
Recursive Temporal Namespaces
Venkata K. Pingali

USC Information Sciences Institute
4676 Admiralty Way,

Marina del Rey, CA 90292
+1-310-448-8222

pingali@isi.edu

Joseph D. Touch
USC Information Sciences Institute

4676 Admiralty Way,
Marina del Rey, CA 90292

+1-310-448-9151

touch@isi.edu

ABSTRACT
Recursive temporal (RT) namespaces extend spatial
namespaces such as IP with the notion of a nested time
interval. RT namespace is an architectural approach to
dealing with the uncertainty associated with changes to
distribution, syntax or semantics of large-scale namespaces
that are associated with high cost and probability of failure.
We discuss the abstract design issues associated with RT
namespaces and two existing approaches that are special
cases of the general design. We also propose a variant of IP
based on RT namespaces that supports open-ended
evolution.

1. INTRODUCTION
Names, such as IP addresses, are used to identify the
endpoints of communication. Namespaces see two kinds of
changes; we observe both of these in the case of IP. The
first is commonly called renumbering or renaming, and
involves the redistribution of names. The second
corresponds to the shift from IPv4 to IPv6. This kind of
change is relatively infrequent, and involves modifications
to syntax or semantics of the namespace. Both these are
traditionally handled as one-off events, and are associated
with significant unbounded costs of disrupting existing
communication and services. Mechanisms that reduce the
risk associated changes reduce the barrier to change and
make the network more evolvable [7].

The Recursive Temporal (RT) namespace solution
eliminates the notion of timeless or absolutely persistent
namespace. Instead, a set of namespaces is used, in which
some namespaces are more persistent than others. By
overlapping the lifetimes of the namespaces, the network
supports changing or evolving in an endless fashion. We
organize these namespaces to make the process more
tractable. The overall expressiveness of the network also
increases through temporal name resolution and routing.

 This paper proposes the use of RT namespaces to enable
open-ended evolution in namespaces. RT namespaces
extend spatial namespaces such as IP with a notion of
lifetime. This simple idea is developed into a recursive
structure with a well defined set of operations. We discuss
the design issues associated with RT namespaces, and
show that existing proposals such as Shadow
configurations [1] and space-time contexts [8] are instances
of RT namespaces. We propose Evolvable IP, an instance
of an RT namespace that is deployable today and supports
the open-ended evolution of IP.

2. WHY ADD TIME TO NAMESPACES?
Changes in protocol name definition and distribution occur
for many reasons, including efficiency, scale, functionality
and administration. In most cases, this is not an issue
because the changes tend to be small in scale or infrequent,
or because communication disruption is acceptable.
However in some cases, none of these reasons are true, and
change is difficult. The fundamental problem underlying
change is the uncertainty associated with the goals, process,
and outcome of change. Small changes are known to have
high impact on the network [6]. The change from IPv4 to
IPv6 has proven to be much harder than initially thought
because of technical and economic issues. The nature of
uncertainty in each case is different, and so are the
approaches to deal with them. Uncertainty is important
because real world services depend on the correctness and
availability of the namespace and communication, and any
disruption extends beyond the namespaces into the real
world. Ubiquitous long-lived namespaces such as IP
support a large number of real world services. The impact
of unbounded disruption can range from simple
inconvenience to damage to life and property. In the
common case, network disruption lead to disruption of
valuable services such as business communication [6] and
health services [2].
Consider the simple case of two-node communication
shown in the Figure 1. Node X discovers the existence of
node Y and path L to Y, and stores the result of the
discovery in memory. When Y is renamed, X’s memory is
updated. The restoration of communication state is
followed by the restoration of application state. Syntactic
and semantic changes to the X-Y communication can be

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ReArch’08, Dec 9-12, 2008, Madrid, Spain.
Copyright 2008 ACM 978-1-60558-234-4/08/0012 ...$5.00.

modeled as changes in the computation at both ends. The
change is instantaneous, i.e., there is an instant of time
when the old communication state ceases to exist and the
new state comes into effect. This change model has the
value that it is simple, but it assumes complete information
about the nature and process of change. The question is
primarily one of efficiency of the change process.

