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ABSTRACT 
Recursive temporal (RT) namespaces extend spatial 
namespaces such as IP with the notion of a nested time 
interval. RT namespace is an architectural approach to 
dealing with the uncertainty associated with changes to 
distribution, syntax or semantics of large-scale namespaces 
that are associated with high cost and probability of failure. 
We discuss the abstract design issues associated with RT 
namespaces and two existing approaches that are special 
cases of the general design. We also propose a variant of IP 
based on RT namespaces that supports open-ended 
evolution.  

1. INTRODUCTION 
Names, such as IP addresses, are used to identify the 
endpoints of communication. Namespaces see two kinds of 
changes; we observe both of these in the case of IP. The 
first is commonly called renumbering or renaming, and 
involves the redistribution of names. The second 
corresponds to the shift from IPv4 to IPv6. This kind of 
change is relatively infrequent, and involves modifications 
to syntax or semantics of the namespace. Both these are 
traditionally handled as one-off events, and are associated 
with significant unbounded costs of disrupting existing 
communication and services. Mechanisms that reduce the 
risk associated changes reduce the barrier to change and 
make the network more evolvable [7].  

The Recursive Temporal (RT) namespace solution 
eliminates the notion of timeless or absolutely persistent 
namespace. Instead, a set of namespaces is used, in which 
some namespaces are more persistent than others. By 
overlapping the lifetimes of the namespaces, the network 
supports changing or evolving in an endless fashion. We 
organize these namespaces to make the process more 
tractable. The overall expressiveness of the network also 
increases through temporal name resolution and routing.  

 This paper proposes the use of RT namespaces to enable 
open-ended evolution in namespaces. RT namespaces 
extend spatial namespaces such as IP with a notion of 
lifetime. This simple idea is developed into a recursive 
structure with a well defined set of operations. We discuss 
the design issues associated with RT namespaces, and 
show that existing proposals such as Shadow 
configurations [1] and space-time contexts [8] are instances 
of RT namespaces. We propose Evolvable IP, an instance 
of an RT namespace that is deployable today and supports 
the open-ended evolution of IP.  

2. WHY ADD TIME TO NAMESPACES? 
Changes in protocol name definition and distribution occur 
for many reasons, including efficiency, scale, functionality 
and administration. In most cases, this is not an issue 
because the changes tend to be small in scale or infrequent, 
or because communication disruption is acceptable. 
However in some cases, none of these reasons are true, and 
change is difficult. The fundamental problem underlying 
change is the uncertainty associated with the goals, process, 
and outcome of change. Small changes are known to have 
high impact on the network [6]. The change from IPv4 to 
IPv6 has proven to be much harder than initially thought 
because of technical and economic issues. The nature of 
uncertainty in each case is different, and so are the 
approaches to deal with them. Uncertainty is important 
because real world services depend on the correctness and 
availability of the namespace and communication, and any 
disruption extends beyond the namespaces into the real 
world. Ubiquitous long-lived namespaces such as IP 
support a large number of real world services. The impact 
of unbounded disruption can range from simple 
inconvenience to damage to life and property. In the 
common case, network disruption lead to disruption of 
valuable services such as business communication [6] and 
health services [2].  
Consider the simple case of two-node communication 
shown in the Figure 1. Node X discovers the existence of 
node Y and path L to Y, and stores the result of the 
discovery in memory. When Y is renamed, X’s memory is 
updated. The restoration of communication state is 
followed by the restoration of application state. Syntactic 
and semantic changes to the X-Y communication can be 
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modeled as changes in the computation at both ends. The 
change is instantaneous, i.e., there is an instant of time 
when the old communication state ceases to exist and the 
new state comes into effect. This change model has the 
value that it is simple, but it assumes complete information 
about the nature and process of change. The question is 
primarily one of efficiency of the change process. 

 
Figure 1 Simple model of communication 

This change model is not appropriate for all changes in 
large-scale long-lived namespaces. First, we may not know 
about the correctness of the changes, i.e., whether the 
changes are meaningful and useful. Second, the locations 
where the discovered names are stored in memory. such as 
inside firewalls and applications, may not be known. Third, 
the number of nodes that are impacted by a given change 
may be large. In such cases, a large amount of coordination 
may be required at the instant of change, and experience 
suggests that it is hard to impose strict time bounds on 
distributed consensus algorithms with imperfect processes. 
Fourth, we may not know how the disruption of propagates 
in the entire network due to other nodes’ dependency on X-
Y communication.  Last, the impact of the disruption on the 
application and therefore the real world may be unknown.  
This requires us to find a much more incremental path to 
change that enable dealing with the uncertainty involved in 
the process of change. However, at every point in time the 
modified namespace must be integrated with the rest of the 
system to minimize disruption and enable testing. 

