
21 

Protocol Parallelization 

Joseph D. Touch* 

USC I Information Sciences Institute, 4676 Admiralty Way, Marina del Rey, CA, 
90292-6695, U.S.A., (touch@isi.edu) 

Abstract 
There is increasing concern about the capability of existing protocols to keep pace 
with communication rates, as rates approach the gigabit range. This assumes a 
sort of "protocol bottleneck." Many similar bottlenecks are alleviated by the use of 
parallelism, so one hypothesis is to "parallelize" protocols. We examine the pros 
and cons of this hypothesis, and the dimensions to which parallelism might be 
applied. We distinguish the unique communication issues that result. Our 
conclusions indicate that conventional parallelism may not be applicable to 
protocols. New types of parallelism become more significant in this light. These 
include information parallelism (Parallel Communication) and packet-train 
parallelism. 

Keyword Codes: C.2.2, C.2.4, C.5.0 
Keywords: Network Protocols, Distributed Systems, Computer System 
Implementation 

1. INTRODUCTION 

High-speed networks have brought renewed emphasis on protocol performance 
optimization. Some optimizations focus on machine-specific implementation tun
ing [17], or protocol-specific implementation tuning [10]. Others have proposed 
"RISC" protocols, removing cumbersome functions from the protocol itself (XTP 
[4], VMTP [3], etc.). A number of projects have observed that bottlenecks in other 
disciplines are often alleviated by applying parallelism, either spatial or temporal 
(i.e., pipelining). Here we investigate the kinds of protocol parallelism possible, 
summarize the current attempts at parallelization, and make observations about 
their feasibility and limitations. We also observe some unconventional types of 
parallelism, such as information parallelism, which may be viable. We also con
sider whether the parallelization addresses protocol speed or latency. 

First we define protocol parallelization, and what it requires. We present a 
framework in which to compare parallelization methods. Then we consider prior 
work regarding protocol optimizations in general, and with respect to paralleliza
tion in specific. Finally, we make some observations about gaps in the design 
space, and novel protocol methods which suggest types of parallelism not conven-

*. This research was partially sponsored by the Advanced Research Projects Agency through Ft. Huachuca Con
tract No. DABT63-91-C-0001. The views and conclusions contained in this document are those of the authors and 
should not be interpreted as representing the official policies, either expressed or implied, of the Department of the 
Army, the Advanced Research Projects Agency, or the U.S. Government. 

G. Neufield et al. (eds.), Protocols for High Speed Networks IV
© Springer Science+Business Media Dordrecht 1995



350 Part Seven Posters 

tionally considered. We conclude that protocol processing itself may not benefit 
greatly from parallelization, and that parallelizing the control and feedback may 
prove beneficial in increasing channel utilization and reducing latency. 

2. WHAT'S THE PROBLEM? 

Even though the "communications bottleneck" is an observed phenomenon, its 
cause isn't well understood. There is a substantial difference between the band
width of a workstation backplane (typically near 1 Gbps), and the rate at which 
communication can occur to an extemal network (typically near 33 Mbps). The 
difference between these rates is a function of many factors, that include the costs 
of asking for state information, thinking about the question and forming a reply, 
and answering by sending the reply, i.e.,: 

• processing 
(ability to think fast) 

• bandwidth within and between hosts 
(ability to feed the questions to the thinker) 

• sourcing limits 
(ability to have enough questions to think about) 

Thinking is a processing bottleneck, exhibited in the processing speed ofTCPIIP 
and the operating system (OS) interface involved in the transaction. The process
ing bottleneck for TCP has been addressed by parallelism [16], [1] (both discussed 
later), even though its performance has been shown not to be the predominant 
limitation to communication [17], [10]. Other components of the protocol stack 
have also been parallelized, e.g., via pipelining of the IP check-sum with the data 
transfer [5]. Processing in the OS has also been considered, although most of the 
focus has been on data transfer issues we denote as answering bottlenecks. 
Answering is a data transport bottleneck, i.e., bandwidth limitations. This is cur

rently being addressed by parallelizing the intemal data paths of workstations. 
The basic idea is to replace the internal bus with a more general topology. The 
Cambridge Desk Area Network (DAN) [9], and lSI's NetStation [7] are examfles. 

