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Abstract— Drifting overlays enable enterprises a level of control 
over their own DDoS defenses and routing choices, rather than 
leaving them at the mercy of their ISPs. Customers connected via 
a single ISP often lack control over their own network traffic. 
ISPs cannot allow individual customers to override their routing, 
nor can they support per-customer DDoS defense. By coupling 
dynamic partial overlays with traffic ‘safe houses’, enterprises 
can play versions of shell games with tunnel endpoints and 
packets. These drifting overlays allow enterprises control over 
their own vulnerabilities. 
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I.  INTRODUCTION 
Network customers often need some control over how their 

ISPs handle their traffic. When the ISP provides alternative 
peering points, customers may want to manage how their own 
traffic leaves, or where it enters, at a fine granularity to avoid 
DDoS attacks (for incoming traffic) or for policy or 
performance (for outgoing traffic). This is normally 
accomplished by route peering relationships with the customer. 
Unfortunately, this is coarse grained, expensive and not always 
an available option; there are ISPs who do not support peering 
with small customers, and peering support doesn’t always 
propagate beyond the first ISP. Customers connected via a 
single ISP often lack control over their own network traffic. 
ISPs neither allow local control of routing, nor can they support 
per-customer DDoS defenses. ISPs are expected to aggregate 
control and management, and self-managed routing defeats 
this.  

Drifting overlays enable enterprises a level of control over 
their own DDoS defenses and routing choices at fine 
granularity, rather than leaving them at the mercy of their ISPs. 
The basic architecture starts with “safe houses” - sites on other 
ISPs, or distributed within an ISP, which are under the control 
of the customer (Fig. 1). These sites are used solely for traffic 
redirection. The server is advertised as being reachable only 
through the safe houses. The customer's primary site tunnels to 
and from these safe houses, using the LAN IP address, which 
may be private, of the safe house on the local side of 
connections. The safe house provides a type of tethered remote 
network interface, allowing the customer's traffic to appear as if 
it originates at any of these remote sites. As a result, traffic 
terminates its ISP-routed path at the safe house, which results 
in different traffic paths than are possible from the local 
customer's site alone, without needing to relocate customer 

resources. By making safe houses and the tunneling path 
selectable at runtime and dynamically reconfigurable, 
enterprises can play versions of shell games with tunnels and 
packets. A type of shell game, developed under the DynaBone 
project [3] here at ISI, is applied to manage the traffic.  
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Figure 1.  A combination of continously evolving partial IP overlay and hosts 

(called safehouses) are used to direct traffic to and from public servers. 

II. ENTERPRISE ROUTE CONTROL  
Enterprises need flexible route control beyond the filtering, 

rate control and firewalling. The need arises from the desire to 
better utilize the resources and address the asymmetry in 
capability of the attacker and the enterprise. First, the 
reachability must be controlled. Almost all the existing DDoS 
solutions assume the server is globally reachable by default and 
then address the possibility of attacks. Some sites might prefer 
the other way round, i.e., a server is globally unreachable by 
default but reachable through appropriate enabling mechanisms 
such as tunneling. In case of the reachable by default model, no 
amount of filtering is sufficient because the attacker has far 
more capacity to generate traffic than the enterprise can handle 
and can increasingly mimic flash crowds, i.e., non-attack 
traffic, accurately. Security through obscurity is not really an 
option because the attackers’ sophistication is growing with 
time and it takes only one security break for the server address 
to be known. In case of the unreachable by default mode, even 
if the enabling mechanisms, such as the safe houses mentioned 
above, are compromised, they are relatively few in number and 
under local control. Second the cost must be paid where 
necessary. All clients are not equal, and disruption of traffic to 
and from certain destinations is acceptable and not from some 
others. All servers are not equal either. Some need more 



