
Performance Analysis of MD5

Joseph D. Touch1

USC / Information Sciences Institute
(touch@isi.edu)

Abstract
MD5 is an authentication algorithm proposed as the required
implementation of the authentication option in IPv6. This paper
presents an analysis of the speed at which MD5 can be
implemented in software and hardware, and discusses whether its
use interferes with high bandwidth networking. The analysis
indicates that MD5 software currently runs at 85 Mbps on a 190
Mhz RISC architecture, a rate that cannot be improved more than
20-40%. Because MD5 processes the entire body of a packet, this
data rate is insufficient for current high bandwidth networks,
including HiPPI and FiberChannel. Further analysis indicates
that a 300 Mhz custom VLSI CMOS hardware implementation of
MD5 may run as fast as 256 Mbps. The hardware rate cannot
support existing IPv4 data rates on high bandwidth links (800
Mbps HiPPI). The use of MD5 as the default required
authentication algorithm in IPv6 should therefore be
reconsidered, and an alternative should be proposed. This paper
includes a brief description of the properties of such an
alternative, including a sample alternate hash algorithm.

1: Introduction

The current Internet Protocol (IP) is undergoing its first major
revision in 14 years [24]. As part of that revision, the new IP
(IPv6, [12]) proposes a number of required options that were not
required in the previous IP (IPv4, [24]). This paper describes a per-
formance analysis of MD5 [28], the proposed “required optional”
authentication algorithm in IPv6 [1]. Analysis indicates that MD5
may not adhere to the performance criterion of IPv6 [23], and thus
its mandate as the default for a required option in IPv6 should be
reconsidered.

This paper is organized as follows:
• An overview of MD5 and its relevance to IPv6.
• Measurements of MD5’s reference implementation.
• Manual optimizations to reference implementation.
• Analysis of the limits of a software MD5.
• Analysis of the limits of a hardware MD5.
• Recommendations for further work, and pending proposals.

1. This work is supported by the Advanced Research Projects Agency through Ft.
Huachuca contract #DABT63-93-C-0062 entitled “Netstation Architecture and
Advanced Atomic Network”. The views and conclusions contained in this document
are those of the authors and should not be interpreted as representing the official poli-
cies, either expressed or implied, of the Department of the Army, the Advanced
Research Projects Agency, or the U.S. Government.

1.1: IPv6 performance criterion
The technical criteria for IPv6 (also known as IPng) includes an

explicit performance criterion [23]:

A state of the art, commercial grade router must be able
to process and forward IPng traffic at speeds capable of
fully utilizing common, commercially available, high-
speed media at the time. Furthermore, at a minimum, a
host must be able to achieve data transfer rates with
IPng comparable to rates achieved with IPv4, using
similar levels of host resources.

This criterion can be summarized as “first do no harm2”. This cri-
terion is specified in IPv6 without condition; IP header options,
whether voluntary or required, are not excepted.

Several voluntary options in IPv4 have become so-called
required options in IPv6, notably authentication. Anoption is a
mechanism that can be enabled or disabled;voluntary options need
not be implemented to conform to the standard, butrequired
options must be implemented, but can still be enabled or disabled
on individual packets. Authentication is arequired option in IPv6.

The authentication option allows per-packet specification of the
particular authentication algorithm [1]. In keeping with the
“required option” spirit, one algorithm is required to be imple-
mented. The IPv6 authentication mechanism proposes MD5 as its
required algorithm.

Internet RFCs and Internet Drafts regarding authentication do
not address performance issues (as a rule). Notable exceptions are
the ESP encapsulation mechanism [19], a keyed MD5 [20], and
the technical criteria of IPv6 [23]. The claim in other documents is
that current implementations exhibit poor performance, but that
software optimizations or custom hardware will overcome this
limitation [10] [11] [28].

MD5 can be implemented in software on a 190 Mhz RISC pro-
cessor at 85 Mbps. On a Sun SPARC 20/71, MD5 executes at 57-
59 Mbps, but IPv4 executes at 120 Mbps (via Fore SBA-200 IP
over ATM). MD5 can also be implemented in 300 Mhz VLSI
CMOS at up to 256 Mbps. By contrast, the Internet Checksum of
IPv4 can be implemented in software at very high speeds (260
Mbps on a Sun SPARC 20/61, vs. 38 Mbps for MD5), and has
been implemented at 1.23 Gbps in a single inexpensive program-
mable chip (32 bit parallel at 26 ns in a $40 programmable logic
device chip [31]). MD5 does not keep pace with available link
rates (800 Mbps HiPPI), or available IPv4 implementations, in
violation of the performance criterion of IPv6.

