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Abstract

The LSAM Proxy Cache (LPC) is a multicast distributed web cache that provides automated multicast push of web
pages, based on self-configuring interest groups. The LPC is designed to reduce network and server load, and to provide
increased client performance for associated groups of web pages, called ‘affinity groups’. These affinity groups track
the shifting popularity of web sites, such as for the Superbowl, the Olympics, and the Academy Awards. The LPC’s
multicast hierarchy is self-configuring, such that these popular affinity groups are automatically cached at natural network
aggregation points. This document describes the LPC architecture and the properties of a prototype implementation.
 1998 Published by Elsevier Science B.V. All rights reserved.
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1. Introduction

The LSAM Proxy Cache (LPC) is Web proxy
cache designed to support multicast Web push of
groups of related Web pages. LPC reduces the re-
sponse time for distributed clients that access related
Web pages. It uses multicast to distribute these re-
lated page sets to a group of caches, reducing both
server and network load.

Caching is the most common form of Web per-
formance enhancement; Web caches are typically
deployed at the client and at intermediate shared
proxies. Client caches often achieve limited benefit,
because the users tend to browse a variety of infor-
mation, much of which is retrieved for the first time
by that client. Pages requested for the first time are
never in client caches.
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Shared proxy caches allow pages to be shared
among a group of clients because they aggregate
the responses; even first-time clients can hit in the
cache, if a sibling client has recently requested a
page. Even when only a small set of clients can
fill the cache with new information, the rest of
the clients benefit. However, shared proxy caches
work only where requests can already be aggregated,
e.g., near the border router of a domain. These
border proxies are not sufficient for some types
of traffic, notably which would aggregate across
different borders.

There are several examples of groups of related
Web pages that become popular over time, such
as those of the Superbowl, the Olympic Games,
and the Academy Awards. The content of these
pages often shifts over time, as new events occur in
the Olympics, or during the football playoffs. Even
though these page groups become popular, there is
no one place a proxy can be placed to avoid a

0169-7552/98/$ – see front matter  1998 Published by Elsevier Science B.V. All rights reserved.
PII: S 0 1 6 9 - 7 5 5 2 ( 9 8 ) 0 0 2 5 3 - 0



2246 J. Touch, A.S. Hughes / Computer Networks and ISDN Systems 30 (1998) 2245–2252

hot-spot at the server. We call such groups of popular
pages ‘affinity groups’.

As a specific example, the winter Olympics Web
pages are an affinity group, whose content evolves
as the games proceed. Pages for events, such as ice
skating, ski jumping, and bobsled, become popular
as each event occurs, and as new pages appear
with the results of the competition. In current Web
cache systems, such pages always generate hot-spots,
because they are globally interesting. The pages are
also part of popular groups, but the page popularity is
not known in advance, so client subscriptions would
not exist, defeating page-‘cast’ systems.

In LSAM, a proxy tunes to the server’s Olympic
channel if its downstream clients are sufficiently
interested in the general topic. When a new page
appears, e.g., for downhill skiing, its results are
multicast to the entire set of tuned-in proxies the first
time it is requested by any client. A client near any
of these proxies can retrieve the page from the proxy
cache, benefiting as there were one global shared
proxy for all pages in the affinity group. Tuning
happens automatically, as clients tune to channels
that correlate to recent requests, and servers create
channels that correlate to groups of popular pages.

LSAM is developing a multicast distributed vir-
tual cache, the LPC, to provide the benefits of a
centralized shared proxy cache where no central
proxy could suffice, i.e., for these affinity groups.
It uses multicast to allow a set of proxy caches to
emulate a single, central shared proxy cache.

The LPC pump tracks popular groups of Web
pages, and multicasts them to LPC filter caches
at natural network aggregation points. Clients can
access Web pages locally, even when no nearby
client requests a popular page, because the caching
system as a whole decides what is popular.

LSAM’s technique for addressing these issues is
called ‘active middleware’. Middleware is a set of
services that require distributed, on-going process,
and combine OS and networking capabilities, but
cannot be effectively implemented in either the OS
or the network. LSAM’s middleware is active, pro-
viding self-organization and programmability at the
information access level akin to ‘active networking’
at the packet level.

The remainder of this document describes the
LPC architecture and its properties. The feature of

self-organization is discussed, as are implementation
issues, such as prioritization, channel management,
routing, and mobility. Finally, techniques for detect-
ing and reacting to hot-spots are presented, and prior
and related work compared.

2. The LPC architecture

The LPC is a Web proxy cache deployed at vari-
ous places in a network, with two distinct variations
— a server proxy (called a pump), and the distributed
set of client proxies (called filters). The pump mul-
ticasts Web pages to the filters based on affinity
groups (Fig. 1). The filters together act as a single
virtual proxy cache, where the request of any one
client benefits the others.

