
Protecting Public Servers from DDoS Attacks Using
Drifting Overlays

Venkata K. Pingali
USC/Information Sciences Institute

Marina del Rey, CA, USA
pingali@isi.edu

Joseph D. Touch
USC/Information Sciences Institute

Marina del Rey, CA, USA
touch@isi.edu

Abstract— Drifting overlays enable enterprises a level of control
over their own DDoS defenses and routing choices, rather than
leaving them at the mercy of their ISPs. Customers connected via
a single ISP often lack control over their own network traffic.
ISPs cannot allow individual customers to override their routing,
nor can they support per-customer DDoS defense. By coupling
dynamic partial overlays with traffic ‘safe houses’, enterprises
can play versions of shell games with tunnel endpoints and
packets. These drifting overlays allow enterprises control over
their own vulnerabilities.

Keywords-Denial of Service, Overlays

I. INTRODUCTION
Network customers often need some control over how their

ISPs handle their traffic. When the ISP provides alternative
peering points, customers may want to manage how their own
traffic leaves, or where it enters, at a fine granularity to avoid
DDoS attacks (for incoming traffic) or for policy or
performance (for outgoing traffic). This is normally
accomplished by route peering relationships with the customer.
Unfortunately, this is coarse grained, expensive and not always
an available option; there are ISPs who do not support peering
with small customers, and peering support doesn’t always
propagate beyond the first ISP. Customers connected via a
single ISP often lack control over their own network traffic.
ISPs neither allow local control of routing, nor can they support
per-customer DDoS defenses. ISPs are expected to aggregate
control and management, and self-managed routing defeats
this.

Drifting overlays enable enterprises a level of control over
their own DDoS defenses and routing choices at fine
granularity, rather than leaving them at the mercy of their ISPs.
The basic architecture starts with “safe houses” - sites on other
ISPs, or distributed within an ISP, which are under the control
of the customer (Fig. 1). These sites are used solely for traffic
redirection. The server is advertised as being reachable only
through the safe houses. The customer's primary site tunnels to
and from these safe houses, using the LAN IP address, which
may be private, of the safe house on the local side of
connections. The safe house provides a type of tethered remote
network interface, allowing the customer's traffic to appear as if
it originates at any of these remote sites. As a result, traffic
terminates its ISP-routed path at the safe house, which results
in different traffic paths than are possible from the local
customer's site alone, without needing to relocate customer

resources. By making safe houses and the tunneling path
selectable at runtime and dynamically reconfigurable,
enterprises can play versions of shell games with tunnels and
packets. A type of shell game, developed under the DynaBone
project [3] here at ISI, is applied to manage the traffic.

Server

Safehouse

Safehouse

Tunnel

Figure 1. A combination of continously evolving partial IP overlay and hosts

(called safehouses) are used to direct traffic to and from public servers.

II. ENTERPRISE ROUTE CONTROL
Enterprises need flexible route control beyond the filtering,

rate control and firewalling. The need arises from the desire to
better utilize the resources and address the asymmetry in
capability of the attacker and the enterprise. First, the
reachability must be controlled. Almost all the existing DDoS
solutions assume the server is globally reachable by default and
then address the possibility of attacks. Some sites might prefer
the other way round, i.e., a server is globally unreachable by
default but reachable through appropriate enabling mechanisms
such as tunneling. In case of the reachable by default model, no
amount of filtering is sufficient because the attacker has far
more capacity to generate traffic than the enterprise can handle
and can increasingly mimic flash crowds, i.e., non-attack
traffic, accurately. Security through obscurity is not really an
option because the attackers’ sophistication is growing with
time and it takes only one security break for the server address
to be known. In case of the unreachable by default mode, even
if the enabling mechanisms, such as the safe houses mentioned
above, are compromised, they are relatively few in number and
under local control. Second the cost must be paid where
necessary. All clients are not equal, and disruption of traffic to
and from certain destinations is acceptable and not from some
others. All servers are not equal either. Some need more