1.2: MD5
MD5 is a message digest authentication algorithm developed

by RSA, Inc. [28]. It is an augmented version of the MD4 algo-

2. This phrase commonly refers to the treatment of a patient by a medical doctor, as
part of the Hippocratic Oath.

rithm [27]. The authentication algorithm computes a digest of the
entire data of the message, used for authentication. Typically, the
message digest is registered with a trusted third-party, or
encrypted via other means [20]. The digest is used by the receiver
to verify the contents of a message. It can also be used to encrypt
the contents of a message, via a second pass over the data by
another algorithm. MD5 requires that both the sender and receiver
compute the digest of the entire body of a message.

MD5 is used for authentication in a number of protocols. It is
also included as an encapsulation mechanism in SIPP, IPv6, and
IPv4 [19]. The following is a partial list of protocols or protocol
options using MD5. Some protocols on this list chose MD5 explic-
itly because of its use in SNMP V2, thus its implementation in
many routers (indicated by a star ‘*’):

• SNMP V2 [10]
• IPv6 * / IPng* [1] [12]
• IPng ESH* (uses DES) [3]
• IPv4 [19] [20]
• SIPP* (progenitor of IPng) [7]
• OSPF* [4]
• RIP-II* [5]
• RIPng* [17]
• TCP [11]
• SOCKS V5 [16]
• WWW’s Secure HyperText Transfer Protocol [25]
• WWW’s SimpleMD5 [13]

There is some concern that the performance of MD5 may not
keep up with these other protocols. SNMP V2 is a control proto-
col, not intended for high bandwidth continuous stream operation,
so protocol performance is not critical. Even so, SNMP V2 uses
several authentication mechanisms to optimize security vs. perfor-
mance, including one (DES-CBC) noted for its implementation at
1 Gbps in hardware (as indicated in [19]).

1.2.1 Overview of the MD5 algorithm
MD5 is a block-chained digest algorithm, computed over the

data in phases of 512-byte blocks organized as little-endian 32-bit
words (Figure 1). The first block is processed with an initial seed,
resulting in a digest that becomes the seed for the next block.
When the last block is computed, its digest is the digest for the
entire stream. This chained seeding prohibits parallel processing of
the blocks.

FIGURE 1. MD5 block-chained digest algorithm

Each 512-byte block is digested in 4 phases. Each phase con-
sists of 16 basic steps, for a total of 64 basic steps. Each step
updates one word of a 4-word accumulated digest, using the entire
intermediate digest as well as block data and constants. In general,
each basic step depends on the output of the prior step, defeating
simple parallelization of the steps. The basic structure of the steps

Data Block
(512 bytes)

Seed
(4 32-bit words)

Block
Digest

Algorithm

Digest
(4 32-bit words)

Data Block
(512 bytes)

Block
Digest

Algorithm

Digest
(4 32-bit words)

is shown below (<<< denotesrotate). The accumulated digest is
denoted by {A,B,C,D}, as in RFC-1321 [28]:

A = B+((A+ F(B,C,D) + X[i++] + k1)<<<k2)
D = A+((D+ F(A,B,C) + X[i++] + k1)<<<k2)
C = D+((C+ F(D,A,B) + X[i++] + k1)<<<k2)
B = C+((B+ F(C,D,A) + X[i++] + k1)<<<k2)

There are 16 steps based on each of 4 logical functions; 4 based
on F are shown here. The constants k1 and k2 are not necessarily
identical in basic steps, and are not relevant to this analysis. The
logical functions (^ denotesxor) are:

F(x, y, z) = (((x) & (y)) | ((~x) & (z)))
G(x, y, z) = (((x) & (z)) | ((y) & (~z)))
H(x, y, z) = ((x) ^ (y) ^ (z))
I(x, y, z) = ((y) ^ ((x) | (~z)))

The steps have optimization limitations, due to the mathemati-
cal properties of the operations used:

• additions can be reordered by commutative laws,
• rotate does not distribute over addition, and
• addition does not distribute over rotation or logicals

2: Software Implementation Measurements

The MD5 RFC-1321 includes a reference implementation writ-
ten in C [28]. The performance of this software gives a baseline
against which to compare optimizations. Measurement of the per-
formance of the reference implementation precedes the abstract
analysis to determine the focus of the analysis, and the extent of
the optimization required.