One interesting question assumes nearly instantaneous thinking (protoco pro
cessing) and answering (bandwidth), and asks, "is there anything else?" Presume 
that TCP has infinite window sizes, and can run at 800 Mbps (it can on a CRAY 
[17]). Presume that we have a NetStation, in which each component of a worksta
tion (disk, RAM, display, etc., [7]) can both source and sink at 800 Mbps. What 
then? 

This is the question of asking. Latency is the final bottleneck [19]. Ultimately, 
answers can be given only as fast as questions arrive. If the next question depends 
on the current answer, round trip propagation latency is incurred between asking 
rounds. Assuming thinking and answering are not the bottlenecks implies asking 
is. 

In terms of current protocols, even with nearly infinite bandwidth and process
ing, TCP can "fill the pipe" only so far as the source data (answer) exists. Once an 
entire data stream is sent, nothing more is communicated until the next query 
arrives. It is here that we believe parallelism is best applied, to the parallelization 
of possible next questions and thus answers. We call this Parallel Communication, 
and it is based on parallelization ofthe information stream [19], [21]. 



Protocol parallelization 351 

3. PARALLELIZATION ISSUES 

Parallelization uses replicates to perform the work of a single entity, and 
involves considering replication dimension, mapping function, scale limitations, 
replicate interference, overhead, and expected gain. The type of entity replicated 
is the replication dimension. Common protocol dimensions include per-protocol, 
per-connection, per-packet, per-layer, and per-protocol function. This subsumes 
the difference between spatial and temporal (pipelining) parallelism, because tem
poral parallelism is spatial parallelism with head-to-tail interdependence between 
components, and usually implemented per function. From this point, we therefore 
do not consider pipelining as a distinct case. 

Other dimensions not commonly considered include per-packet train, and per
information stream. Packet trains are sequences of packets that act as a unit in 
the protocol; a common example is a fragmentation group. Information streams 
are altemate packet sequences, such as would occur with breadth-first (BFS) 
source anticipation [21]. BFS source anticipation is parallelizing possible future 
questions and their answers, in order to keep the communications mechanism 
occupied between actual questions. Dimensions not considered are per-host 
address (issue for routers only), and per-application (equivalent to per-protocol). 

The mapping function helps determine whether a replication dimension is feasi
ble. Given a dimension, the map indicates how incoming data is switched to the 
appropriate replicate. Some dimensions are easy to map (per-protocol, per-layer, 
per-connection). Others require almost as much effort to map as would be required 
to emulate the protocol (per-protocol function). 

Scale limitations indicate the bounds on the expected replication growth. If 
choose per layer, we are commonly limited to seven replicates (OSI model), or 
thereabouts. Per protocol function is often limited to five (TCP, TP-4), because the 
protocol definitions are often described as mostly serial processes. 

Replicate interference describes the interaction required between the parallel 
components, and whether the work is increased as a result. Per-connection repli
cates are usually defined as not interacting, but redundant operations in protocol 
layers often implies that per-protocol and per-layer replicates interfere. Per
packet replicates interfere heavily, because they affect common connection and 
protocol parameters (i.e., state information). 

Overhead includes the cost of replicate interference, as well as the general over
head of switching according to the mapping function, process creation and 
removal (if dynamic), and other costs of a parallel implementation. 

Expected gain measures the overhead costs with the scale limitations, to deter
mine whether the parallelization proposed is feasible or effective. Some types are 
feasible but not effective, because replication is easy and overhead is low (per-pro
tocol), but the expected gain is minimal. Other types are neither effective nor fea
sible (per byte!), because the overhead outweighs any expected gain, or is at least 
as large as the protocol itself. 

For each parameter, we consider whether a real bottleneck is being addressed 
Recall that TCP can run at 800 Mbps [17], however not across a real link. Is the 
limitation the processing, or the sourced information itself? Is speed a real issue, 
or is latency? Before we continue, we should reevaluate what the existing bottle
necks of a "heavyweight" transport protocol are. 

Our conclusions are summarized in Table 2, near the conclusion of this paper. 

3.1 Existing bottlenecks 
Much work has been done to address existing protocol processing bottlenecks. 

This includes thinking optimizations, such as header processing optimizations, 
state optimizations, implementation optimizations, and augmenting the general 



352 Part Seven Posters 

processing power of the system. It also includes answering optimizations, includ
ing data transport path optimizations. 