The filter caches Web pages for downstream ac-
cess, i.e., nearer the client. It monitors the announce-
ment channel and looks for ‘interesting’ affinity group
channels, i.e., correlated to recent incoming requests.
The filter’s cache is partitioned, allowing it to tune
to multiple channels and accept multicast downloads
without inter-channel cache interference. The cache
tunes-out (de-tunes) a channel whose contents are no
longer correlated to the cache’s ongoing requests.

The pump monitors Web accesses at a server and
creates multicast channels for affinity groups. Re-

Fig. 1. LSAM components (the pump and filter are LPCs).
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Fig. 2. Multicast channels in the LPC.

quests for Web pages in the affinity group are reliably
multicast to the associated multicast channel using
AFDP [1]. The pump creates and destroys multicast
channels as different affinity groups become more or
less popular; these groups are announced on a single,
global multicast channel, similar to the teleconfer-
ence announcement channel in the sd teleconference
management tool [2] (Fig. 2).

In the LPC, individual requests trigger multicast
responses when the pages are members of currently
active affinity groups. A request is checked at in-
termediate proxies, and forwarded through to the
server, as in conventional proxy cache hierarchies
(Fig. 3, left). The response is multicast to filters in
the group by the pump, and unicast from the final
proxy back to the originating client (Fig. 3, right).
Alternately, the initial response may be unicast back
to the originating client, in addition to a multicast
response to the group.

Subsequent requests for these popular pages are
handled locally, from the filters nearer the clients
(Fig. 4). These clients receive pages with in-cache

Fig. 3. First request of affinity group page.

response times, even for pages which they have not
requested before. Because of the initial multicast
push, network resources and server load are reduced
for these popular pages.

This architecture reduces server load in most
cases, and never increases server load. Consider
what happens in a conventional Web cache — the
initial request generates a unicast response. In the
LPC, when this request is for a popular page, the
response is multicast. This multicast can reduce net-
work load. Even though the initial multicast push
uses more network bandwidth than the conventional
unicast response, subsequent requests are handled
locally.

In the LPC, multicast occurs only if pages are
popular and only to places interested in a particular
group. Pumps push only pages in popular affinity
groups, as seen from the server’s perspective. The
multicast tree is limited to filters tuned to popular
groups from the client’s perspective. The LPC is
designed to be efficient, because it pushes only when
there appears to be utility.

3. Self-organization

The LPC system is self-organizing. Filters tune-in
the multicast channels at natural network aggregation
points, reducing unnecessary replication while also
reducing client retrieval costs.

The filters, like conventional proxy caches, are
configured to forward unserviced requests up a hi-
erarchy, towards each subnets’ egress (towards the
‘default route’). Traffic, on its way up this hierarchy,
causes filters on the way to consider tuning-in re-
lated multicast channels. At places where the traffic
is sufficiently dense (thick lines in Fig. 5), filters

Fig. 4. Subsequent requests of page.



2248 J. Touch, A.S. Hughes / Computer Networks and ISDN Systems 30 (1998) 2245–2252

Fig. 5. Upstream filters tune-in if traffic is dense.

tune-in the channel. This causes a proxy, and all
its upstream parents, to tune-in the channel (filled
circles in Fig. 5). Note that in this case, the traf-
fic from clients A and B are separately insufficient;
only where they merge do proxies (and their parents)
tune-in.

All filters that have tuned-in the group receive
multicast pushes from the server. Client requests
within that Web page group will be serviced by the
first proxy they share, and requests will no longer
be forwarded up the tree (dashed upstream path in
Fig. 6). Filters upstream of the first shared proxy
will de-tune the multicast group (striped circles in
Fig. 6). As a result, filters at natural network aggre-
gation points tend to tune-in the multicast tree at the
place where request sharing is sufficient to justify
ensemble caching.

This self-organization limits the number of filters
that tune-in a channel. The tuning happens only at

Fig. 6. Further upstream filters de-tune.

filters that are closest to the clients, but far enough
to share traffic. In general, pushing data closer to
the clients improves response time, at the expense
of making potentially needless copies. Pushing data
further from the clients increases the effect of shar-
ing and reduces the number of excess copies, but
increases the response time. When traffic is light, the
former is fine, because bandwidth overuse is not an
issue. In heavily-loaded systems, the latter may be
preferable. The LPC can be parameterized to bal-
ance these two competing incentives, by adjusting its
threshold for ‘light’ vs. ‘heavy’ traffic.