The MD5 reference implementation software was measured in
four configurations on a variety of machines. The Raw configura-
tion used the reference code as provided in the RFC, with modifi-
cations to per-process time measurement rather than “wall-clock”
time and cache management. The Optimized configuration
included the modifications described in Section 2.1, notably byte-
order optimizations. Both configurations were executed with 50
passes over alternating blocks of 2 M bytes, to avoid observing
cache effects (the i486 used 100 runs over blocks, due to limita-
tions of the 486 platform). This also emphasized the performance
of the block digest component, rather than the “housekeeping”
overhead. The results are presented in Table 1 and Figure 2.

Two additional runs measured the performance using external
(off-chip) and internal (on-chip) caches. TheExternal-Cache run
executed 5,000 passes over a single 20,000 byte block. TheInter-
nal-Cache run executed 20,000 passes over a single 5,000 byte
block (the HP712 used 100,000 passes over a single 1,000 byte
block, due to hardware limitations). The values chosen for block
sizes were based on information on external and internal cache
sizes as published with the SPEC Benchmark results [8].

All four configurations used randomized block initializations to
remove potential data-dependent performance differences. MD5 is
not a data-dependent algorithm, but some architectures could have
exhibit data-dependent performance variations (though they did
not). The code was compiled under both native andGNU-basedC
compilers (where available) with all optimizations.

The optimized code spent 95% of its time in the main decode
routine on all machines. On little-endian machines this represents
only the MD5 data digest routine. On big-endian machines, 2/3 of
the time was spent on MD5 data digest, and 1/3 was spent on data
byte reordering, required because MD5 uses little-endian grouping
of the byte stream. The byte swap cost was higher than expected
due to the data copying involved.

FIGURE 2. Measured performance (plot of values from Table 1)

a. Measured performance values are +/-3% for a 95% confidence interval averaged over 20 runs.

Host CPU
CPU
(Mhz)

Caches
External / Internal

MD5 Rate
[no cache]

(Mb/s)

Optimized
MD5 Rate
[no cache]

(Mb/s)

In-Cache MD5 Rate

External
Cache
(Mb/s)

Internal
Cache
(Mbps)

Dec 5x33 MIPS 3000 33 128 KB / - 16.5 17.9 18.2 -

Dec 4000 / 710 Alpha 190 4 MB / 8 KB 58.0 86.6 95.3 99.3

HP 712 PA 7100lC 60 64 KB / 1 KB 29.9 32.3 33.2 32.8

HP 9000 / 730 PA 1.1 66 256 KB / - 29.9 32.7 33.7 -

IBM RS6000 / 410 PPC 601 80 512 KB / 32 KB 47.5 47.4 48.8 49.1

IBM RS6000 / 3AT POWER2 59 64 KB / 32 KB 53.4 54.9 56.1 56.1

IBM RS6000 / 590 POWER2 66.6 256 KB / 32 KB 61.2 63.0 63.4 63.3

Intel 486 66 - / 8 KB 19.0 30.9 - 33.3

Intel Pentium 90 512 KB / 8 KB 32.5 43.8 45.5 46.7

SGI MIPS 4400 150 1 MB / 16 KB 48.1 51.2 55.0 55.6

Sun 2 SPARC 40 64 KB / - 12.3 13.2 13.8 -

Sun 10/51 Super-SPARC 50 1 MB / 16 KB 34.7 36.8 37.9 38.3

Sun 20/61 Super-SPARC 60 1 MB / 16 KB 35.9 37.9 39.1 39.5

Sun 20/71 Super-SPARC2 75 1 MB / 16 KB 53.7 57.0 58.5 58.9

TABLE 1. Performance parameters of various platformsa

Mbps

0

20

40

60

80

100

DEC
5K

MIPS

DEC
Alpha

HP
712

HP-PA

HP
730

HP-PA

IBM
6K/410

PPC

IBM
6K/3AT

Pwr2

IBM
6K/590
Pwr2

Intel
486

Intel
Pentium

SGI
4400
MIPS

Sun
SS2

RT601

Sun
10/51
SupSP

Sun
20/61
SupSP

Sun
20/71

SupSP2

Reference

Optimized, No Cache

Optimized, External-Cache

Optimized, Internal-Cache

120

UDP

UDP

Table 1 closely verifies a reported figure of 100 Mbps for a
DEC Alpha1. This figure was found to occur only for data in the
on-chip cache; optimized code run to avoid caching resulted in
86.6 Mbps. This table also indicates the measured speed of UDP/
IP on Sun SPARC 2, 10/51 and 20/71 machines (measured at
USC/ISI using Fore SBA-200 IP over ATM). Note that even the
cache-based optimized software cannot keep pace with the IP
capabilities of some of these machines.