protection than others. Further this changes with time. While 
DDoS mechanisms use some form of marking of packets to 
determine legitimacy of the traffic, i.e., to treat clients 
unequally, in most cases they end up wasting key resources on 
attack traffic because of the cost and quality of the marking 
schemes. Third, the cost must be payable when necessary. The 
solutions must be simple to enough to allow fast deployment 
when necessary and have non-linear impact to make best use of 
each incremental resource. Solutions that require cooperation 
of many hosts/routers in the network, extensive reconfiguration 
and/or large amounts of state are unlikely to be deployable 
quickly. Further, a major problem with some existing solutions 
is that they require the DDoS defense designed for worst-case 
scenario to be the common case resulting in poor utilization of 
resources. Last, the requirement of each enterprise is different. 
The solution must be simple and programmable enough to be 
rapidly customizable to each site. The amount of resources, 
granularity and strength of the protection must all be 
programmable.  

There is no one solution that meets all the needs above that 
is simple, scalable and protects all communication. Drifting 
overlays allows tradeoffs to be made at the enterprise level 
through a simple framework that provides a degree of control 
over visibility, reachability and predictability of the paths taken 
to and from important public servers. The continuous change 
over time could potentially invalidate the information that the 
attacker has regarding the location of the safe houses and/or the 
paths. This has the effect of changing the nature of the attack 
from one of physical resources to one of information. It is 
much easier to design and implement defenses for information 
attacks. Drifting overlays, however, do not completely 
eliminate the problem of DDoS – especially those that are 
capable of engaging network ingress and egress routers. In fact, 
it has the potential of shifting some of the attack targets from 
application servers to routers or other critical nodes such as the 
DNS.   

III. ARCHITECTURE 
The Drifting overlay architecture has three components: (1) 

hosts, called safe houses, (2) a set of IP tunnels connecting the 
safe houses to each other and to the server and (3) a tunnel 
management protocol. The tunnels form a “partial” overlay 
with significant amount of traffic between overlay nodes and 
the rest of the Internet. Further this overlay is continuously 
modified in an open-ended fashion for security, performance 
and other reasons. In effect, they form a flexible overlay that 
can be seen to drift over time.  

The safe houses could operate as either clients that initiate 
communication with the server or forwarders that route traffic 
over the tunnels to and from the server. The public server is 
advertised as being only reachable through a subset of safe 
houses that are in client mode, typically through DNS entries. 
There is no requirement that other safe houses or the server be 
globally reachable. The server must be reachable from the safe 
houses through one or more tunnel hops. Finally the forwarders 
route traffic across tunnels to other safe houses or the server. 
The safe houses may be shared across deployments, i.e., for 
multiple servers from the same or different enterprise, using 
isolation mechanisms such as Clonable stacks [14] and NetFS 

[13]. They may be available as a commercial service similar to 
one provided by Akamai [12]. The safe houses that are 
available for configuration must be discovered at runtime. 
There are many options for the same including a distributed 
registry of hosts [15].  

The safe houses are connected to the server using standard 
IP tunnels in an IP overlay. The overlay has a simple topology, 
typically a tree with a small degree, and link properties are 
deployment-dependent. They include (1) the reachability and 
persistence of the tunnel endpoint addresses, (2) routing, (3) 
Security (IPSec) and (4) QoS (delay, bandwidth). In case of 
client mode, the hosts run applications as well.  

Management software implementing the tunnel 
management protocol is installed on each of the safe houses, 
and the server. The tunnel management protocol is specific to 
each deployment. The protocol selects the safe houses and 
configures tunnels with the appropriate properties. 
Management protocols may vary in complexity, reactivity and 
resultant “strength” of the deployment. Because the number of 
safe houses is expected to the relatively small, the management 
algorithms are not required to scale. The protocol could be a 
client server protocol in which a manager computes all the 
properties [2][4] and informs the client, or a peer-to-peer 
protocol in which the topology is being continuously optimized 
for traffic [19].  A simple management protocol is being built 
as part of the prototype.  

IV. RELATED WORK 
The various DDoS solution can be seen as a combination of 

rate control, resource duplication and a strategy to exploit that 
redundancy. The resource is typically hosts, paths or 
information (e.g., addresses). The strategy in most cases is 
either proactive hard-to-predict resource instance selection or 
reactive fault tolerance mechanisms. Both can be combined 
with marking of legitimate traffic and associated rate limiting 
at nodes.  

