba_annul == 0))

printf "JT_OP add2 _JTtotal\n"
else

printf "JT_OP inc _JTtotal\n";
print $0;
}

delayed = delaynext;
delaynext = 0;
branch = 0;
call = 0;
jump = 0;
ret = 0;
local_call = 0;
indirect = 0;
next
}

take care of comments, assembler directives...
{
print $0
}

Appendix H µ-SCOPE METHODS 264

H.4.3. INSERT_OPCODES - AWK, signals become SPARC assembler
/JT_OP/ {
JT_OP $2=(inc|dec|add2) $3=counter

printf "\tsethi\t%%hi(%s),%%g7\n",$3;
printf "\tld\t[%%g7+%%lo(%s)],%%g6\n",$3;
if ($2 ~ /inc/)

printf "\tinc\t%%g6\n"
else if ($2 ~ /dec/)

printf "\tdec\t%%g6\n"
else if ($2 ~ /add2/)

printf "\tadd\t%%g6,0x2,%%g6\n";
printf "\tst\t%%g6,[%%g7+%%lo(%s)]\n",$3;
next
}

/JT_INDEX/ {
JT_INDEX $2=current $3=old $4=array $5=boundmask
insert code to increment the offset based on the current totals

printf "\tsethi\t%%hi(%s),%%g7\n",$2;
printf "\tld\t[%%g7+%%lo(%s)],%%g6\n",$2;

suntract the previous value, if not ZERO
if (!($3 ~ /ZERO/)) {

printf "\tsethi\t%%hi(%s),%%g7\n",$3;
printf "\tld\t[%%g7+%%lo(%s)],%%g7\n",$3;
printf "\tsub\t%%g6,%%g7,%%g6\n";

}
mask out the bound

printf "\tand\t%%g6,%s,%%g6\n",$5;
multiply by the size of a long int

printf "\tsll\t%%g6,0x2,%%g6\n";
g6 now has the length - add the base

printf "\tset\t%s,%%g7\n",$4;
printf "\tadd\t%%g7,%%g6,%%g7\n";

g7 now has the index location - increment it
printf "\tld\t[%%g7],%%g6\n";
printf "\tinc\t%%g6\n";
printf "\tst\t%%g6,[%%g7]\n";

insert code to reset the old total to the new total
do if prev value not ZERO

if (!($3 ~ /ZERO/)) {
printf "\tsethi\t%%hi(%s),%%g7\n",$2;
printf "\tld\t[%%g7+%%lo(%s)],%%g6\n",$2;
printf "\tsethi\t%%hi(%s),%%g7\n",$3;
printf "\tst\t%%g6,[%%g7+%%lo(%s)]\n",$3;

}
next
}

{
print $0
}

Appendix H µ-SCOPE METHODS 265

H.4.4. MSCOPE.c code - output desired statistics
/* Joe Touch 5/11/91 - added for tracing */

#include <stdio.h>

long JTbranch = 0;
long JTjump = 0;
long JTret = 0;
long JTcall = 0; /* all calls */
long JTreccall = 0; /* calls counted in recursion*/
long JTjumpI;
long JTcallI = 0;
long JTtotal = 0;
long JToldall = 0;
long JToldbcr = 0;
long JToldb = 0;
long JTlinearall[1024];
long JTlinearbcr[1024];
long JTlinearb[1024];
long JTcalldepth = 0;
long JTcallall[256];
long JTretall[256];

/* call with a string naming a file to be dumped into */
extern JT_dump();

/* Joe Touch -end */

/* Joe Touch - 5/11/91 added for tracing */

#include "JT.extern.h"

JT_dump(filename)
char *filename;

{
 FILE *outfile;
 int i;
 double allsum, bcrsum, bsum;
 double psumall = 0, psumbcr = 0, psumb = 0;
 double callpsum = 0, retpsum = 0, retsum, callsum;

 outfile = fopen(filename,"w");

 bsum = JTbranch + JTjumpI + JTcallI;
 bcrsum = JTbranch + JTcall + JTret + JTjumpI;
 allsum = JTbranch + JTcall + JTret + JTjump;

#define JT_PERCENT(x) (((double)(x)) * 100.0 / ((double)(JTtotal)))

 fprintf(outfile,"DYNAMIC CODE MEASUREMENTS\n");
 fprintf(outfile,"Branches = %10d\t%7.3f%%\n",

JTbranch,JT_PERCENT(JTbranch));
 fprintf(outfile,"Jumps = %10d\t%7.3f%%\n",

JTjump,JT_PERCENT(JTjump));
 fprintf(outfile,"I- Jumps = %10d\t%7.3f%%\n",

JTjumpI,JT_PERCENT(JTjumpI));

Appendix H µ-SCOPE METHODS 266

 fprintf(outfile,"Calls = %10d\t%7.3f%%\n",
JTcall,JT_PERCENT(JTcall));

 fprintf(outfile,"I - Calls = %10d\t%7.3f%%\n",
JTcallI,JT_PERCENT(JTcallI));

 fprintf(outfile,"Rec Calls = %10d\t%7.3f%%\n",
JTreccall,JT_PERCENT(JTreccall));

 fprintf(outfile,"Returns = %10d\t%7.3f%%\n",
JTret,JT_PERCENT(JTret));

 fprintf(outfile,"Others = %10d\t%7.3f%%\n",
JTtotal - (JTbranch + JTcall + JTret + JTjump),
JT_PERCENT(JTtotal - (JTbranch + JTcall + JTret + JTjump)));

 fprintf(outfile,"INDIRECT = %10d\t%7.3f%%\n",
JTjumpI + JTcallI,JT_PERCENT(JTjumpI + JTcallI));