protection than others. Further this changes with time. While
DDoS mechanisms use some form of marking of packets to
determine legitimacy of the traffic, i.e., to treat clients
unequally, in most cases they end up wasting key resources on
attack traffic because of the cost and quality of the marking
schemes. Third, the cost must be payable when necessary. The
solutions must be simple to enough to allow fast deployment
when necessary and have non-linear impact to make best use of
each incremental resource. Solutions that require cooperation
of many hosts/routers in the network, extensive reconfiguration
and/or large amounts of state are unlikely to be deployable
quickly. Further, a major problem with some existing solutions
is that they require the DDoS defense designed for worst-case
scenario to be the common case resulting in poor utilization of
resources. Last, the requirement of each enterprise is different.
The solution must be simple and programmable enough to be
rapidly customizable to each site. The amount of resources,
granularity and strength of the protection must all be
programmable.

There is no one solution that meets all the needs above that
is simple, scalable and protects all communication. Drifting
overlays allows tradeoffs to be made at the enterprise level
through a simple framework that provides a degree of control
over visibility, reachability and predictability of the paths taken
to and from important public servers. The continuous change
over time could potentially invalidate the information that the
attacker has regarding the location of the safe houses and/or the
paths. This has the effect of changing the nature of the attack
from one of physical resources to one of information. It is
much easier to design and implement defenses for information
attacks. Drifting overlays, however, do not completely
eliminate the problem of DDoS – especially those that are
capable of engaging network ingress and egress routers. In fact,
it has the potential of shifting some of the attack targets from
application servers to routers or other critical nodes such as the
DNS.

III. ARCHITECTURE
The Drifting overlay architecture has three components: (1)

hosts, called safe houses, (2) a set of IP tunnels connecting the
safe houses to each other and to the server and (3) a tunnel
management protocol. The tunnels form a “partial” overlay
with significant amount of traffic between overlay nodes and
the rest of the Internet. Further this overlay is continuously
modified in an open-ended fashion for security, performance
and other reasons. In effect, they form a flexible overlay that
can be seen to drift over time.

The safe houses could operate as either clients that initiate
communication with the server or forwarders that route traffic
over the tunnels to and from the server. The public server is
advertised as being only reachable through a subset of safe
houses that are in client mode, typically through DNS entries.
There is no requirement that other safe houses or the server be
globally reachable. The server must be reachable from the safe
houses through one or more tunnel hops. Finally the forwarders
route traffic across tunnels to other safe houses or the server.
The safe houses may be shared across deployments, i.e., for
multiple servers from the same or different enterprise, using
isolation mechanisms such as Clonable stacks [14] and NetFS

[13]. They may be available as a commercial service similar to
one provided by Akamai [12]. The safe houses that are
available for configuration must be discovered at runtime.
There are many options for the same including a distributed
registry of hosts [15].

The safe houses are connected to the server using standard
IP tunnels in an IP overlay. The overlay has a simple topology,
typically a tree with a small degree, and link properties are
deployment-dependent. They include (1) the reachability and
persistence of the tunnel endpoint addresses, (2) routing, (3)
Security (IPSec) and (4) QoS (delay, bandwidth). In case of
client mode, the hosts run applications as well.

Management software implementing the tunnel
management protocol is installed on each of the safe houses,
and the server. The tunnel management protocol is specific to
each deployment. The protocol selects the safe houses and
configures tunnels with the appropriate properties.
Management protocols may vary in complexity, reactivity and
resultant “strength” of the deployment. Because the number of
safe houses is expected to the relatively small, the management
algorithms are not required to scale. The protocol could be a
client server protocol in which a manager computes all the
properties [2][4] and informs the client, or a peer-to-peer
protocol in which the topology is being continuously optimized
for traffic [19]. A simple management protocol is being built
as part of the prototype.