Header processing optimizations include "fast-path" optimizations and header 
prediction [10] are specific instances of general cross-product protocol optimiza
tions such as Protocol Bypass [24]. The technique takes the cross product of all 
protocol functions and layers, factors out the statistically favored states and 
implements them as special (fast) cases. The remainder of the protocol is imple
mented as before. 

State optimizations result in RISC-style 'lightweight' protocols. They implement 
the cross-product protocols (as above), and remove the non-favored states from the 
protocol. Examples include VMTP [3] andXTP [4]. 

Implementation optimizations include code tweaking such as has been done on 
the Cray TCP [17], and generic TCP [10], as well as Integrated Layer Processing 
(ILP) [5]. They also include optimizing the underlying OS interfaces, such as 
Jacobson's fast-sockets, and the x-Kemel optimizations [18]. 

Other optimizations address general processing issues, and would benefit con
ventional applications as well a protocol processing. These include fast context 
switching and hardware header processing. The latter is a flavor of support pro
cessor, other examples of which include FPUs, string processors, and graphic 
engines. 

Protocols exhibits data transport limitations even after avoiding multiple data 
movement. This is evidence of conflict between the topology of the extemal net
work, and the intemal backplane communication, an answering bottleneck. Pro
posed solutions involve "moving the network into the backplane", such as in the 
Cambridge Desktop Area Network (DAN) [9] or lSI's NetStation [7]. 

There are other limitations, asking bottlenecks, as have been recently observed 
[21]. In a high bandwidth-delay product network, the data source itself becomes a 
limit to the channel utilization (not enough questions). Assuming the window size 
limits of the current TCP specification are fixed, what will fill these windows? 
Measurements indicate that network bandwidth-delay products are increasing at 
a faster rate than that of the end system, so it's not clear that file sizes will 
increase in proportion to network rates, such that a larger window will be usable 
[22]. 

4. PRIOR WORK 

Optimized TCP focused on increasing the window size to accommodate higher 
bandwidth-delay products, so-called "long delay" [11], "high-speed" [12], and 
"high-performance" [13] TCP. The large windows permitted flow control feedback 
to occur over byte blocks, rather than bytes themselves, permitting longer 
answers. 

"High-performance" TCP was specifically designed for high bandwidth-delay 
environments, observing that the bandwidth-delay product was the issue, rather 
than the latency or the speed (as in prior proposals) [13]. A critical response indi
cated that some of these proposed optimizations were harmful, and suggested flow 
control occur over records, rather than bytes. This indicates a message structure 
beyond that normally assumed for TCP. A current proposal augments TCP to han
dle transactions [2], to accommodate some of the record-structure suggested 
before. This line of research is realizing that bandwidth-delay products are the 
primary issue (i.e., a question bottleneck), and that large windows don't solve the 
problem (because they solve answering). Additional structure in the information 
stream is required, beginning with a record structure 

There are other proposals that observe the limitation of the exchange of state in 
a high bandwidth-delay product environment, and attempt to accommodate this. 



Protocol parallelization 353 

Periodic exchange of state as a protocol mechanism is the basis of the Delta-t pro
tocol [23], and has also been mentioned in TP++ [6] and the SNR "leaky-bucket" 
protocol [15]. 

A recent proposal indicated that high bandwidth-delay product environments 
change bandwidth-bound systems to be latency- or server-bound [14]. The sources 
become message limited (question-bound), and the channel utilization changes 
only if the message sizes increase. The proposal suggests that multiplexing will 
increase channel utilization, just as multiprocessing increases processor utiliza
tion in the presence of 110 communication latency. 

A reply to this proposal observed that multiplexing would not so much solve the 
problem as define it away [20]. Deterministic multiplexing is equivalent to lower 
bandwidth-delay product links. The real issue is protocol state imprecision, 
induced by high bandwidth-delay products and variance in protocol function (non
deterministic protocols) or in latency (delay variance). Nondeterministic multi
plexing just pushes the state imprecision problem to the multiplexer control level. 
The only known solution uses message stream structure (records, branches, and 
recursion) to permit source anticipation of remote state [19]. The message stream 
carries responses to "parallel futures" of the remote state. One application which 
supplies the requisite structure is distributed hypermedia, such as in the World
Wide Web. 

5. CURRENT WORK 

Recent work attempts to parallelize the processing of particular protocols. These 
include per-packet and per-function dimensions, both empirically and analytically 
derived. The results have been disappointing thus far, with a scale limit of 5 paral
lel processors for most experiments. 