 fprintf(outfile,"- ALL = %10d\t%7.3f%%\n",
JTbranch + JTcall + JTret + JTjump,
JT_PERCENT(JTbranch + JTcall + JTret + JTjump));

 fprintf(outfile,"- BCRi = %10d\t%7.3f%%\n",
JTbranch + JTcall + JTret + JTjumpI,
JT_PERCENT(JTbranch + JTcall + JTret + JTjumpI));

 fprintf(outfile,"- Bi = %10d\t%7.3f%%\n",
JTbranch + JTcallI + JTjumpI,
JT_PERCENT(JTbranch + JTcallI + JTjumpI));

 fprintf(outfile,"Total = %10d\n",JTtotal);

 if (allsum == 0.0)
 allsum = 1e8;
 if (bcrsum == 0.0)
 bcrsum = 1e8;
 if (bsum == 0.0)
 bsum = 1e8;
 callsum = JTreccall;
 retsum = JTret;
 for (i=0; i<255; i++) {
 callpsum += JTcallall[i];
 retpsum += JTretall[i];
 }
 fprintf(outfile,"depth partial sum - number greater/eq\n");
 fprintf(outfile,"DEPTH\tCALL\tRET\tcall%%\tret%%\n");
 for (i=0; i<255; i++) {
 fprintf(outfile,"%d\t%d\t%d\t%5.1f\t%5.1f\n",i,

 JTcallall[i], JTretall[i],
 100 * callpsum / callsum,
 100 * retpsum / retsum);

 callpsum -= JTcallall[i];
 retpsum -= JTretall[i];
 }

 fprintf(outfile,"\n\nlen partial sum - number less/eq\n");
 fprintf(outfile,"Len\tALL\tBCR\tB\tALL%%\tBCR%%\tB%%\n");
 for (i=0; i< 1024; i++) {
 psumall += JTlinearall[i];
 psumbcr += JTlinearbcr[i];
 psumb += JTlinearb[i];

Appendix H µ-SCOPE METHODS 267

 fprintf(outfile,"%d\t%d\t%d\t%d\t%5.1f\t%5.1f\t%5.1f\n",i,
 JTlinearall[i],JTlinearbcr[i],JTlinearb[i],
 100.0 * psumall / allsum,
 100.0 * psumbcr / bcrsum,
 100.0 * psumb / bsum);

 }
 fclose(outfile);
}

/* Joe Touch end */

H.4.5. STATIC_COUNT - get static SPARC opcode distributions
branches - ALL SPARC branches are direct
/ b((n?(e|z))|((g|l)e?u?)|((c|v)(c|s))|(n|pos)|(neg))(,a)? / {

branch++
}

/ fb((u?(g|l)e?)|(n?(e|z))|(ue?)|(n|o|lg))(,a)? / {
branch++
}

/ cb((0?1?2?3?)|(n))(,a)? / {
branch++
}

jumps can be direct or indirect

/ ((jmp)|((f|c)?)b(a?))(,a)? / {
jump++;
if ($0 ~ /\%[gGlLiIoO]?[0-9]+.*/) {

i_jump++;
print "I-JUMP: ",$0
}

}

calls can be direct or indirect

/ (call|jumpl) / {
call++;
if ($0 ~ /\%[gGlLiIoO]?[0-9]+.*/) {

i_call++;
print "I-CALL: ",$0
}

}

returns

/ ret((l|t)?)/ {
ret++;
}

($0 !~ /^!/) && ($0 !~ /:$/) && ($0 !~ /^\./) {
total++;
}

Appendix H µ-SCOPE METHODS 268

END {
if (total != 0) {

all = branch + jump + call + ret;
bcr = branch + call + ret + i_jump;
b = branch + i_jump + i_call;
indirect = i_jump + i_call;
other = total - all;
printf "STATIC CODE MEASUREMENTS\n"
printf "Branches =\t%10d\t%7.3f%%\n",\

branch,branch/total*100;
printf "Jumps =\t%10d\t%7.3f%%\n",\

jump,jump/total*100;
printf "I- Jumps =\t%10d\t%7.3f%%\n",\

i_jump,i_jump/total*100;
printf "Calls =\t%10d\t%7.3f%%\n",\

call,call/total*100;
printf "I - Calls =\t%10d\t%7.3f%%\n",\

i_call,i_call/total*100;
printf "Returns =\t%10d\t%7.3f%%\n",\

ret,ret/total*100;
printf "Others =\t%10d\t%7.3f%%\n",\

other,other/total*100;
printf "INDIRECT =\t%10d\t%7.3f%%\n",\

indirect,indirect/total*100;
printf "- ALL =\t%10d\t%7.3f%%\n",\

all,all/total*100;
printf "- BCRi =\t%10d\t%7.3f%%\n",\

bcr,bcr/total*100;
printf "- Bi =\t%10d\t%7.3f%%\n",\

b,b/total*100;
printf "TOTAL =\t%10d\n",total;
}

}

	Preface
	Chapter 1 - Introduction
	Chapter 2 - The Mirage Model
	Chapter 3 - Prior Work
	Chapter 4 - A Mirage of NTP
	Chapter 5 - μ-Net
	Chapter 6 - μ-Net under a μ-Scope
	Chapter 7 - Conclusions
	Chapter 8 - Bibliography
	Appendix A - Mirage & Shannon
	Appendix B - Mirage & Physics
	Appendix C - Upper Bound
	Appendix D - The Liouville Theorem
	Appendix E - Mirage in Set Notation
	Appendix F - Mirage & Petri Nets
	Appendix G - The TreeStack
	Appendix H - μ-Scope Methods