IV. RELATED WORK
The various DDoS solution can be seen as a combination of

rate control, resource duplication and a strategy to exploit that
redundancy. The resource is typically hosts, paths or
information (e.g., addresses). The strategy in most cases is
either proactive hard-to-predict resource instance selection or
reactive fault tolerance mechanisms. Both can be combined
with marking of legitimate traffic and associated rate limiting
at nodes.

Host-based solutions use replication and state transfers to
reduce the impact of an attack. Examples of simple host-based
solutions include server roaming [6], roaming honeypots [7]
and MOVE [9]. They tend to be expensive and may require
client cooperation. Drifting overlays lets the client decide the
level of cooperation and could potentially incorporate server
migration mechanisms.

Path-based solutions on the other hand, use alternative
paths to reach the server when one or more paths are attacked.
Examples of path-based solutions include Secure Overlay
Services and its derivatives [9][10][11] and Mayday [8]. Again
these approaches are resource intensive and all extra nodes are
participating in traffic distribution all the time. The operation of
these nodes is determined by the DHT algorithm and not in the
local control.

Approaches that exploit information such as IP address
[18], and frequency [17], have existed for a long time and in
general very effective. However, information-based solutions
are not complete by themselves. The attacker could make the
server unreachable by attacking a node on path to the server.
Drifting overlay uses a combination of path duplication and

non-uniform reachability of nodes, and randomization. It
complements existing rate-limiting approaches and is expected
to work with less number of active nodes.

The Drifting Overlay is based on previous work on
Dynabone [3] and TetherNet [1]. Dynabone achieves fault
tolerance through sophisticated deployment and runtime
selection of IP overlays for data transmission. Drifting Overlay
uses a single one-layer simple overlay that is modified over
time. TetherNet is a special case of a virtual private network
(VPN) in which a sub-network is reachable from the rest of the
Internet at a chosen point in the global address space. While
TetherNet was trying to address the unreachability, Drifting
overlays exploits that very unreachability to force traffic along
controlled paths and can be considered to be a network of
TetherNet links.

The basic solution structure of Firebreak [16] is similar to
that of Drifting overlays. Each server is associated with a set of
firebreak hosts that are similar to safe houses. The former then
tunnels traffic to the server. Anycast addressing is used to route
traffic to the firebreak hosts instead of DNS-based solution
used here. Anycast as a mechanism has deployment issues on
wide area. While Firebreak focuses on the routing of traffic to
the firebreak nodes, the emphasis of Drifting overlays is on the
tunneling component of the solution. The dynamic
reconfiguration of the tunnels is critical for the non-linear
scaling of impact as explained earlier. Drifting overlays also
differs in terms of non-uniform handling of clients.

Akamai Edge Service [12] provides a similar service and a
business model for utilizing the safe houses. The links between
the Akamai edge nodes and the servers is application-specific
and not controlled by Akamai itself. Further the redirection to
the safe houses is controlled by Akamai’s DNS-based
redirection service. Akamai’s service does not eliminate DDoS
because the server still has to be globally reachable and DDoS
attack clients may not honor the DNS-based redirection.
Drifting Overlay are operate at IP-level with fewer number of
safe houses. Further, the safe houses may the only way to reach
the server i.e., honoring or not honoring redirection has no
impact on the server itself.

Figure 2. A Manager coordinates the host and tunnel configuration

V. STATUS
A prototype system is under development on FreeBSD

platform. The prototype uses a centralized manager that

coordinates the construction of tunnels, routing entries and
DNS updates (Fig 2). A control daemon runs on each of the
safe houses and receives and executes instructions from the
manager. The system uses IPIP tunneling, static routing tables
and address randomization. Tunnel addresses are chosen from a
large private address space (10.0.0.0/8). The server ensures
significant delay in time before reuse of tunnel addresses and
consistent timing relationships between the DNS caching time,
client end of the configuration and the server end configuration.
Early experimentation showed that the header matching in the
kernel is a bottleneck when a large number of tunnels are
created. Much work remains to be done in terms of topology
choices, reconfiguration strategies, characterization of the
impact of an attack and deployment issues.