 
Figure 2 Namespace extended with time 

Time is introduced into namespaces as shown in Figure 2. 
We associate a lifetime or time interval with each name, 
and store the temporal information associated with the 
name along with spatial information. When the node Y is 
renamed to Y1, the state of Y is not modified; instead, a 
copy of the state is created that is named Y1. While the new 
relationship X-Y1 is being established, the X-Y 
communication can continue uninterrupted. This may not 
be possible in the unmodified system due to correctness 
issues arising from concurrent use of conflicting names. 
Once X-Y1 is tested and found to be correct, 
communication using X-Y path is migrated to X-Y1. 
Introducing time decouples the time of change from the 
time when the change is committed or used. This simple 

idea is developed further below to understand the full 
implication of introduction of time into namespaces. The 
resulting capabilities include recursion, mapping and 
transformations.  

3. RECURSIVE TEMPORAL NAMESPACE 
The previous section introduced the basic notion of 
temporal names as a two-tuple (time interval, spatial name).  
Our notion of time interval is relative, and our focus is on 
the relationships between time-intervals rather than 
absolute values. Examples of relationships between time 
intervals include inclusion, in which one time interval 
covers another time interval, sequencing, in which one 
interval occurs after another interval, and concurrency, in 
which two intervals may overlap. The representation of 
time itself may be explicit or implicit. The time intervals 
can be thought of as belonging to a namespace that 
supports partial order among the names. Eventually this 
namespace will be renamed or refined. That, in turn, leads 
another temporal namespace in order to support changes to 
this namespace, ad infinitum, limited by the computation, 
memory and management abilities of the network. 
A temporal namespace is a partial ordered set of names, 
and a temporal name is a member of that set. A spatial 
namespace is a protocol-defined namespace in which 
names are assigned to distinct protocol endpoints based on 
some spatial attribute, such as abstract, topological or 
geographical location. RT namespaces are effectively 
directed acyclic graphs (DAGs) with spatial names as the 
leaves and various temporal names as non-leaf nodes. DAG 
edges indicate the temporal inclusion relationship between 
names. Figure 3 shows a sample organization of RT 
namespaces with ti representing the temporal, and sj 
representing the spatial names. In the next section, we 
discuss two existing examples of RT namespaces. 

 
Figure 3 One possible organization of namespaces 

A RT name is a path (ti1,ti2,...,tik,sj) in the DAGs from the 
root to the leaf. Groups of RT names that differ in one node 
name may be represented using a single path that uses a 
group or set name instead of atomic node names. Each host 
in the network has as many RT names as there are paths 
from the leaves to the root – all of which may be 
simultaneously valid and usable. In practice there might be 
multiple such DAGs at any one time each having a 
different change dynamic, distribution, security or other 
properties. The organization shown may be the view from a 
host in one part of the network, and the view may be 



different from another part, if the spatial scopes are not 
identical, which we expect to be the common case.  
Spatial namespaces are created due to differences in 
functionality, administrative boundaries, trust, performance 
etc. Temporal namespaces are created to deal with changes 
of various kinds and over different timeframes. Both are 
transformed over a period of time. Together they determine 
the structure of the DAG and choices for other design 
parameters. The organization shown in Figure 3 is 
somewhat arbitrary, and discovering meaningful 
organizations is a key challenge. In the next section, we 
discuss two recent proposals that are single-level. The 
proposed Evolvable IP, discussed later, has two levels. 

4. EXAMPLES 
In this section we consider two recent research proposals 
from the recursive temporal naming perspective. They both 
incorporate single-level time into their system design.  

4.1 Shadow Configurations 
Shadow configuration [1] is a mechanism to deal with 
reconfiguration of routers in networks. IPv4 routing and 
forwarding functions are extended to support two 
concurrent configurations, called real and shadow. The 
real configuration is actively used to forward packets, and 
the shadow is the new configuration that is being prepared.  
The real configuration is used to set up the shadow and is 
eventually replaced by shadow, at which point shadow is 
renamed real and the existing real becomes the shadow. 
The namespaces are isolated from each other and there is 
no forwarding between the two configurations. Internal 
data structures of routing processes are extended with 
temporal naming. The configuration and testing 
applications were modified to incorporate the notion of 
shadow. The isolation on the wire is achieved using two 
bits in the IPv4 header. The deployment of shadow is 
coordinated across the nodes using a custom distributed 
algorithm. The authors also present significant amount of 
work on other complementary mechanisms that allow 
performance measurement of the shadow configuration and 
switching between the two.  