Early work tried per- layer parallelism, a sort of data flow architecture [25]. They 
decomposed TP-4 onto Transputers, where layers 3 and 4 were each assigned one 
processor for each of send and receive functions. The result was 4-way parallelism, 
with no further decomposition proposed.They concluded that the protocol defini
tions were not conducive to further parallel decomposition, especially because of 
the overlap of functions between layers. 

Other work focused on per-function decomposition of OSI protocols [8). They con
sidered TP-4 and 802.2 LLC protocol decomposition. They decompose their proto
cols per-layer 4-ways, by allocating 2 processors each for send and receive. Further 
decomposition follows a dataflow diagram of the protocol, where functions are 
divided among the two processors. They observe that the interaction between the 
two processors on each side has significant overhead, and that further decomposi
tion is not feasible because of increased communication costs. When they 
attempted to apply their technique to TCPIIP, they found a scale limit of 4 proces
sors there as well. Some of their results may be an artifact of the communication 
topology of Transputers, which are 4-way connected. 

More recent attempts factored TCPIIP as if its functional components were exe
cuting on a statically load-balanced compiler [16]. At first, they partitioned TCP 
into three functional components - send, receive, and timer. Their analysis con
cluded that TCP could be parallelized further by distinguishing between data and 
control, such that there were four components - send_data, receive_data, control, 
and timer. They found that the bulk of complexity lies in the control, which isn't 
surprising (this is the essence of a protocol). By making additional assumptions 
(not necessarily valid ones), they could reduce the work of the control protocol. 

These simplifications include assuming a stable round-trip time (thus removing 
it from the protocol state), thus assuming a stable window size (also removing it 
from the state), and by performing control functions infrequently (not per-packet). 



354 Part Seven Posters 

Unfortunately, this changes the operational semantics of TCP, and it's not clear 
whether their implementation will interoperate with standard TCPs. We observe 
that this is just the "big packet" solution to protocol optimization, such as in NET
BLT (long answers). Low bandwidth protocols act like high bandwidth periodic 
protocols (Figure 1). High bandwidth eager-delivery (as soon as possible) protocols 
increase the rate of headers, thus the effort of protocol processing. Rate-based flow 
control reestablishes the header rate, slowing the protocol processing down (Table 
1). The authors note that rate policing is required for their solutions to avoid the 
increase in header rate. 

High BW I Periodic ______ __._a._ _________ _ 

High BW I ASAP---------------L-

High BW I Big Packers_. ________________ _ 

Figure 1. 
Equivalence of types of protocols 
- the top two are equivalent, the bottom two are not. 

Increasing the packet size (as in NETBLT), or, equivalently, spacing the "real" 
headers out (ones that affect protocol state), results in large-packet protocols, 
which act like their more sluggish counterparts. A protocol is sensitive to the 
header processing rate. Allowing larger packets or fewer control headers is equiv
alent to assuming the stability of the slower protocol system. Large packets work 
only where state is a function of clock-time, not the bandwidth-delay product. 

Table 1 
Big packets are really slow/sluggish protocols 

BW rule hdr/time data/time hdr/data 

lowbw low low avg 

high bw periodic low low avg 

high bw ASAP high high avg 

high bw huge packets low high low 

They also observe that the parallelism is affected by state imprecision. Such 
imprecision is characterized by the number of possible vs. actual headers out
standing (i .e., effects of latency on imprecision), as well as the number of actual 
controls vs. data between the controls (effects of transmission and reception on 
imprecision). 



Protocol parallelization 355 

Others considered per-packet parallelization [1]. They measured parallelism 
using simulations, and implementations of a multiprocessor x-Kernel implemen
tation with spin-locks. They observed that the parallel processing contends for the 
shared protocol state (the Connection Control Block). They claim TCP saturates at 
a parallelism of 7 (measured as 5) with a speedup below 5x (measured as 3.5x), 
but that UDP didn't appear to saturate (through N=20). This is because TCP has 
significant shared state (the sliding window flow control), but UDP does not. We 
note that this per-packet experiment reaches a similar parallelism limit as per
function. 

