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Abstract1 
 
IP security is designed to protect hosts from attack, 

but can itself provide a way to overwhelm the 
resources of a host. One such denial of service (DoS) 
attack involves sending incorrectly signed packets to a 
host, which then consumes substantial CPU resources 
to reject unwanted traffic. This paper quantifies the 
impact of such attacks and explores preliminary ways 
to reduce that impact. Measurements of the impact of 
DoS attack traffic on PC hosts indicate that a single 
attacker can reduce throughput by 50%. This impact 
can be reduced to 20% by layering low-effort nonce 
validation on IPsec’s CPU-intensive cryptographic 
algorithms, but the choice of algorithm does not have 
as large an effect. This work suggests that effective 
DoS resistance requires a hierarchical defense using 
both nonces and strong cryptography at the endpoints, 
even within a single layer and single packet.  

1. Introduction 

IPsec promises network layer security by applying a 
variety of encryption and authentication algorithms to 
IP packets [11]. Although this protects hosts from 
accepting attack traffic, it imposes a substantial 
computational burden as well. Common cryptographic 
algorithms reduce the network throughput of typical 
PCs by a factor of 5 or more. As a result, use of IPsec 
can paradoxically enable DoS attacks.  

This paper explores the impact of false IPsec traffic 
as a DoS attack on hosts, and ways to mitigate that 
impact. Its primary contribution is to quantify this 
impact through direct measurements. Tests of a variety 
of IPsec algorithms indicate that the CPU bottleneck 
limits receive throughput and that known nonce-based 
validation provides a useful way to efficiently reject 
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some attack traffic. These results also indicate that this 
technique becomes more effective as the algorithm 
becomes more computationally intensive, and suggest 
that such hierarchical intra-packet defenses are needed 
to avoid IPsec being itself an opportunity for attack. 

2. Background  

Performance has been a significant issue for 
Internet security since its inception and affects the 
IPsec suite both at the IKE (session establishment) and 
IPsec (packets in a session) level [10][11]. This paper 
focuses on the IPsec level, i.e., protection for 
established sessions. Previous performance analysis of 
HMAC-MD5 (Hashed-MAC, where MAC means 
keyed Message Authentication Code), HMAC-SHA1, 
and 3DES showed that the cost of the cryptographic 
algorithms dwarfs other IPsec overheads [6] [7] [15]. 

The typical response to “crypto algorithms are 
slow” is hardware support. Although DES sped up by 
20x when converted from software to hardware, 
analysis of MD5 suggested that such speedup was not 
generally expected, especially for authentication 
(which cannot be precomputed as encryption can) [17].  

IPsec performance is mostly seen as an economic 
issue – that is, cost determines whether a device can 
support high bandwidth with IPsec enabled. Most 
hardware vendors already consider load-based DoS 
attacks a risk for their devices, but often focus only on 
key overload (too many keys to cache) issues. This is 
sufficient because their devices are dedicated and can 
keep pace with line-rate, so there is no way to overload 
their CPU resources or thus impact other programs. 

Hardware cryptographic support may not be 
feasible for many end hosts, which predominately are 
desktops and laptops.  Such support is expensive 
beyond 100 Mbps and imposes a substantial power 
burden on laptops. Software support for IPsec is 
expected to be the norm, but subjects the host CPU to 
cryptographic processing load from external data 
sources, resulting in a serious DoS attack opportunity 
on the end hosts. 



This paper quantifies the impact of this risk and 
explores the use of multi-layer protection within a 
single packet. Layered security is not new; many 
systems include layers of incrementally stronger and 
more computationally intensive checks. Photuris is a 
common example, where nonce exchanges precede 
more intensive exchanges, to reduce the impact of DoS 
attacks [9]. Layering security at different layers in the 
protocol stack is also common, e.g., using link WEP, 
network IPsec, and transport TLS protection. The need 
for different layers of security within a single packet 
has not been as deeply explored, however, and this 
work quantifies its utility. 

3. Performance Measurements 

We measured the performance of IPsec on three 
dual-Xeon 2.4GHz FreeBSD/SMP 6.0 PCs connected 
via Intel PCI-X gigabit Ethernet to a copper Netgear 
switch. In the baseline case, traffic was sent from one 
host to a second host (with the third host idle). In 
cross-traffic experiments, the third host generated DoS 
attack traffic at maximum rates to show the largest 
impact achievable. In all cases, measurements 
compared HMAC-MD5 and HMAC-SHA1 
authentication and DES and 3DES encryption in both 
IPsec transport and IPsec tunnel modes; only transport 
mode is shown except for Figure 6 as noted. Netperf 
2.4.1 was used for measurement. We compared UDP 
performance, where message size corresponds to IPsec 
message size and which taxes IPsec the most.  