Host-based solutions use replication and state transfers to 
reduce the impact of an attack. Examples of simple host-based 
solutions include server roaming [6], roaming honeypots [7] 
and MOVE [9]. They tend to be expensive and may require 
client cooperation. Drifting overlays lets the client decide the 
level of cooperation and could potentially incorporate server 
migration mechanisms.  

Path-based solutions on the other hand, use alternative 
paths to reach the server when one or more paths are attacked. 
Examples of path-based solutions include Secure Overlay 
Services and its derivatives [9][10][11] and Mayday [8]. Again 
these approaches are resource intensive and all extra nodes are 
participating in traffic distribution all the time. The operation of 
these nodes is determined by the DHT algorithm and not in the 
local control.  

Approaches that exploit information such as IP address 
[18], and frequency [17], have existed for a long time and in 
general very effective. However, information-based solutions 
are not complete by themselves. The attacker could make the 
server unreachable by attacking a node on path to the server. 
Drifting overlay uses a combination of path duplication and 



non-uniform reachability of nodes, and randomization. It 
complements existing rate-limiting approaches and is expected 
to work with less number of active nodes. 

The Drifting Overlay is based on previous work on 
Dynabone [3] and TetherNet [1]. Dynabone achieves fault 
tolerance through sophisticated deployment and runtime 
selection of IP overlays for data transmission. Drifting Overlay 
uses a single one-layer simple overlay that is modified over 
time. TetherNet is a special case of a virtual private network 
(VPN) in which a sub-network is reachable from the rest of the 
Internet at a chosen point in the global address space. While 
TetherNet was trying to address the unreachability, Drifting 
overlays exploits that very unreachability to force traffic along 
controlled paths and can be considered to be a network of 
TetherNet links.  

The basic solution structure of Firebreak [16] is similar to 
that of Drifting overlays. Each server is associated with a set of 
firebreak hosts that are similar to safe houses. The former then 
tunnels traffic to the server. Anycast addressing is used to route 
traffic to the firebreak hosts instead of DNS-based solution 
used here. Anycast as a mechanism has deployment issues on 
wide area. While Firebreak focuses on the routing of traffic to 
the firebreak nodes, the emphasis of Drifting overlays is on the 
tunneling component of the solution. The dynamic 
reconfiguration of the tunnels is critical for the non-linear 
scaling of impact as explained earlier. Drifting overlays also 
differs in terms of non-uniform handling of clients.  

Akamai Edge Service [12] provides a similar service and a 
business model for utilizing the safe houses. The links between 
the Akamai edge nodes and the servers is application-specific 
and not controlled by Akamai itself. Further the redirection to 
the safe houses is controlled by Akamai’s DNS-based 
redirection service. Akamai’s service does not eliminate DDoS 
because the server still has to be globally reachable and DDoS 
attack clients may not honor the DNS-based redirection. 
Drifting Overlay are operate at IP-level with fewer number of 
safe houses. Further, the safe houses may the only way to reach 
the server i.e., honoring or not honoring redirection has no 
impact on the server itself.   

Figure 2.  A Manager coordinates the host and tunnel configuration  

V. STATUS 
A prototype system is under development on FreeBSD 

platform. The prototype uses a centralized manager that 

coordinates the construction of tunnels, routing entries and 
DNS updates (Fig 2). A control daemon runs on each of the 
safe houses and receives and executes instructions from the 
manager. The system uses IPIP tunneling, static routing tables 
and address randomization. Tunnel addresses are chosen from a 
large private address space (10.0.0.0/8). The server ensures 
significant delay in time before reuse of tunnel addresses and 
consistent timing relationships between the DNS caching time, 
client end of the configuration and the server end configuration. 
Early experimentation showed that the header matching in the 
kernel is a bottleneck when a large number of tunnels are 
created. Much work remains to be done in terms of topology 
choices, reconfiguration strategies, characterization of the 
impact of an attack and deployment issues.  
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