Other results were reported at the CNRI Gigabit Workshop in 1993. V. Jacobson 
reported that his fast TCP relies on state transition effects, rather than the full 
RFC-specification of the protocol. Inbound traffic processing was the bottleneck, 
especially where demultiplexing isn't stable; this corroborates our conclusion that 
Kleinrock's multiplexing solution isn't sufficient. The Nectar project tried a parti
tioned send/receive TCP, and encountered problems with shared CCB access as 
well. The IBM group reported on general parallelization using pipelining, and 
found that the component coupling was tight for TCP, and loose for IP. Other 
projects (HP/Witless, LANL CASA) examined using big packets to optimize 
throughput (as large as 4 Kbyte). They rely on the stability of the protocol and 
environment, as discussed before. 

6. OBSERVATIONS 

At this point we have several observations to make. First, parallelization per
packet or per-function does not help much. These results address some perfor
mance issues, but do not scale as the bandwidth, number of headers (i.e., packets), 
or available processors increases. As a result, they are of debatable utility. Other 
dimensions, including per protocol, per connection, per application, etc., are also of 
debatable utility, ·because we assume a required solution will provide high 
throughput for a single connection of a single protocol to a single application (1 
Gbps to the user application). 

These observations are important because they imply that thinking parallelism 
does not help protocol performance. Answering (bandwidth) bottlenecks are disap
pearing, as we remove simplifications (i.e. bus backplanes) from our workstation 
designs, and move towards a networked-backplane, thus parallelizing the 
answers. When these are solved, only one bottleneck remains -latency, i.e., a not 
enough questions. 

We also made other observations. First, a protocol doesn't know what time it is, 
only how many bits are in transit. Consider slowing down existing hardware -
from the CPU through the communications media interface. The protocol will 
work exactly as before. Even protocols with absolute clock timers will still func
tion, because the clock time will be equivalently slowed. 

So the rate issue is a red herring with respect to protocol processing. A protocol 
does, however, know how many bits are in transit, both in terms of the amount of 
state required, and the effort required to manage that state. Protocols are band
width-delay product sensitive [19]. Further, many existing parallelization tech
niques do not address bandwidth-delay product (the question bottleneck). One 
exception is [16], but their conclusion is that in order to avoid the problems that 
bandwidth-delay product causes, they exclude the high-frequency header domain. 

In our work on an abstract model of communication latency (Mirage), and its pro
tocol instantiation (Parallel Communication), we found a more direct correlation 
between header frequency, action, state, and stability. We conclude that one area 
of parallelism worth examining might be information parallelism (parallel ques
tioning), where alternate streams of anticipatory data are present at the source. 



356 Part Seven Posters 

Another area of consideration is the packet train. Packet trains are created when 
a large packet is fragmented into many smaller lower-layer packets. The control 
occurs at the head and tail of the train, and within the train. As a result, the dif
ference between the intra-train state and inter-train state is well defined, and 
might be a useful dimension to parallelize. However, the benefits apply only to the 
segmentation and reassembly protocols. 

6.1 LISNIMISN/WISN 
We observed in our research that area isn't the issue, i.e., LAN, WAN, MAN. We 

find that protocols operate differently depending upon the information separation 
(IS), measured as bits in transit (bandwidth-delay product). That is, bandwidth
delay product is the formula, and information separation is what it describes. 

So LAN/MAN/WAN become LISN/MISN/WISN. We define these distinctions 
based on the comparison between the messages sent and the IS. In LISN, the mes
sage is much larger than the IS, so existing sliding-windows protocols suffice. In 
MISN, the message is about the same size as the IS; this corresponds to RPC or 
remote evaluation (REV) domains. WISN requires Mirage I Parallel Communica
tion to utilize the channel effectively, because the inter-message effects dominate, 
rather than intra-message. This is where structure in the information stream is 
used. 

6.2 The protocol solution space has holes 
When we considered the protocol solution space based on the IS, we found some 

holes in it (Figure 2). We could reduce the separation, or deal with it. We can 
remove the IS by moving the data to the code (RPC) or the code to the data (REV). 

Altemately, we can deal with the IS directly. If the data is organized as a long 
linear stream, and the stream is longer than the IS (i.e., the LISN domain), we use 
sliding windows. Otherwise, we need to accommodate more complicated struc
tures such as branching and recursion of the state space, to emulate the impreci
sion of state induced by the latency. 

Examples of structured streams are hypermedia (interactive media), and reac
tive I proactive control systems. The resulting system has parallelism of action, 
and permits the state spaces to be partitioned while the protocol is running. This 
permits dynamic load balancing of the resulting processes among whatever set of 
processors area available. 