2.1: Specific Modifications
The Raw configuration included the following modification:

• Change CPU timer fromgettimeofday() to getrusage()
• Add appropriate code and flags for:

- use block size, repeat number command-line options.

- use randomized initialization of test block.

- double-buffer the test block.

The flags were added to permit run-time configuration, and to
provide configuration for cache management. The CPU time mea-
surement was changed to use the more accurategetrusage() func-
tion, although even that function is known to have potentially large
errors on heavily-loaded machines [18]. Lightly-loaded machines
were used to avoid such errors.

The Optimized configuration included modifications:
• On little-endian machines, load 32-bit words directly.

- Avoid byte-swapping and copy overhead altogether.

• On big-endian machines, use more effective swap code.
- Use a more efficient byte-swap source code.

- Unroll the byte swap routine.

These optimizations can be grouped into categories:
• cache management
• byte-swapping optimizations
• loop-unrolling

Manual optimizations were limited to overhead code only.
Prior to optimization, overhead was 33% on all machines. After
optimization, overhead was reduced to 4% on little-endian
machines, and 26% on big-endian machines. Manual optimization
of the block digest algorithm was not performed after analysis
indicated the effective yield would be low (see Section 3).

2.1.1 Cache management
Preliminary test runs indicated that the reference implementa-

tion of MD5 exhibited cache effects. This code included a test-
mode, in which multiple passes over a single data block emulated
the body of a long message. This data block was initialized with
data prior to the execution of the digest algorithm. The combina-
tion of data initialization and block repetition over-emphasizes the
effects of caching on some architectures, especially because the
test-block size of 1,000 bytes is within the on-chip cache size of all
architectures tested.

This source code was modified to reduce over-emphasis of
cache effects. Provisions for double-buffering were added. By
alternating the data blocks used during block repetition, the effects
of caching were avoided. Command-line configuration of the
block size permitted configuration for blocks larger than the cache
(with double-buffering, this eliminates cache effects altogether),
blocks that fit in the external cache but not the internal cache
(without double-buffering), and blocks that fit in the internal cache

1. Personal communication, R. Atkinson, November 1994.

(without double-buffering). Command-line configuration of the
number of block repetitions were used such that the resulting data
blocks emulated a 2 M byte stream.

It is not clear whether internal-cache, external-cache, or non-
cached measures are more appropriate measure of MD5 perfor-
mance. On hosts using DMA data transfer, non-cached perfor-
mance is appropriate. On hosts using programmed I/O, the
computation of MD5 might be overlapped with the transfer of IP
packets to the network interface, so internal-cache performance is
more appropriate. There are also rumored proposed architectures
that support DMA directly into the processor’s external cache.

2.1.2 Byte-swapping optimizations
The MD5 algorithm uses little-endian groupings of the byte

stream, so implementations on native architectures can avoid the
byte ordering and copying routine. Avoiding the reordering and
copying resulted in code that ran in 2/3 the original time, as
expected. The specification of little-endian byte order is opposite
that of “network standard byte order”, which is big-endian [24].

On big-endian architectures, the reordering was optimized by
replacing it with a more efficiently compiled source code. The ref-
erence code used the following byte-swapping code, which is
machine independent (i.e., correct on both big- and little-endian
machines), but inefficient:

out[i] = ((u_int)in[j])
| (((u_int)in[j+1]) << 8)
| (((u_int)in[j+2]) << 16)
| (((u_int)in[j+3]) << 24)

This code compiles to the following pseudo-assembly, yielding
4 loads, 6 internal operations, and one store:

loadb in@j r1
loadb in@j+1 r2
loadb in@j+2 r3
loadb in@j+3 r4
shl r2,#8,r2
or r2,r1,r1
shl r3,#16,r3
or r3,r1,r1
shl r4,#24,r4
or r4,r1,r1
stw r1,out@i