Figure 1 Simple model of communication

This change model is not appropriate for all changes in
large-scale long-lived namespaces. First, we may not know
about the correctness of the changes, i.e., whether the
changes are meaningful and useful. Second, the locations
where the discovered names are stored in memory. such as
inside firewalls and applications, may not be known. Third,
the number of nodes that are impacted by a given change
may be large. In such cases, a large amount of coordination
may be required at the instant of change, and experience
suggests that it is hard to impose strict time bounds on
distributed consensus algorithms with imperfect processes.
Fourth, we may not know how the disruption of propagates
in the entire network due to other nodes’ dependency on X-
Y communication. Last, the impact of the disruption on the
application and therefore the real world may be unknown.
This requires us to find a much more incremental path to
change that enable dealing with the uncertainty involved in
the process of change. However, at every point in time the
modified namespace must be integrated with the rest of the
system to minimize disruption and enable testing.

Figure 2 Namespace extended with time

Time is introduced into namespaces as shown in Figure 2.
We associate a lifetime or time interval with each name,
and store the temporal information associated with the
name along with spatial information. When the node Y is
renamed to Y1, the state of Y is not modified; instead, a
copy of the state is created that is named Y1. While the new
relationship X-Y1 is being established, the X-Y
communication can continue uninterrupted. This may not
be possible in the unmodified system due to correctness
issues arising from concurrent use of conflicting names.
Once X-Y1 is tested and found to be correct,
communication using X-Y path is migrated to X-Y1.
Introducing time decouples the time of change from the
time when the change is committed or used. This simple

idea is developed further below to understand the full
implication of introduction of time into namespaces. The
resulting capabilities include recursion, mapping and
transformations.

3. RECURSIVE TEMPORAL NAMESPACE
The previous section introduced the basic notion of
temporal names as a two-tuple (time interval, spatial name).
Our notion of time interval is relative, and our focus is on
the relationships between time-intervals rather than
absolute values. Examples of relationships between time
intervals include inclusion, in which one time interval
covers another time interval, sequencing, in which one
interval occurs after another interval, and concurrency, in
which two intervals may overlap. The representation of
time itself may be explicit or implicit. The time intervals
can be thought of as belonging to a namespace that
supports partial order among the names. Eventually this
namespace will be renamed or refined. That, in turn, leads
another temporal namespace in order to support changes to
this namespace, ad infinitum, limited by the computation,
memory and management abilities of the network.
A temporal namespace is a partial ordered set of names,
and a temporal name is a member of that set. A spatial
namespace is a protocol-defined namespace in which
names are assigned to distinct protocol endpoints based on
some spatial attribute, such as abstract, topological or
geographical location. RT namespaces are effectively
directed acyclic graphs (DAGs) with spatial names as the
leaves and various temporal names as non-leaf nodes. DAG
edges indicate the temporal inclusion relationship between
names. Figure 3 shows a sample organization of RT
namespaces with ti representing the temporal, and sj
representing the spatial names. In the next section, we
discuss two existing examples of RT namespaces.

Figure 3 One possible organization of namespaces

A RT name is a path (ti1,ti2,...,tik,sj) in the DAGs from the
root to the leaf. Groups of RT names that differ in one node
name may be represented using a single path that uses a
group or set name instead of atomic node names. Each host
in the network has as many RT names as there are paths
from the leaves to the root – all of which may be
simultaneously valid and usable. In practice there might be
multiple such DAGs at any one time each having a
different change dynamic, distribution, security or other
properties. The organization shown may be the view from a
host in one part of the network, and the view may be

different from another part, if the spatial scopes are not
identical, which we expect to be the common case.
Spatial namespaces are created due to differences in
functionality, administrative boundaries, trust, performance
etc. Temporal namespaces are created to deal with changes
of various kinds and over different timeframes. Both are
transformed over a period of time. Together they determine
the structure of the DAG and choices for other design
parameters. The organization shown in Figure 3 is
somewhat arbitrary, and discovering meaningful
organizations is a key challenge. In the next section, we
discuss two recent proposals that are single-level. The
proposed Evolvable IP, discussed later, has two levels.