As a result, Parallel Communication directly addresses the WISN domain, and 
scales to use additional processors as the bandwidth-delay product increases. The 
interaction between the partitions is well defined by the Mirage model. The source 
anticipation describes process factoring, and receiver feedback terminates source 
processes whose anticipation is not needed. 

Information Separation 

Sliding 

Figure 2. 
Holes in the protocol state space (starred {*}) 



Protocol parallelization 357 

7.INFORMATION PARALLELISM 

AI; we have discussed, the high information separation is the cause of inefficiency 
in the use of the communication stream. Parallelizing the protocol won't help solve 
this, because conventional protocols "run out of stuff to fill the pipe with". Infor
mation parallelism is a way to fill the pipe. 

The protocol we use for information parallelism is called Parallel Communica
tion. Simply put, it is sender-based preloading of a cache - in this case, the cache 
is the bandwidth-delay product (the information separation). The sender is send
ing preemptive replies to expected requests from the receiver. Each of these pre
emptive replies accommodates some possible state of the receiver; the set of 
replies represents a parallelism in the information between the sender and 
receiver. 

A protocol for sender-based cache preloading isn't difficult, but when recursion of 
receiver state is considered, the mechanism becomes complex. We have developed 
such a mechanism for Parallel Communication. 

We are currently proposing to use Parallel Communication to augment the 
WWW client/server (browser/server) interaction, as in Figure 3. The goal is to 
reduce the user-perceived response time, and permit the WWW browsers to act 
more like remote user-interfaces than the sluggish transaction-based mechanisms 
they currently are. 

Existing WWW WWW + Parallel Communication 

www 
SERVER 

www 
BROWSER 

Figure 3. 

www 
SERVER 

www 
BROWSER 

WWW server and browser augmentation for Parallel Communication 

For the WWW, the way in which information parallelism is determined is to filter 
the HTML (hypertext mark-up language) for links to other files. The other files 
are send as a set of information-parallel replies to the 'buttons' on that page. 



358 Part Seven Posters 

8. CONCLUSIONS 

We conclude that parallelizing protocols doesn't necessarily require parallel pro-
cessing of existing state or packet data. It may be more useful to parallelize the 
possible states of the other side of the link, in order to scale as bandwidth-delay 
products increase. Our particular observations are summarized in Table 2. 

Table 1 
Summary of conclusions 

DIM. MAP SCALE REPL. OVRHD. GAIN 
LIM. INTFR. 

protocol easy Y(l) N low low 

connection easy Y(l) N high low 

packet easy Y(5) y high low 

application easy Y(l) N low low 

packet train hard Y(<lO) some low med. 

function none! Y(5) y high low 

layer easy Y(7) N low low 

information moderate N some some high 

We observe that other optimizations, such as big packets or periodic control, only 
require further assumptions about the stability of the state and state evolution. 
They do not address the protocol performance issue; rather, they attempt to make 
the protocol disappear. 

Per-packet or per-function parallelization hits state precision limits, and does 
not scale beyond a factor of 5 or so. The better solution is to determine and support 
further structure in the communication stream, and the parallelism of possible 
future states that affords. 

9. ACKNOWEDGEMENTS 

This paper is the result of an ongoing discussion at lSI regarding the possibilities 
of parallelization of protocols. Herb Schorr proposed the question at lSI, and the 
members ofthe HPCC Division provided ample feedback. We especially appreciate 
the efforts of Jon Postel and Paul Mockapetris, both of lSI. Carolyn Nguyen of 
AT&T also provided feedback on the debate. 



Protocol parallelization 359 

REFERENCES 

[1] Bjorkman, M., and Gunningberg, P., "Locking Effects in Multiprocessor 
Implementation of Protocols," Proc. ACM Sigcomm, Oct. 1993, pp. 74-83. 

[2] Braden, R., "Extending TCP for Transactions-- Concepts," Network Working 
Group RFC-1379, USC/lSI, Nov. 1992. 

[3] Cheriton, D.R., "VMTP: A Transport Protocol for the Next Generation of 
Communication Systems," Computer Communication Review, Aug. 1986, pp. 
406-415. 

[4] Chesson, G., et. al., XTP Protocol Definition, Protocol Engines, Inc., Dec. 
1988. 