3.1. Baseline IPsec performance 

Figure 1 shows the performance of IP and IPsec 
transport mode with HMAC authentication using MD5 
and SHA1, and IPsec with encryption using DES and 
3DES2. This graph shows (as typical) that IPsec 
degrades throughput vs. non-IPsec by 50-80%. 
Throughput degrades slightly for packets larger than 
the link MTU due to fragmentation; the impact of this 
effect is smaller for IPsec because IPsec processing 
dominates IP fragmentation processing.  

Converting this graph from Mb/s to packets/sec 
confirms these conclusions. Figure 3 shows that non-
IPsec packet rates are constant, halving when packets 
are fragmented, and that IPsec packet rates depend on 
packet size (as does linearity in the log plot of Figure 
2), and so are CPU bound (they cannot be I/O bound 
because IP alone has higher throughput in all cases).  
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Figure 1 Baseline IP and IPsec throughput. 
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Figure 2 Baseline using a log BW scale. 
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Figure 3 Baseline IP and IPsec packets/sec. 

 

These graphs confirm other known results, i.e., that 
HMAC-MD5 is faster than HMAC-SHA1, and that 
DES is faster than 3DES [14]. They also confirm that 
authentication is faster than (online) encryption. These 
graphs also demonstrate the substantial CPU resources 
consumed by a software implementation of IPsec, and 
thus the opportunity they provide to DoS attackers. 

3.2. Impact of Non-Attack Cross-Traffic 

Figure 4 compares the performance of an HMAC-
MD5 IPsec authenticated transport mode stream 
between two hosts when there is no competing traffic 



(solo, top line) and when a non-attacking competing 
stream is present (md5 ok, bottom line). Under the 
cross traffic case, the receiver must validate twice as 
many packets using the appropriate cryptographic 
algorithm. This graph is shown with a linear 
bandwidth to make it easier to compare relative 
performance (other graph lines are discussed in the 
next section). 

The throughput of  each stream drops to half its solo 
value, not because the network is overloaded (from 
Figure 2, two HMAC-MD5 streams at the maximum 
host source capacity sum to less than 20% of the GigE 
link capacity, and less than 65% of the IP receive 
capacity) but because of the CPU capacity. 
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Figure 4 Impact of cross traffic on an HMAC-

MD5 authenticated stream. 
 

Figure 5 shows a similar result for a DES encrypted 
IPsec transport mode stream. Similar results were 
obtained for HMAC-SHA1 and 3DES. 
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Figure 5 Impact of cross traffic on a DES 

encrypted stream. 

3.3. Impact of Various Attack Cross-Traffic 

Section 3.2 considered valid cross traffic; this 
section considers other traffic. An attacker may 
generate one of three kinds of IPsec attacks: “Alg-

SPI”, “Alg-key”, and “Alg OK”, where ‘Alg’ refers to 
the specific algorithm, e.g., MD5 or DES, and ‘SPI’ 
and ‘key’ indicate what fails (incorrect SPI, incorrect 
key), or that (‘OK’), nothing failed. These all assume 
‘spoofed’ packets that correctly falsify addresses, as 
for services between well-known endpoints, e.g., 
routing protocols or bulk exchange paths between 
proxies. 

Alg-SPI: IPsec security associations and their 
packets are identified by a Security Parameters Index 
(SPI), an opaque ID indicating the algorithm used, 
active key, and other stream parameters [11]. The SPI 
is basically a nonce in the IP packet, visible to on-path 
attackers but hard for off-path attackers to guess 
because the SPI space is large (32 bits) and the number 
of active associations is typically small. Alg-SPI 
indicates that the attacker uses an invalid SPI and 
represents the least work an attacker can inflict. 

Alg-key: Even when an attacker knows the SPI, e.g., 
by on-path snooping, the cryptographic key is not 
typically known. Alg-key refers to the attacker 
knowing the SPI but not knowing the key. Keys are 
typically 128 bits or larger. 

Alg OK: This case considers two streams coming to 
the receiver, or – equivalently –the attacker correctly 
guessing the SPI and key of a current session. This 
represents the most work an attacker inflicts. 

All subsequent experiments here show attackers 
using the same algorithm as the valid traffic. 
Algorithm choice can affect differential (attack vs. 
legitimate) sender rates, to considered in future work. 
At the receiver, algorithm choice is irrelevant for Alg-
SPI attacks because the packet is rejected before such 
processing. For Alg-key and Alg-OK attacks, the 
algorithm is fixed by the SPI at the receiver, i.e., we 
consider an attack within an existing SPI. Attacks on 
different SPIs should already be controlled by per-SPI 
resource containment. 

Figure 4 compares the impact of these various kinds 
of attack on an HMAC-MD5 session. Note that 
rejecting traffic due to a bad SPI has substantially less 
impact on the original stream (20%) than trying to 
validate incorrectly keyed packets (40%) or accepting 
correctly keyed packets (50%). Checking the SPI is 
required in all cases, and indexing the SPI in the SPD 
table is much faster than subsequent HMAC 
validation. In Alg OK, the packet is further handed to 
the socket. 