4. EXAMPLES
In this section we consider two recent research proposals
from the recursive temporal naming perspective. They both
incorporate single-level time into their system design.

4.1 Shadow Configurations
Shadow configuration [1] is a mechanism to deal with
reconfiguration of routers in networks. IPv4 routing and
forwarding functions are extended to support two
concurrent configurations, called real and shadow. The
real configuration is actively used to forward packets, and
the shadow is the new configuration that is being prepared.
The real configuration is used to set up the shadow and is
eventually replaced by shadow, at which point shadow is
renamed real and the existing real becomes the shadow.
The namespaces are isolated from each other and there is
no forwarding between the two configurations. Internal
data structures of routing processes are extended with
temporal naming. The configuration and testing
applications were modified to incorporate the notion of
shadow. The isolation on the wire is achieved using two
bits in the IPv4 header. The deployment of shadow is
coordinated across the nodes using a custom distributed
algorithm. The authors also present significant amount of
work on other complementary mechanisms that allow
performance measurement of the shadow configuration and
switching between the two.

Figure 4 Shadow configurations

Shadow configurations can be modeled as a single-level
RT namespace with temporal namespaces with two
members, shadow and real, as shown in Figure 4. Both
namespaces have identical spatial scope. The RT
namespaces discussion suggests that if applications such as
VoIP and VPNs are deployed in the network, then the
correctness of the new configuration requires more
extensive testing and the switching process is more

complicated. In such cases, mapping of names and
forwarding between real and shadow may be required.

4.2 Space-Time Contexts
Space-time contexts [8], upon which the idea of RT
namespaces is based, associates each name with a region of
interpretation called a context. Figure 5 shows a simple
deployment of three contexts over three nodes. The
objective of contexts is to enable renaming or redistribution
of names with minimal disruption. The use of contexts is
similar to that of Shadow configurations. A new context is
deployed when a part of the network is renumbered, and
the old context is deleted. An arbitrary number of contexts,
each with a different scope, may be deployed. Contexts are
dynamically deployed and integrated using cross-context
forwarding. The implementation extends IPv6 with a new
inter-context routing header within packets, inter-context
forwarding tables at specific nodes, separate and simple
spatial and temporal routing, and user-level processes to
coordinate the decentralized construction of the contexts.
Space-time contexts can be modeled as a specific kind of
temporal namespace that is single-level and flat, with
varying spatial scope, and limited temporal forwarding.
The RT namespaces discussion suggests that temporal
mapping between names would be eventually required, and
the single-level time assumption would have to be dropped.

Figure 5 Three contexts deployed over a small network

5. DESIGN ISSUES
Introducing time into namespaces raises a number of issues
and increases operational complexity. The fundamental
value of temporal extension is the separation of the time of
change from the time of use. This moves uncertainty to a
place where it can be handled better, at the price of
additional complexity. This tradeoff has also been observed
in economics and systems engineering. Detailed knowledge
of the deployment scenario is necessary to determine the
complete solution and tradeoffs. We discuss some of the
high-level design issues in this section.

5.1 Host Architecture
The host architecture must be modified to support isolation
between the states associated with various names.
Interfaces to application and higher protocol layers must be
extended to support binding to an arbitrary subset of
names. Routing requires intra-host discovery of RT names,
and forwarding requires delivery of messages across RT
namespaces. Dynamic deployment of temporal namespaces

requires intra-host cross-namespace capabilities covering
state management and testing. The changes are significant,
but the value gained through reduced disruption and
smoother evolution is significantly higher.