The following code was found to run faster:

/* left rotate */
#def ROL(x,n) ((x)<<(n))|((x)>>(32-(n))))
temp1 = ROL(((u_int)input[i]),16);
temp2 = temp1 >> 8;
temp1 &= 0x00ff00ff;
temp2 &= 0x00ff00ff;
temp1 <<= 8;
out[i] = temp1 | temp2;

The second code compiles to 8 internal operations on machines
with no rotate or swap opcodes, and uses a single 32-bit load (see
Table 2). This sequence has more internal operations (8, vs. 6
before), but is much more efficient in its interaction with memory
(1 word-load, vs. 4 byte-loads before). This code runs 25% faster
than the original time. On big-endian machines, this was responsi-
ble for an overall speedup of approximately 9% (25% * 33% of the
code is a reduction of 8.3% in the overall speedup, or a speedup of
1/0.917 = 9% faster).

On the HP PA-RISC architectures, this source compiled to only
6 internal instructions because it has a 32-bit rotate instruction1.
The following code took 1 load, 1 store, and 5 internal operations,
because this machine has a 32-bit rotate (see Table 2). As a result,
the number of internal operations further decreased from 6 to 5, an

additional 1% improvement in overall optimization. This code was
not used on other machines because there it would generate a
(longer) sequence of 9 internal instructions.

out[i] = (ROL(in[i],8) & 0x00ff00ff)
| ROL(in[i] & 0x00ff00ff,24);

The following table summarizes the length in opcodes of the
most efficient byte reordering algorithms, based on given opcode
capabilities. It assumes a single 32-bit load before, and a single 32-
bit store afterwards:

This optimization replaces 4 loads and 6 compute operations
with 1 load and 8 compute operations. The result is a trade of 3
loads for 2 computes. Even on current RISC architectures, loads
take multiple clocks, due to memory access delays (Figure 3).
Loads are typically scheduled and queued, such that subsequent
operations on registers pending loads will stall until the load com-
pletes. This trade-off, between computation and memory access,
can be used to develop a faster hash algorithm. (Section 6.2).

The potential parallelism differs as well. The reference code
swap has higher compute parallelism, but no load parallelism. The
optimization allows 2-way compute parallelism. It also allows
pipelined loads, because the load time is small compared to the
compute time (the height of the icons in Figure 3 is approximately
representative of execution time).

On the architectures examined, a 25% speedup was measured.
Even given the complex interaction of register scheduling and load
queues, the increase in compute time is more than accounted by
the reduction in load time.

2.1.3 Loop-unrolling
Loop-unrolling is provided by many current compilers. In the

case of the MD5 reference code, more efficient loop-unrolling was
possible by converting array indices into directly incremented
pointers. Manual loop unrolling was required for the minimal
byte-swapping optimizations described in Section 2.1.2.

1. HP PA-based machines do not strictly have a rotate instruction. They have a shift-
right instruction that can use two copies of a 32-bit register as a virtual 64-bit source,
i.e., “shr (r1,r1) #8 r2”. The result is effectively a 32-bit rotate instruction in one
opcode.

Opcode
Capability

Optimal
Length Optimal sequence

Full swap 1 swap r1,r1

16- and 32-bit
rotates

3 rot32 r1,#16,r1
rot16 r1H,#8,r1H
rot16 r1L,#8,r1L

32-bit rotate
only

5 rot r1,#8,r2
and r2,#mask,r2
and r1,#mask,r1
rot r1,#24,r1
or r1,#r2,r1

32-bit shift
only

8 shr r1,#16,r2
shl r1,#16,r3
or r2,r3,r4
shr r4,#8,r5
and r4,#mask,r4
and r5,#mask,r5
shl r4,#8,r4
or r5,r4,r6

TABLE 2. Optimal swap depends on opcodes available

FIGURE 3. Data flow analysis of swap execution

3: Software Analysis

Analysis of the manual optimizations in Section 2.1 indicated
that analytical bounds were sufficient predictors of performance
limitations (e.g., swap analysis). Manual optimization of the main
digest algorithm was postponed to determine the analytical perfor-
mance speedup potential. The main block digest algorithm differs
from the byte-swap algorithm, in that byte-swapping should be a
very efficient operation on many machines. Analysis of the main
digest algorithm is more complex.