The differential impact is more pronounced for more 
computationally intensive algorithms such as DES 
(Figure 5). Here the SPI lookup cost is unchanged but 
the cryptographic verification cost increases, so the 
relative impact of the two changes.  



IPsec transport mode and IPsec tunnel mode were 
also compared to determine whether mode affects 
impact. Figure 6 shows the result for DES, in which 
mode effects are overshadowed by attack effects. 
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Figure 6 IPsec DES transport vs. tunnel mode. 

4. Observations 

These experiments confirm that IPsec can introduce 
an opportunity for CPU overload DoS attack. As 
shown in Figure 4 and Figure 5, when end-hosts 
perform software IPsec CPU can be overloaded when 
the attacker knows only the SPI. The DoS opportunity 
arises because creating attack packets – given a known 
SPI – is much less effort than the effort of creating 
valid IPsec packets (e.g., arbitrary data suffices). 

Valid traffic throughput under cross traffic with the 
wrong SPI (Alg-SPI) indicates that extra layers of 
filtering help even within a single packet by reducing 
impact of DoS attacks as early as possible. This may 
include checking not only the SPI, but also second 
nonce that could vary on different timescales than the 
SPI, which varies only on rekeying. That second nonce 
could be shorter (for faster checks) or longer (to 
support proxies, whose large numbers of security 
associations might have a densely populated SPIs). 

Checking nonces is a comparatively low-effort test, 
especially vs. high-effort crypto algorithms. Static 
nonces protect only against off-path attacks and only if 
selected randomly because they are sent in the clear 
(unencrypted), and fail in off-path attacks when 
successfully guessed. The latter is rare because of the 
large nonce space (32 bits for the SPI, which acts like a 
nonce). Protection from on-path attackers and those 
able to guess SPIs might require ‘spinning’ nonces, 
using a pseudorandom sequences, hopping per-packet 
or (more efficiently) every few packets, e.g., as 
suggested in FPAC, or even simpler [5]. An on-path 
attacker (or off-path successful guesser) would then 
have only a very short window in which it could emit 
attack packets with a valid nonce. 

Different kinds of nonce ‘spinning’ algorithms 
would have different properties – i.e., higher degrees 
of randomness or lower cost to compute. These 
algorithms might be layered to allow more than one 
nonce in each packet. This would allow further 
hierarchical application of effort to defense, and thus 
potentially further protect the receiver’s CPU resource.  

It might also be useful to consider nonce-based 
protections when used alone, not just in combination 
with current IPsec algorithms. The protection afforded 
would not be as strong, e.g., as HMAC-MD5, but the 
performance penalty could be reduced. This could 
address the need for ‘good enough’ security. 

5. Comparison of MAC Algorithms 

SPI checks are much faster than current IPsec crypto 
algorithms, which is why it is useful to apply them as 
filters before investing in IPsec validation. Other, 
faster crypto algorithms could have similar utility. This 
section examines increases in cryptographic software 
performance by using optimized code and capitalizing 
on new features of common PC CPU architectures. 

Crypto performance is important not only for mobile 
and embedded devices but also for end hosts lacking 
hardware support. One of the criteria for evaluating 
AES proposals was that the algorithm should perform 
well both in hardware (smart cards) and software 
(CPUs) [16]. Many alternative algorithms have been 
proposed to the popular HMAC-MD5 and HMAC-
SHA1 ([2][3][8][20]). These newer MACs aim both to 
provide “proved” security and higher performance3. 

Original HMACs were designed as a more efficient 
alternative to block cipher-based CBC-MACs, because 
hashes (e.g., MD5, SHA-1) perform much faster in 
software than block ciphers (DES, 3DES) [1][12]. 
UMAC and other newer algorithms use a universal 
hash function to “compress” the data before applying a 
block cipher (SHA1 initially, now AES) to secure the 
authentication with cryptographic strength [8][13]. 
This approach claims the benefit of reducing MAC 
security to that of the final block cipher. 

HMAC uses a cryptographic hash function to 
compress the original message and UMAC ‘folds’ the 
data using a much faster ‘universal hash’ and then 
performs an AES hash on the result. UMAC’s 
particular universal hash is designed to match SIMD-
like support available on many general-purpose CPUs 
(notably the x86 MMX and SSE extensions).  
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if not practice, but both when HMAC’d are still considered useful. 