5.2 Protocols and Messages
At an abstract level, the boundaries of the protocol become
fuzzy as changes to syntax and semantics are incorporated
over time. It is more appropriate to talk about an aggregate
protocol, or a set of protocols instead of one. The design of
such a protocol set is incomplete, by definition. The key
change in the protocol state and message structure is in
terms of the notion of protocol endpoint. The source and
destinations are expressed as path in the RT namespace
instead of an atomic spatial name. These paths change over
the long term. Further, multiple names may be used to
exploit multiple-paths in time in addition to space. This
capability enables separation between control and data
paths of protocols in space-time instead of space-only.

5.3 Forwarding and Routing
The complexity of routing increases in four ways. First,
there is multi-level temporal routing in addition to spatial
routing. The two might be separate or integrated depending
on the deployment scenario. Efficient route computation
may or may not be possible depending on the degree of
opaqueness and compatibility of spatial routing. Second,
integration and removal of temporal namespaces from the
routing system results in convergence issues and
inefficiency. Third, expressiveness of the routing systems
must be increased to support avoid specific routes for
testing or other purposes. Last, the introduction of time
divides the Internet into timeful and timeless regions. One
simplifying factor is that the deployment is not expected to
cross enterprise boundaries, and therefore eliminates some
of the problems that make BGP-like protocols complex.
Further, constraints can be imposed over the frequency of
creation of namespaces, deployment scope or
syntax/semantics to reduce the space of possible routing
algorithms and enable simpler implementations.
Although routing may be complex, forwarding may be
relative simpler. Forwarding at the ‘leaf nodes’ is spatial-
only and timeless. Each leaf node has a unique spatial
forwarding table appropriate for the syntax and semantics
of that namespace. Forwarding at every other level is
temporal. A message that cannot be forwarded at a given
level tries to forward the message at the next higher level.
If no such level can be found, then the message is dropped.
Temporal forwarding can happen only between names that
are co-located and spatial forwarding between names that
are at one-hop distance or less. The structure of the
forwarding tables depends on the design of the RT
namespace. The examples herein impose additional
constraints to make the forwarding and routing
manageable.

5.4 Coordination
Every step during the lifetime of an RT namespace
involves coordination across hosts, including creation of
the namespaces, discovery, switching, and garbage
collection. The nature of coordination required depends on
the deployment scenario. The examples discussed in this
paper include a custom distributed algorithm in case of
Shadow configurations, and decentralized mechanism in
case of space-time contexts.

5.5 Decision Problems
The complexity of a system grows quadratically or worse
with the number of temporal namespaces introduced,
because the number of logical protocol endpoints increases
linearly, but the number of possible pairs of
communication increases quadratically. A number of new
decision problems are introduced that deal with the timing
and nature of namespace transformation and use, and
parameters such as the spatial scope. Early results [8] show
that computing the cost of disruption and the parameters of
the temporal namespace are hard (NP-Complete or harder)
even under strong assumptions. Therefore deployments of
RT namespaces are not expected unless the value
proposition is clear. The examples discussed in this paper
focus on scenarios including mobility, upgrades, and
reconfiguration.

6. NAMESPACE TRANSFORMATION
Change happens over time through transformation of the
RT namespace, i.e., modifying the DAG. A number of
operations are possible on the basic DAG that add or delete
nodes and edges. The modifications add and delete state,
and sometimes add and delete software. We discuss each of
these in this section.

6.1 Expand
Expansion is the process of adding nodes to the DAG.
Expansion is typically executed when the current
organization of namespaces is inadequate for capturing
changes to distribution, syntax or semantics of the
namespace, new nodes are added to enable deployment of
the modifications.

Figure 6 Operations for building recursive namespace

Figure 6 shows three operations that are used to build the
namespace, each with a different purpose. Figure 6(a)
shows addition of a parent to an existing node. This
corresponds to a “fork-lift” upgrade of the namespace from
being a purely spatial entity to becoming a space-time
entity. This is expensive because this involves significant
host software changes and changes to the way network is
managed. Figure 6(b) shows a child t2 being added to an

existing node t that already has a child t1. The addition of
the edge indicates that the time interval represented by t
includes the time interval represented by t2. There may or
may not be temporal forwarding between t1 and t2. Figure
6(c) shows the case where a new temporal t2 is added that
has the spatial scope and substructure of t1. The two are
‘siblings’, and may support forwarding. This is typically
used for renumbering. Both shadow configurations and
space-time contexts support dynamic addition of temporal
names as shown in Figure 6(c), but they are at only a single
level. They differ in terms of the timing and lifetime of the
expansion, and nature of the nodes added.