3.1: Analysis of MD5 costs
The MD5 algorithm costs are proportional to the cost of a basic

step. For each word of input, 4 basic steps are executed. These
basic steps have little opportunity for pipelining or parallelization.
Thus by analyzing the costs of a basic step, the overall perfor-
mance limit can be determined. The basic step can be mapped as a
data flow diagram (Figure 4). The critical path in this diagram is
indicated by the black lines; the other paths are in grey. In this dia-
gram, dependencies on previous steps (as indicated with a star ‘*’)
have been delayed (pushed as low as possible).

The time to process a basic step depends on the time to process
each step, as well as the amount of parallelization possible. As
described before (Section 2.1.2), the cost of arotate operation can
range from 1-3 opcodes on a RISC machine; CISC machines
exhibit similar variability in the number of clock cycles required to
execute this instruction. The cost of the logical operations also
vary, depending on whether the processor has a separate or com-
binedAND-NOT and OR-NOT instructions. Table 4 indicates the
cost of theAND-NOT/OR-NOT androtate instructions on various
processors. The time to processes the logical functions F,G,H,I can

<< 16 >> 16

|

>> 8 &= M

&= M << 8

|

Load

2-Way Parallel Swap
Compute-bound

Load

<< 8 << 16 << 24

| |

|

3-Way Parallel Swap
Memory-bound

Load

Load

Load

similarly be diagrammed both without and with theAND-NOT/
OR-NOT operators (Figure 5 and Figure 6). In each case, X is
pushed as low (late) in the diagram as possible.

FIGURE 4. Dataflow timing diagram for a basic step

FIGURE 5. Dataflow diagrams for functions F,G,H, and I

FIGURE 6. Function dataflows withAND-NOT/ OR-NOT

3.1.1 Serial cost
The serial cost to execute the basic step in Section 1.2.1 is the

sum of the cost of executing its opcodes. There are 4 additions, 1
rotate, and the cost of the logical operation. On aNOT only
machine, the logical functions F,G,H,I cost 4,5,2, and 3, averaging
to 3.5. On anAND-NOT machine, F,G,H, and I cost 3,3,2, and 2,
averaging 2.5. The total is 7.5 +rotate on aNOT onlymachine,
and 6.5 +rotate on anAND-NOT machine. As noted before (Sec-
tion 2.1.2),rotates cost either 1 or 3 opcodes. The resulting cost
for serial operations is indicated in Table 3. The cost is presented
as an average of the costs for each of the different logical functions
(i.e., 4 times the average is the cost of executing one of each step).

3.1.2 Parallel cost
Critical height denotes the number of operations between the

highest appearing data dependency and the output (Figure 4). In
the case where explicit NOTs are required (Figure 5), the respec-
tive critical heights for F,G,H,I are 3,2,1, and 2, for an average of
2. In the case whereAND-NOT is available, the critical heights are
2,2,1, and 2, and the average is 1.75. The overall height of F,G,H,I
include 2 additions and 1 shift, or a total of 4 + shift on aNOT

+

+

<<< k2

+

+

Logical
Functions

X[i]

A k1

B* DC

A

(2-3 levels,
2-wide)

&

|

~
x* y

&

z

x*

F(x,y,z)

&

|

~
x* z

&

y

z

G(x,y,z)

^

x*

y

^

z

H(x,y,z)

|

^

~
x*

y

z

I(x,y,z)

&~&

|

x* y

&~ |~

x*z

F(x,y,z)

&

|

x* z zy

G(x,y,z)

^

x*

y

^

z

H(x,y,z)

^

x*

y

z

I(x,y,z)

machine, and 3.75 + shift on anAND-NOT machine. As noted
before (Section 2.1.2), rotates take between 1 and 3 opcodes. The
matrix of possibilities for parallel architectures is shown in
Table 3.

In most cases, there is a parallelism potential of 2-3 integer
operations. This is probably the reason the Sun SPARC 20/71,
with a Super-SPARC2 2-way integer parallel CPU, achieves more
of a speedup compared to a 20/61 than CPU speed differences
alone account (Table 1). If CPU speed alone were the difference,
we would expect the Sun 20/71 to operate at 88 Mhz, rather than
its real value of 75 Mhz.