5.1. Measurements 

We first compare the software performance of three 
MAC algorithms: HMAC-MD5, HMAC-SHA1, and 
UMAC; we also measure the effect of optimization 
using x86/SSE2 assembly. The HMAC-MD5 C 
language implementation (hmac-md5c) is an optimized 
variant of RFC1321 [17][18]. Code for HMAC-MD5 
and HMAC-SHA1 in i586 assembler is from OpenSSL 
v0.9.7d (hmac-md5a and hmac-sha1a). The UMAC 
implementation can be configured to compile either 
from C language source (umac-c) or using inline 
x86/SSE2 assembler (umac-sse2) [19]. Both HMAC-
MD5 and UMAC here use 128-bit keys, whereas the 
HMAC-SHA1 uses a 160 bit key. 

The tests were performed on both Pentium-4 (p4) 
and Athlon64 (k8) micro-architectures, both in 32-bit 
mode, and tested over message sizes ranging from 44 
bytes to just over 2k bytes. Figure 7 shows the number 
of CPU cycles per byte of message authenticated for 
the various algorithms. HMAC-SHA1 in assembler 
(hmac-sha1a) has a very high number of cycles per 
byte, over 120 for small messages; it is clearly very 
inefficient compared to other algorithms, even when 
coded explicitly in x86 assembler. This may be a result 
of 32-bit modes on the p4 architectures.  

0

10

20

30

40

50

64 128 256 512 1024 2048

message size (byte)

# 
cy

cl
es

 p
er

 b
yt

e 
   

 .

hmac-sha1a
hmac-md5c
hmac-md5a
umac-c
umac-sse2

 
Figure 7 Clocks per byte for p4 hashes. 
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Figure 8 Clocks per byte for k8 hashes. 

Note, however, that hmac-sha1a on the k8, even in 
32-bit mode, performs much better, beating out hmac-
md5c (Figure 8). Comparing Figure 7 and Figure 8, the 
relative performance of some algorithms change, but 
the overall effect is similar. The speedup relative to 
hmac-md5c is shown in Figure 9 for p4 and Figure 10 
for k8; those graphs show that the overall speedup is at 
most a factor of 4x for umac-sse2, but that for other 
algorithms the speedup is limited to a factor of 2. 
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Figure 9 Speedup relative to MD5c on a p4. 
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Figure 10 Speedup relative to MD5c on a k8. 

5.2. Observations 

These graphs indicate that all algorithms perform 
considerably worse for short message lengths due to 
algorithm initialization overhead and minimum crypto 
blocksizes, but that performance stabilizes for 
messages 512 bytes or larger; this means that small 
packets could incur higher performance penalty, i.e., 
that an attacker would be more effective if he sent a 
large number of short messages than a few long ones.  

The graphs indicate that the increased efficiency of 
the UMAC algorithm is obtained for large messages 
(4x speedup), but that the impact is much smaller for 
shorter messages (2.5x speedup). For MD5, the benefit 
is converse, where assembler is faster than C code for 
smaller messages but not much for larger ones. 
Overall, the processor’s micro-architecture can have 
great impact on performance. Notice how k8 runs 



hmac-sha1a and umac-c much faster than p4 – this is 
probably due to both SHA-1 and UMAC having high 
degree of ILP (Instruction-Level Parallelism) [4]. 

Using more efficient cryptographic algorithms and 
better optimized programs can improve IPsec 
performance by up to 4 times, it is not nearly enough 
to defend from such DoS attacks, since the attacker can 
always generate attacking traffic more “efficiently” by 
putting random bytes into the payload. Because the 
majority of IPsec processing power is spent on 
cryptographic operations, unless the speed of the 
authentication and encryption codes can match that of 
just IPsec tunnel processing and SPI filtering, the 
attackers will still have a big performance advantage 
than the legitimate users. 

6. Conclusions 

This paper examined the impact of DoS attacks on 
IPsec capacity, and demonstrated that a single attacker 
can degrade throughput as much as 50%. Off-path 
attackers have much less impact (20%) than on-path 
attackers because the nonce-like check of the IPsec SPI 
is much lower effort than validating a security 
signature, and the SPI is hard to guess when off-path. 
This suggests that a layered approach to individual IP 
packet security, using fast nonce checks, is useful in 
reducing the impact of attacks. It also suggests that 
nonces need to be very simple, and may need to be 
changed infrequently to be useful. 

The paper also examined the impact of varying the 
security algorithm, both on the attack viability, and on 
overall security performance. The results suggest that 
more CPU-intensive algorithms benefit more from 
nonce-based layered security within a single packet, 
and that even modern high-performance algorithms 
may still need such measures. 

6.1. Future Work 

This work focused on the impact on existing IPsec 
associations; we plan to examine similar impact on 
IKE to determine if similar nonce systems reduce DoS 
impact. We plan to explore UMAC and AES in our 
IPsec measurements, SPI spinning using 
pseudorandom sequences, and the use of layered 
nonces for additional protection, including simpler 
variants of FPAC. Finally, we plan to measure the use 
of layered nonces without underlying strong 
cryptographic protection to determine the performance 
upper bounds. 
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