6.2 Collapse
Collapse is the process of deleting nodes and edges in the
DAG. Figure 7 shows the three basic collapse operations
on the recursive temporal namespace. There is one
operation corresponding to each operation shown in Figure
6. A name, and possibly the corresponding namespace, is
deleted when the change process is completed. All
communication is moved to other names/namespaces and
the specific name/namespace represented by the nodes is
deleted. In practical terms, this involves clean up of data
structures corresponding to the names. Figure 7(a) and
Figure 7(b) shows a name t1 being deleted. This primarily
involves cleaning up the state associated with t1. Figure
7(c) shows the case of a single parent that is being deleted,
i.e., there are no other members of the temporal namespace
to which t1 belongs. In this case, in addition to the cleanup
of state, the software associated with the temporal
namespace may be deleted as well. Both shadow
configurations and space-time contexts support deletion of
nodes as shown in Figure 7(b). In case of shadow
configurations, there is only one node to remove, but
multiple nodes may be removed simultaneously in space-
time contexts.

Figure 7 Operations for collapsing recursive namespace

6.3 Map
Given the flux in an RT namespace, there is a need to store
temporal mapping between names. This is useful for
migration and integration purposes. Existing mapping
services such as DNS may be extended or some other
mechanism may be introduced. The structure of the map
depends on the implementation, and may vary from a
centralized to a distributed entity. Figure 8 shows an
abstract representation of two maps between RT
namespaces. Neither shadow configurations nor space-time
contexts support mapping. IPNL [4] is an example of a
simple single-level recursive temporal namespace that uses

temporal mapping between names. The mapping is
primarily intended to support host mobility but can be
extended to support renaming.

Figure 8 Temporal mapping services

7. Evolvable IP
In this section we propose a protocol, Evolvable Internet
Protocol (EIP), based on IPv6. The objective of EIP is to
incorporate the notion of open-ended evolution – both short
term as well as long term – into the protocol itself assuming
that the fundamental notions of packets and unicast
destinations does not change. It is an instance of a two-
level RT namespace, i.e., has two levels of time. The first
level is aimed at short-term reconfiguration, and the second
level is aimed at longer-term changes in syntax and
semantics. EIP is effectively a collection of protocols in
which each is replaced by another over an appropriate
timeframe.
Figure 9 shows an organization of contexts intended to
enable transition from IPvX that could very well be IPv6 to
a hypothetical IPvY and beyond. The first level temporal
namespaces {t10, t11},{t00, t01, t01} and {t20,t21} represent
different address distributions of underlying spatial
namespace such as IPvX. The second level names {t0,t1,t2}
represent long-term changes to syntax and semantics of IP.
Figure 10 shows the packet header structure in which the
source and the destination are two-level RT names.

Figure 9 EIP scenario involving three versions of IP

Figure 10 Example EIP header

A simple prototype implementation of EIP is under
construction. The prototype builds on experience with
space-time contexts. Contexts already support first-level