On most machines there were 1-4 opcodes of potentially unnec-
essary overhead. Subsequent examination indicated that the over-
head was required, either for explicitly loading constants (1-2
opcodes on the Sun, Intel, HP, and Dec Alpha), or for zeroing out
high-ends of 64-bit registers (2 opcodes on the Dec Alpha). This
leaves little opportunity for manual optimization.

There are 4 basic steps executed for each word of input and 10-
12 opcodes per basic step, so there are a total of approximately 40-
50 opcodes required per word of input (Table 4). This is inordi-
nately high, and will limit the bandwidth of processors to a maxi-
mum of 1/50th their MIPS rate. Table 4 also indicates that the
potential for speedup (right-most column) is limited.

a. Fractional costs indicate averages. Also, some CPUs have only
one of AND-NOT / OR-NOT.

NOT only AND-NOT / OR-NOT

1-ROT 3-ROT 1-ROT 3-ROT

Serial 8.5 10.5 7.5 9.5

Parallel 5 7 4.75 6.75

TABLE 3. Costs of basic steps in opcodesa

Machine CPU

AND/
NOT

Opr.
Rot.
Opr.

Serial
Limit Obs.

%
Poss.

Dec 5x33 MIPS 3000 2 3 10.5 10.5 1.00

Dec 4000/710 Alpha 1 3 9.5 13.75 1.45

HP 712 PA 7100lC 1.5 1 7.75 9.75 1.26

HP 9000/730 PA1.1 1.5 1 7.75 9.75 1.26

IBM RS/410 PPC 601 1 1 7.5 8 1.07

IBM RS/3AT POWER2 1 1 7.5 8 1.07

IBM RS/590 POWER2 1 1 7.5 8 1.07

Intel 486 2 1 8.5 10.5 1.24

Intel Pentium 2 1 8.5 10.75 1.26

SGI MIPS 4400 2 3 10.5 10.5 1.00

Sun 2 SPARC 1 3 9.5 11.5 1.21

Sun 10/51 Super-SP 1 3 9.5 11.5 1.21

Sun 20/61 Super-SP 1 3 9.5 11.5 1.21

Sun 20/71 SuperSP2 1 3 9.5 11.5 1.21

TABLE 4. Measured opcode cost of a basic step

The software analysis indicates that the serial execution speed
dominates the current cost of the MD5 algorithm. Superscalar
RISC CPUs, which can issue multiple integer operations in a sin-
gle clock, are of limited use. MD5 supports a parallelism of 2-3
integer operations in software. CPUs optimized for floating-point
operations are of no help, because MD5 is an integer only algo-
rithm.

MD5 also inhibits software pipelining, by the frequency of the
reuse of the intermediate hash data. This, combined with analysis
of the opcodes used for MD5, indicate that MD5 may not be opti-
mally tuned to the expected opcode scheduling of current proces-
sors. Other hash algorithms may be able to exploit the trade-offs in
load vs. compute latency or unused memory bandwidth (if any)
(Section 6.2).

4: Hardware Analysis

The software analysis indicated a performance bound that is
insufficient to keep pace with IPv4 implementations. A hardware
analysis was performed to determine the speed and size of a poten-
tial hardware implementation.

The parallel implementation was used for the hardware analy-
sis, based on the basic step dataflow diagram (Figure 4). The hard-
ware design is a clocked dataflow implementation of the abstract
dataflow diagram, including the critical path indicated in black
(Figure 7). The 3-input logical functions F,G,H,I were replaced
with a single logical block. The four adders remain.

For VLSI CMOS implementation, the one fast adder has a sin-
gle-cycle time of 3.2 ns, and requires 3.2 ns precharging [14]. This
adder would run at approximately 300 Mhz, and require two
clocks per add (i.e., supporting a 150 Mhz processor). Therotate
uses with a zero-cost wiring permutation in the best case, and logi-
cal circuit in the worst. CMOS latch setup time can be as low as 2
ns. As a result, we can design a clocked CMOS circuit with a 5.2
ns - 3.2 ns clocks (dictated by the adder) and 2 ns latch setups.

The critical path through the basic step is 6 clocks long, i.e.,
31.2 ns for the critical path of each basic step (Figure 8). Given 4
basic steps per word of input, there are 124.8 ns per word of input,
or 256 Mbps.