4. Implementation issues

The LPC is implemented as an extension of the
Apache proxy cache [3]. There are implementation
issues in providing multicast proxy caching in the
Apache context. There are also development issues
that include multicast channel management, intel-
ligent request routing, object scheduling, dynamic
caching algorithms, and support for mobility.

The pump=filter implementation takes advantage
of Apache’s use of the local file system as a cache.
Requests are processed according to conventional
proxy rules; first the local cache is checked, and
if the URL is not found, the request is forwarded
up the proxy hierarchy (steps 1–3 in Fig. 7). The
pump retrieves the file from the server (step 4), and
multicasts it out to the channel (step 5). The LPC
uses AFDP to push the file reliably over the multicast
channel, directly into the file system of the filter [1].
A redirect response is returned to the filter (step 6),
and the file is found in the local file system (steps
7–8).

As a result of these steps, Web pages that are
members of the affinity group are multicast to the
filters. There are additional rules governing when
responses are unicast or multicast (or both, in some
cases), taking into account:
ž whether a page is in an active affinity group,
ž downstream filters tuned to a page’s affinity chan-

nel,
ž whether the page was recently pushed to that

channel.
For example, a request might arrive from a path

with no tuned filters, for a page in an affinity group
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Fig. 7. Walk-through of a multicast push.

that has not been recently sent. In that case, the pump
would generate a unicast response back to the source
of the request, as well as a multicast to the channel.

Multicast channel management is the pump algo-
rithm for creating channels based on affinity groups,
and the filter algorithm for tuning channels related
to its requests. This channel management determines
what channels are active at a pump, and what chan-
nels each filter tunes-in or tunes-out (de-tunes). It
also includes the management of the announcement
channel, where pumps advertise active channels, the
parameters of these channels (TTL), and the coor-
dination of address and port space used with other
multicast mechanisms.

Intelligent Request Routing (IRR) automatically
configures the conventional proxy hierarchy, so that
the unicast hierarchy can be used to self-organize
multicast tuning. Filters are labelled as being at a
client, at an egress, or in the middle; the hierarchy is
configured so unicast requests tend to go from clients
towards egresses. This auto-configuration system can
also be also used for other proxies, such as Squid,
generic Apache, or client browsers.

IRR also handles request cut-through. The LPC
relies on a deep proxy tree to find appropriate lo-
cations to share caches. One result of deep proxy
chains is poor response for missed data, because re-

Fig. 8. Check-and-forward vs. cut-through (black is foreground,
gray is background).

quests do not cut-through the chain; the check-and-
forward style cache checking at each level imposes
unacceptable delays for more than 2–3 levels [4].
The solution is to allow requests to split at the
first proxy, into a foreground request that walks the
chain, and a background request that cuts-through to
the root server (Fig. 8).

Object scheduling supports the variety of request
priorities inherent in the LPC. As in the imple-
mentation example above, it is possible that some
multicast responses are only anticipatory; the unicast
response handles the direct request, and the multicast
is in anticipation of future use by filters tuned to
the channel. In this case, the multicast response can
(and should) be handled with lower priority than the
unicast response. In addition, cut-through support
requires background processing for the cut-through
request; otherwise, the cut-through defeats the traffic
reduction gains that caching provides.

There are two other effects of the LPC’s pervasive
use of caching. First, cache replacement algorithms
need to be tuned to match the different characteristics
of client, shared proxy, and server caching. The LPC
supports dynamic reconfiguration of the replacement
algorithm, sensitive to the proxy’s configuration and
placement. Also, user mobility defeats caching; the
LPC includes mechanisms to move cache state to
follow the client. This allows the user’s home cache
(or its upstream filters) to tune to channels based on
earlier behavior, so the multicast push follows the
user’s movement.
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5. Finding a affinity group

A key aspect to the LPC is its focus on affinity
groups. An affinity group is a set of related Web
pages, where retrievals are cross-correlated. These
groups determine what channels a pump creates
(or deletes), and what channels a filter tunes (or
de-tunes). These groups can be determined by a
number of factors:
ž a-posteri analysis of correlated retrievals,
ž syntactic analysis of embedded HREFs,
ž analysis of semantic groups.

The LPC uses semantic analysis for its demon-
stration implementation, specifically a syntactic ap-
proximation of semantics, based on URL prefixes.
Related Web page groups tend to be clustered in
directories. The LPC currently uses that directory
structure, as visible in the URL, to determine affinity
groups. Other types of groupings are supported via
channel management hooks.

The current algorithm uses successive refinement.
A server assumes all its pages are members of its ‘=’
(root) affinity group. Subdirectories are valid groups
only if they represent significant fractions of their
parent group, e.g., 25%. This permits specific groups
to be formed, such as ‘=lsam=proxy=sources=’, con-
current with less specific groups, such as ‘=rfc=’.
In the current implementation, we assume affinity
groups are subsets of a single server.