temporal names for IPv6. Our EIP implementation extends
context implementation with a second-level temporal
routing table, as well as other features. A simplified IPv6
message format and forwarding capability is used as the
“base” on which to build EIP. Two aspects of IPv6 enable
the implementation of EIP – the support for link-local
addressing and the support for generic loosely-constrained
routing headers. The use of link-local addressing
effectively turns IPv6 into a link-layer protocol for EIP.
EIP source and destination addresses are encoded in the
routing header.
Support for contexts already involves a significant amount
of change to the host network stack covering address
assignment to interfaces, generic header processing in
IPv6, other network-layer protocols such as ICMP,
transport-layer protocols such as TCP, and the socket
interface. Applications such as route, ping and traceroute
were modified as well. EIP requires generalization of these
changes, an additional forwarding table, and user-level
commands. The EIP forwarding algorithm is relatively
simple. At each node, the second level temporal name, e.g.,
t2, is looked up to determine the next hop at the same level,
e.g., t0. If the latter is reachable within the host, then the
message is delivered to the namespace. If not, a lookup is
performed to determine the next hop at the next level, e.g.,
t11. The process is repeated again at the first level. There
are additional issues associated with transport protocols,
application interfaces, and address assignment to interfaces
that are addressed in the prototype. Beyond forwarding and
basic reachability across IP versions, EIP requires
extensions along several fronts including routing, mapping,
coordination and semantics.
This additional complexity is the price paid to manage risk
associated with a given change to IP. On the positive side,
multiple alternative future IP versions can be concurrently
pursued as a way to deal with uncertainty in timing,
correctness and value of individual changes.

8. RELATED WORK
Naming has been studied extensively [9]. Several aspects
of naming systems deal with time, including the lifetime of
the namespace itself, lifetime of the names and discovery
[3], versioning or change over a period of time [11], and
changes to syntax and semantics of the namespace. Our RT
namespace adds yet another explicit but limited notion of
lifetime to namespace that is dynamic, distributed, and
recursive. A single-level RT namespace is equivalent to
decentralized versioning on multiple trees. An RT
namespace is similar to a shadow configuration [1] in that
it is an application of virtualization [7][1] to the problem of
change. RT namespaces complement existing network
management approaches [5][10] by addressing a new class
of high risk changes [2][6]. From an architectural point of
view, the framing of locator/identifier split debate is altered

by the support for change over time within locators
themselves.

9. CONCLUSION AND FUTURE WORK
The paper presented the design issues associated with
recursive temporal (RT) namespaces. Two existing
research proposals were shown to be special cases of our
more general design. A new proposal for Internet layer
namespace virtualization based on RT namespaces, called
Evolvable IP (EIP), was also presented. Future work
includes the continued development and implementation of
EIP, and demonstration of its feasibility. Other issues that
are being investigated include routing, coordination, and
switching processes.

10. ACKNOWLEDGEMENTS
This work was partly supported by the National Science
Foundation (Grant No. CNS-0626788). Any opinions,
findings, and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily
reflect the views of the NSF.

11. REFERENCES
[1] Alimi, R. et al., "Shadow Configuration as a Network

Management Primitive," SIGCOMM, Aug 2008.
[2] Computer World, “The VA’s computer systems melt-

down: What happened and why,” Nov 20, 2007.
[3] Droms, R. (Ed.), “Dynamic Host Configuration Prot-

ocol for IPv6 (DHCPv6)," RFC 3315, Jul 2003.
[4] Francis, P., Gummadi, R., "IPNL: A NAT-Extended

Internet Architecture," SIGCOMM, Aug 2001.
[5] HP OpenView., Available at http://www.hp.com
[6] International Herald Tribune, “RIM traces BlackBerry

outage to poorly tested software update,” Apr 20 2007.
[7] Peterson, L. et al, “A Blueprint for Introducing Disru-

ptive Technology into the Internet,” HotNets-I, 2002.
[8] Pingali, V. K., “Addressing Uncertainty during Re-

naming using Space-Time Contexts,” Ph.D
Dissertation (in preparation), USC/ISI, 2008.

[9] Comer, D. E. et al, “Understanding naming in distrib-
uted Systems,” Distributed Computing 3(2), Jun 1989.

[10] Stallings, W., SNMP, SNMPv2, and CMIP: The
Practical Guide to Network Management, Addison-
Wesley Longman Publishing Co., Boston, MA, 1993

[11] Tichy, W. F., “RCS - A System for Version Control,”
Software Practice & Experience 15:7, July 1985.

[12] Touch, J. et al., “Virtual Internet Architecture,” ISI
Tech. Rep. ISI-TR-2003-570, Mar 2003.