 
Figure 4 Shadow configurations  

Shadow configurations can be modeled as a single-level 
RT namespace with temporal namespaces with two 
members, shadow and real, as shown in Figure 4. Both 
namespaces have identical spatial scope. The RT 
namespaces discussion suggests that if applications such as 
VoIP and VPNs are deployed in the network, then the 
correctness of the new configuration requires more 
extensive testing and the switching process is more 

complicated. In such cases, mapping of names and 
forwarding between real and shadow may be required.  

4.2 Space-Time Contexts 
Space-time contexts [8], upon which the idea of RT 
namespaces is based, associates each name with a region of 
interpretation called a context. Figure 5 shows a simple 
deployment of three contexts over three nodes. The 
objective of contexts is to enable renaming or redistribution 
of names with minimal disruption. The use of contexts is 
similar to that of Shadow configurations. A new context is 
deployed when a part of the network is renumbered, and 
the old context is deleted. An arbitrary number of contexts, 
each with a different scope, may be deployed. Contexts are 
dynamically deployed and integrated using cross-context 
forwarding. The implementation extends IPv6 with a new 
inter-context routing header within packets, inter-context 
forwarding tables at specific nodes, separate and simple 
spatial and temporal routing, and user-level processes to 
coordinate the decentralized construction of the contexts.  
Space-time contexts can be modeled as a specific kind of 
temporal namespace that is single-level and flat, with 
varying spatial scope, and limited temporal forwarding. 
The RT namespaces discussion suggests that temporal 
mapping between names would be eventually required, and 
the single-level time assumption would have to be dropped.  

 
Figure 5 Three contexts deployed over a small network 

5. DESIGN ISSUES 
Introducing time into namespaces raises a number of issues 
and increases operational complexity. The fundamental 
value of temporal extension is the separation of the time of 
change from the time of use. This moves uncertainty to a 
place where it can be handled better, at the price of 
additional complexity. This tradeoff has also been observed 
in economics and systems engineering. Detailed knowledge 
of the deployment scenario is necessary to determine the 
complete solution and tradeoffs. We discuss some of the 
high-level design issues in this section. 

5.1 Host Architecture 
The host architecture must be modified to support isolation 
between the states associated with various names. 
Interfaces to application and higher protocol layers must be 
extended to support binding to an arbitrary subset of 
names. Routing requires intra-host discovery of RT names, 
and forwarding requires delivery of messages across RT 
namespaces. Dynamic deployment of temporal namespaces 



requires intra-host cross-namespace capabilities covering 
state management and testing. The changes are significant, 
but the value gained through reduced disruption and 
smoother evolution is significantly higher.  

5.2 Protocols and Messages 
At an abstract level, the boundaries of the protocol become 
fuzzy as changes to syntax and semantics are incorporated 
over time. It is more appropriate to talk about an aggregate 
protocol, or a set of protocols instead of one. The design of 
such a protocol set is incomplete, by definition. The key 
change in the protocol state and message structure is in 
terms of the notion of protocol endpoint. The source and 
destinations are expressed as path in the RT namespace 
instead of an atomic spatial name. These paths change over 
the long term. Further, multiple names may be used to 
exploit multiple-paths in time in addition to space. This 
capability enables separation between control and data 
paths of protocols in space-time instead of space-only. 

5.3 Forwarding and Routing 
The complexity of routing increases in four ways. First, 
there is multi-level temporal routing in addition to spatial 
routing. The two might be separate or integrated depending 
on the deployment scenario. Efficient route computation 
may or may not be possible depending on the degree of 
opaqueness and compatibility of spatial routing. Second, 
integration and removal of temporal namespaces from the 
routing system results in convergence issues and 
inefficiency. Third, expressiveness of the routing systems 
must be increased to support avoid specific routes for 
testing or other purposes. Last, the introduction of time 
divides the Internet into timeful and timeless regions.  One 
simplifying factor is that the deployment is not expected to 
cross enterprise boundaries, and therefore eliminates some 
of the problems that make BGP-like protocols complex. 
Further, constraints can be imposed over the frequency of 
creation of namespaces, deployment scope or 
syntax/semantics to reduce the space of possible routing 
algorithms and enable simpler implementations. 
Although routing may be complex, forwarding may be 
relative simpler. Forwarding at the ‘leaf nodes’ is spatial-
only and timeless. Each leaf node has a unique spatial 
forwarding table appropriate for the syntax and semantics 
of that namespace. Forwarding at every other level is 
temporal. A message that cannot be forwarded at a given 
level tries to forward the message at the next higher level. 
If no such level can be found, then the message is dropped. 
Temporal forwarding can happen only between names that 
are co-located and spatial forwarding between names that 
are at one-hop distance or less. The structure of the 
forwarding tables depends on the design of the RT 
namespace. The examples herein impose additional 
constraints to make the forwarding and routing 
manageable.  