REFERENCES

[1] TetherNet web pages, http://www.isi.edu/tethernet
[2] X-Bone web pages, http://www.isi.edu/xbone
[3] DynaBone web pages, http://www.isi.edu/dynabone
[4] J. Touch, “Dynamic internet overlay deployment and management using

the X-Bone”, Computer Networks, Jul. 2001, pp. 117-135.
[5] J. Touch, Y. Wang, and L. Eggert, “Virtual Internets,” ISI Technical

Report ISI-TR-2002-558, July 2002.
[6] S. M. Khattab, C. Sangpachatanaruk, R. Melhem, D Mosse, and T.

Znati, “Proactive server roaming for mitigating denial-of-service
attacks,” Proceedings of International Conference on Information
Technology: Research and Education, 2003 (ITRE2003). 11-13 Aug.
2003 Page(s):286 - 290

[7] S. M. Khattab, C. Sangpachatanaruk, D. Moss, R. Melhem, T. Znati.
"Roaming honeypots for mitigating service-level denial-of-service
attacks," ICDCS, vol. 00, no. , pp. 328-337, 2004.

[8] D. G. Andersen, “Mayday: distributed filtering for internet services,” In
Proc. USENIX Symposium on Internet Technologies and Systems
(USITS), March 2003.

[9] A. Stavrou, A. D. Keromytis, J. Nieh, V. Misra, D. Rubenstein “MOVE:
an end-to-end solution to network denial of service,” Proceedings of the
Internet Society (ISOC) Symposium on Network and Distributed
Systems Security (SNDSS). San Diego, CA, February 2005.

[10] A. Keromytis, V. Misra, and D. Rubenstein, “SOS: Secure Overlay
Services,” In Proceedings of ACM SIGCOMM '02, Pittsburgh, PA,
August, 2002.

[11] D. L. Cook, W. G. Morein, A. D. Keromytis, V. Misra, and D.
Rubenstein, "WebSOS: protecting web servers from DDoS attacks," In
Proceedings of the 11th IEEE International Conference on Networks
(ICON), pp. 455 - 460. September/October 2003, Sydney, Australia.

Server

Safehouse

Safehouse

Manager

[12] Akamai Edge Computing http://www.akamai.com
[13] J. Train, J. Touch, L. Eggert, Y. Wang, “NetFS: networking through

the file system,” ISI Technical Report ISI-TR-2003-579.
[14] M. Zec, “Implementing a Clonable Network Stack in the FreeBSD

kernel,” Proc. USENIX 2003/FREENIX, pp. 137-150.
[15] J. Touch, Y. Wang, V. Pingali, L. Eggert, R. Zhou, G. Finn. “A Global

X-Bone for network experiments,” Proc. IEEE Tridentcom 2005, Trento
Italy, Mar. 2005, pp. 194-203.

[16] P. Francis, “Firebreak: an IP perimeter defense architecture,” Webpage
http://www.cs.cornell.edu/People/francis/firebreak/

[17] A. Ephremides, J. E. Wieselthier, D. J. Baker, "A design concept for
reliable mobile radio networks with frequency hopping signaling,"
Proceedings of the IEEE , vol.75, no.1pp. 56- 73, Jan. 1987

[18] J. Jones, “Distributed denial of service attacks: defenses, “ A Special
Publication, Technical Report, Global Integrity, 2000.

[19] N. Fujita, J. Touch, V. Pingali and Y. Wang, “P2P-XBone: a virtual
network support for peer-to-peer systems,” Technical Report ISI-TR-
2005-607, USC/ISI, September 2005.

http://www.akamai.com/

	I. Introduction
	II. Enterprise Route Control
	III. ARCHITECTURE
	IV. RELATED WORK
	V. STATUS
	References