The LSAM project is currently developing three
algorithms for syntactic approximation of semantic
affinity groups: on-line algorithms for the pump
and filter, and an off-line algorithm for performance
analysis. The latter, used to analyze regional Squid
caches [5], will help determine the current potential
for performance enhancement by the LPC. It is also
possible that the LPC will enable new styles of Web
access that favors such groups; such log analysis will
help identify such traffic shifts.

6. Prior and related work

There is a wide variety of both research and
commercial development of Web cache systems. The
LPC’s main distinction is its use of multicast push
to reduce the first-hit cost of retrieval throughout the
system.

The LPC is based on source preloading of a
receiver cache, a multicast version of an earlier
unicast scheme [6]. It anticipates requests of indi-
vidual clients by multicasting pages to the channel.
Client-side prefetching, using server-provided hints,
has also been examined in the unicast domain in
the Boston Univerisity Oceans group [7]. Other hints
have also been used to direct unicast push, such as
geographical hints [8].

Other hierarchical cache systems have been de-
veloped, including Harvest [9], and its follow-on
Squid [4]. Harvest uses a directory to locate entries
in a distributed hierarchy. Squid uses multicast to
find cache entries in hierarchical clusters of caches,
sending messages via the ICP protocol.

Many other Web cache systems use multicast to
distributed pages, supporting explicit subscriptions
in NCSA’s Webcast [10], and diffusion-based push
to move pages closer to their locus of interest in
LBNL=UCLA’s Adaptive Web Caching [11]. Unicast
diffusion push was examined in another tack of the
Oceans group [12].

Other large distributed cache systems have been
developed; AT&T’s Crisp [16] uses a central server
to distribute requests to a set of local caches,
and both Georgia Tech’s CANES [13] and UCL’s
Cachemesh [14] route requests on their way to the
cache.

Georgia Tech’s CANES also targets one of the
LPC’s goals, to provide caching at optimal net-
work aggregation points. CANES deploys caches at
routers using Active Networks technology. The LPC
relies on multicast to achieve similar benefits using
only application-layer code. CANES also uses mod-
ulo caching to cache pages at every N th proxy on
the unicast return path; the LPC uses announcements
and affinity group channels to similarly limit caching
to a subset of proxies.

7. Current status

The LPC is implemented as a modified version of
the Apache proxy cache [3], with additional control
scripts and daemons written in Perl. It can be in-
stantiated as a pump or as a filter via command-line
arguments, and currently runs on FreeBSD 2.2.x.

The current implementation of the LPC, v0.8,
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supports multicast push for a number of channels,
based on manual configuration or scripted program
control. In this release, the automated control is
limited to suggest manual actions (via highlighting
on the control page). The final release, available at
the end of August 1998, contains automated chan-
nel control for both pumps and filters. It supports
dynamic auto-configuration of the unicast proxy hi-
erarchy, which can be exported to other proxy caches
and clients. Six different cache replacement algo-
rithms have been implemented, selected in the con-
figuration file at proxy boot time. Several different
object scheduling mechanisms have also been im-
plemented, and compared in network-limited and
processor-limited environments. This release, v0.8,
is currently available on the LSAM Web pages [15].

The current system has been demonstrated in a
lab, using artificial bandwidth limiters and delay
inducers. A demonstration is also available, imple-
mented in the ns network simulation tool. In both
cases, client access is equivalent to a local cache hit,
even for pages not yet accessed.

Future work on the LPC focuses on standardizing
and generalizing the API and channel announce-
ment protocols, unifying them with other efforts in
the IETF and the multicast Web cache community.
Other work examines the implications of partitioned
caching, notably on the use of different cache re-
placement algorithms in each partition and the in-
teractions among the partitions. Finally, many of the
components required to support the LPC, such as in-
telligent request routing and object scheduling, have
more general implications on Web caching hierar-
chies and differentiated application services, which
are also being examined.

8. Summary

The LSAM proxy cache (LPC) provides a dis-
tributed cache system that uses multicast for auto-
mated push of popular Web pages. LPC uses proxy
caches that are deployed as a server pump and a
distributed filter hierarchy. These components auto-
matically track the popularity of Web page groups,
and also automatically manage server push and client
tuning. The system caches pages at natural network
aggregation points, providing the benefits of a sin-

gle, central shared proxy cache, even where no such
central proxy could exist. The system has an initial
prototype implementation, and it is evolving to miti-
gate the effects of a deep proxy hierarchy, needed for
the multicast self-organization. LPC reduces overall
server and network load, and increases access perfor-
mance, even for the first access of a page by a client.
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