5.4 Coordination 
Every step during the lifetime of an RT namespace 
involves coordination across hosts, including creation of 
the namespaces, discovery, switching, and garbage 
collection. The nature of coordination required depends on 
the deployment scenario. The examples discussed in this 
paper include a custom distributed algorithm in case of 
Shadow configurations, and decentralized mechanism in 
case of space-time contexts. 

5.5 Decision Problems 
The complexity of a system grows quadratically or worse 
with the number of temporal namespaces introduced, 
because the number of logical protocol endpoints increases 
linearly, but the number of possible pairs of 
communication increases quadratically. A number of new 
decision problems are introduced that deal with the timing 
and nature of namespace transformation and use, and 
parameters such as the spatial scope. Early results [8] show 
that computing the cost of disruption and the parameters of 
the temporal namespace are hard (NP-Complete or harder) 
even under strong assumptions. Therefore deployments of 
RT namespaces are not expected unless the value 
proposition is clear. The examples discussed in this paper 
focus on scenarios including mobility, upgrades, and 
reconfiguration.  

6. NAMESPACE TRANSFORMATION 
Change happens over time through transformation of the 
RT namespace, i.e., modifying the DAG. A number of 
operations are possible on the basic DAG that add or delete 
nodes and edges. The modifications add and delete state, 
and sometimes add and delete software. We discuss each of 
these in this section.  

6.1 Expand  
Expansion is the process of adding nodes to the DAG. 
Expansion is typically executed when the current 
organization of namespaces is inadequate for capturing 
changes to distribution, syntax or semantics of the 
namespace, new nodes are added to enable deployment of 
the modifications. 

 
Figure 6 Operations for building recursive namespace 

Figure 6 shows three operations that are used to build the 
namespace, each with a different purpose. Figure 6(a) 
shows addition of a parent to an existing node. This 
corresponds to a “fork-lift” upgrade of the namespace from 
being a purely spatial entity to becoming a space-time 
entity. This is expensive because this involves significant 
host software changes and changes to the way network is 
managed. Figure 6(b) shows a child t2 being added to an 



existing node t that already has a child t1. The addition of 
the edge indicates that the time interval represented by t 
includes the time interval represented by t2. There may or 
may not be temporal forwarding between t1 and t2. Figure 
6(c) shows the case where a new temporal t2 is added that 
has the spatial scope and substructure of t1. The two are 
‘siblings’, and may support forwarding. This is typically 
used for renumbering. Both shadow configurations and 
space-time contexts support dynamic addition of temporal 
names as shown in Figure 6(c), but they are at only a single 
level. They differ in terms of the timing and lifetime of the 
expansion, and nature of the nodes added.  

6.2 Collapse  
Collapse is the process of deleting nodes and edges in the 
DAG. Figure 7 shows the three basic collapse operations 
on the recursive temporal namespace. There is one 
operation corresponding to each operation shown in Figure 
6. A name, and possibly the corresponding namespace, is 
deleted when the change process is completed. All 
communication is moved to other names/namespaces and 
the specific name/namespace represented by the nodes is 
deleted. In practical terms, this involves clean up of data 
structures corresponding to the names. Figure 7(a) and 
Figure 7(b) shows a name t1 being deleted.  This primarily 
involves cleaning up the state associated with t1. Figure 
7(c) shows the case of a single parent that is being deleted, 
i.e., there are no other members of the temporal namespace 
to which t1 belongs. In this case, in addition to the cleanup 
of state, the software associated with the temporal 
namespace may be deleted as well.  Both shadow 
configurations and space-time contexts support deletion of 
nodes as shown in Figure 7(b). In case of shadow 
configurations, there is only one node to remove, but 
multiple nodes may be removed simultaneously in space-
time contexts. 

 
Figure 7 Operations for collapsing recursive namespace 

6.3 Map 
Given the flux in an RT namespace, there is a need to store 
temporal mapping between names. This is useful for 
migration and integration purposes. Existing mapping 
services such as DNS may be extended or some other 
mechanism may be introduced. The structure of the map 
depends on the implementation, and may vary from a 
centralized to a distributed entity.  Figure 8 shows an 
abstract representation of two maps between RT 
namespaces. Neither shadow configurations nor space-time 
contexts support mapping. IPNL [4] is an example of a 
simple single-level recursive temporal namespace that uses 

temporal mapping between names. The mapping is 
primarily intended to support host mobility but can be 
extended to support renaming.  