[5] Clark, D., and Tennenhouse, D., "Architectural Considerations for a New 
Generation of Protocols," Proc. ACM Sigcomm, Sept. 1990, pp. 200-208. 

[6] Feldermeier, D., "Comparison of Error Control Protocols for High Band
width-Delay Product Networks," In participants proceedings, IFIP Workshop 
on Protocols for High Speed Networks, Nov. 1990. 

[7] Finn, G., "An Integration of Network Communication with Workstation 
Architecture," ACM Computer Communication Review, V. 21, No. 5, Oct. 
1991. 

[8] Giarrizzo, D., Kaiserswerth, M., Wicki, T., and Williamson, R., "High-Speed 
Parallel Protocol Implementation," in Protocols for High Speed Networks, 
Rudin, H. and Williamson, R. Eds., Elsevier, 1989, pp. 165-180. 

[9] Hayter, M., and McAuley, D., "The Desk Area Network," ACM Transactions 
on Operating Systems, Oct. 1991, pp. 14-21. 

[10] Jacobson, V., "Congestion Avoidance and Control," ACM Computer Commu
nication Review, Oct. 1988, pp. 314-329. 

[11] Jacobson, V., and Braden, R., "TCP Extensions for Long-Delay Paths," Net
work Working Group RFC-1072, LBL and USC/Information Sciences Insti
tute, Oct. 1988. 

[12] Jacobson, V., Braden, R., and Zhang, L., "TCP Extensions for High-Speed 
Paths," Network Working Group RFC-1185, LBL and USC/lSI, Oct. 1990. 

[13] Jacobson, V., Braden, R., and Borman, D., "TCP Extensions for High Perfor
mance," Network Working Group RFC-1323, LBL, USC/lSI, and Cray 
Research, May 19921EEE Communications Magazine, Vol. 30, No. 4, April 
1992, pp. 36-40. 



360 Part Seven Posters 

[14] Kleinrock, L, "The Latency I Bandwidth Tradeoff in Gigabit Networks," IEEE 
Communications Magazine, Vol. 30, No.4, April1992, pp. 36-40. 

[15] Netravali, Arun N., Roome, W.D., and Sabnani, K., "Design and Implementa
tion of a High-Speed Transport Protocol." IEEE Transactions on Communica
tions V 38, N.11 (Nov. 1990), pp. 2010-2024. 

[16] Nguyen, C. and Schwartz, M., "Reducing the Complexities ofTCP for a High 
Speed Networking Environment," Proc. IEEE Infocom, Mar. 1993, pp. 1162-
1169. 

[17] Nicholson, A., Golia, J., Borman, D.A., Young, J., and Roiger, W., "High Speed 
Networking at Cray Research," ACM Computer Communication Review, V. 
21, N. 1, Jan. 1991, pp. 99-110. 

[18] Peterson, L., Hutchinson, N., et. al., "The x-Kemel: A Platform for Accessing 
lntemet Resources," IEEE Computer, V. 23, N. 5, May 1990, pp. 23-33. 

[19] Touch, Joseph D., Mirage: A Model for Latency in Communication, Ph.D. dis
sertation, Dept. of Computer and Information Science, Univ. of Pennsylva
nia, 1992. Also available as Dept. of CIS Tech. Report MS-CIS-92-42 I DSL-
11. 

[20] Touch, J.D., and Farber, D.J., "Reducing Latency in Communication," letter 
to the editor in IEEE Communications Magazine, Feb. 1993, pp. 8-9. 

[21] Touch, J.D., "Parallel Communication," Proc. IEEE Infocom, Mar. 1993, pp. 
505-512. 

[22] Touch, J.D., and Farber, D.J., "An Experiment in Latency Reduction," Proc. 
IEEE Infocom, June. 1994, pp. 175-181. 

[23] Watson, R.W., "The Delta-t Transport Protocol: Features and Experience," 
Protocols for High Speed Networks, Elsevier, 1989, pp. 3-17. 

[24] Woodside, C.M., Ravinadran, K., and Franks, R.G., "The Protocol Bypass 
Concept for High Speed OSI Data Transfer," In participant's proceedings, 
IFIP Workshop on Protocols for High Speed Networks, Nov. 1990. 

[25] Zitterbart, M., "High-Speed Protocol Implementations Based on a Multipro
cessor Architecture," Protocols for High Speed Networks, Rudin, H. and Will
iamson, R. Eds., Elsevier, 1989, pp. 151-163. 