 
Figure 8 Temporal mapping services 

7. Evolvable IP 
In this section we propose a protocol, Evolvable Internet 
Protocol (EIP), based on IPv6. The objective of EIP is to 
incorporate the notion of open-ended evolution – both short 
term as well as long term – into the protocol itself assuming 
that the fundamental notions of packets and unicast 
destinations does not change. It is an instance of a two-
level RT namespace, i.e., has two levels of time. The first 
level is aimed at short-term reconfiguration, and the second 
level is aimed at longer-term changes in syntax and 
semantics. EIP is effectively a collection of protocols in 
which each is replaced by another over an appropriate 
timeframe.  
Figure 9 shows an organization of contexts intended to 
enable transition from IPvX that could very well be IPv6 to 
a hypothetical IPvY and beyond. The first level temporal 
namespaces {t10, t11},{t00, t01, t01} and {t20,t21} represent 
different address distributions of underlying spatial 
namespace such as IPvX. The second level names {t0,t1,t2} 
represent long-term changes to syntax and semantics of IP.  
Figure 10 shows the packet header structure in which the 
source and the destination are two-level RT names.  

 
Figure 9 EIP scenario involving three versions of IP 

 
Figure 10 Example EIP header 

A simple prototype implementation of EIP is under 
construction. The prototype builds on experience with 
space-time contexts. Contexts already support first-level 



temporal names for IPv6. Our EIP implementation extends 
context implementation with a second-level temporal 
routing table, as well as other features. A simplified IPv6 
message format and forwarding capability is used as the 
“base” on which to build EIP. Two aspects of IPv6 enable 
the implementation of EIP – the support for link-local 
addressing and the support for generic loosely-constrained 
routing headers. The use of link-local addressing 
effectively turns IPv6 into a link-layer protocol for EIP. 
EIP source and destination addresses are encoded in the 
routing header.  
Support for contexts already involves a significant amount 
of change to the host network stack covering address 
assignment to interfaces, generic header processing in 
IPv6, other network-layer protocols such as ICMP, 
transport-layer protocols such as TCP, and the socket 
interface. Applications such as route, ping and traceroute 
were modified as well. EIP requires generalization of these 
changes, an additional forwarding table, and user-level 
commands. The EIP forwarding algorithm is relatively 
simple. At each node, the second level temporal name, e.g., 
t2, is looked up to determine the next hop at the same level, 
e.g., t0. If the latter is reachable within the host, then the 
message is delivered to the namespace. If not, a lookup is 
performed to determine the next hop at the next level, e.g., 
t11. The process is repeated again at the first level. There 
are additional issues associated with transport protocols, 
application interfaces, and address assignment to interfaces 
that are addressed in the prototype. Beyond forwarding and 
basic reachability across IP versions, EIP requires 
extensions along several fronts including routing, mapping, 
coordination and semantics.  
This additional complexity is the price paid to manage risk 
associated with a given change to IP. On the positive side, 
multiple alternative future IP versions can be concurrently 
pursued as a way to deal with uncertainty in timing, 
correctness and value of individual changes.  

8. RELATED WORK 
Naming has been studied extensively [9]. Several aspects 
of naming systems deal with time, including the lifetime of 
the namespace itself, lifetime of the names and discovery 
[3], versioning or change over a period of time [11], and 
changes to syntax and semantics of the namespace. Our RT 
namespace adds yet another explicit but limited notion of 
lifetime to namespace that is dynamic, distributed, and 
recursive. A single-level RT namespace is equivalent to 
decentralized versioning on multiple trees. An RT 
namespace is similar to a shadow configuration [1] in that 
it is an application of virtualization [7][1] to the problem of 
change. RT namespaces complement existing network 
management approaches [5][10] by addressing a new class 
of high risk changes [2][6]. From an architectural point of 
view, the framing of locator/identifier split debate is altered 

by the support for change over time within locators 
themselves. 

9. CONCLUSION AND FUTURE WORK  
The paper presented the design issues associated with 
recursive temporal (RT) namespaces. Two existing 
research proposals were shown to be special cases of our 
more general design. A new proposal for Internet layer 
namespace virtualization based on RT namespaces, called 
Evolvable IP (EIP), was also presented. Future work 
includes the continued development and implementation of 
EIP, and demonstration of its feasibility. Other issues that 
are being investigated include routing, coordination, and 
switching processes. 
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