A multi-chip CMOS implementation would require 15 ns per
32-bit addition and 8 ns per logical function or rotate (including
off-chip driver delays). The resulting speed of the critical path
(two adds, one logical, onerotate) would be 46 ns per step, or 184
ns per word of input. The resulting system would require approxi-
mately 9 chips (2 adders, 4 PLD logical units, 1 shifter, 1 RAM, 1
register file) speed would be 175 Mbps.

Both implementations assume a parallelization of 2 logical
operations and 2 32-bit additions, as well as near-zero times for
register update (due to write-through to the next stage). This
design requires a parallelism of 2 adders, 4 logical units, and 1
shifter (Figure 7). The chip requires the following:

• Functional units
- 2 high-speed 32-bit adders

- 4 high-speed logical units (one for each F,G,H,I)

- 1 high-speed barrel-shifter

• Storage units
- ROM of 64 words of 37-bits (32-bit k1, 5-bit k2)

- 32 RAM/register entries of 32-bit block data

- 12 32-bit registers for the accumulated digest

The functional units are obvious from the dataflow diagrams.
The ROM represents the addition and rotation constants for each

step. The RAM comprises two buffers of data blocks, such that
one can be used for computation while the other is being loaded.
The registers store three sets of the hash - one being currently
updated, one from the previous block (for block chaining), and one
accessible externally during the current hash. This amount of stor-
age and function is feasible in existing custom CMOS and possibly
in GaAs, but probably would not be feasible in ECL.

As with the software, this is not sufficient to keep pace with
existing hardware for IP, capable of speeds in excess of 1 Gbps.

FIGURE 7. Hardware timing diagram (2 steps shown)

FIGURE 8. Timing for a clocked, precharged circuit

+

+

<<< k2

+

+

Logical
Functions

X[i]

A k1

B DC

A

(2-3 levels,
2-wide)

+

+

<<< k42

+

+

Logical
Functions

X[i+1]

D k3

CB

D

(2-3 levels,
2-wide)

Prch

Prch

Prch

Prch

+

+

<<< k2

+

+

X[i]

A k1

B DC

A

Func

Prch

Prch

Prch

Prch

+

+

<<< k4

+

+

X[i+1]

D k3

CB

D

Func

0

1

2

3

4

5

Clock

6

5: A Word About MD4 and other alternatives

The analysis of MD4 is similar to that of MD5. MD4 uses only
3 phases of 16 basic steps, so the cost is 3 basic steps per word of
input, rather than 4 [27]. The critical path of a basic step is further
reduced by the final addition, so the resulting algorithm can run
with one add, one logical function, and onerotate. MD4 is
expected to run in 2/3 the time of MD5. MD4 is not necessarily the
best substitute for MD5, due to security considerations.

Implementations of other algorithms have been measured as
follows. MD5 is given for comparison; all measurements are in
software on a Sun SPARC 20/71:

• MD2 [15] - 1.8 Mbps
• SHA [22] - 30 Mbps
• DES [21] - 20.6 Mbps
• MD5 - 57 Mbps

The result is that current alternatives are slower than MD5 in
software. MD2 and SHA are message digest algorithms; DES is an
encryption algorithm.

5.1: Expected hardware acceleration
DES has a hardware implementation that runs at 1 Gbps in

GaAs [19]. This factor of 50x improvement in hardware is not a
representative speedup for arbitrary algorithms. MD5 in particular
is difficult to accelerate in hardware.

DES can be accelerated by a factor of 50x in hardware, because
its basic operations (bit select and bit-logical) are particularly slow
in software (3-4 opcodes each), and trivially fast in hardware
(implemented with a wire).

The basic operations of MD5 are 32-bit additions. The funda-
mental clock rate of a CPU in a technology is largely limited by
the speed at which these additions can occur. There is no advan-
tage to building custom hardware; little further speedup is possi-
ble. As a result, MD5 can be accelerated by a factor of 4x in
hardware.

Arbitrary algorithms can be accelerated by a factor of 10x when
moved from software to hardware (this is an estimate).

6: Suggested Courses of Action

The MD5 algorithm, whether in hardware or software, cannot
keep pace with existing IPv4 implementations. As a result, it vio-
lates the requirements of IPv6, of “first doing no harm” in reduc-
ing processing costs compared to IPv4. Although most
mechanisms using MD5 propose a per-message digest, paralleliza-
tion is prohibitive because a software implementation is desired. In
addition, streamed MD5 throughput will always be fundamentally
limited.

There are several alternatives to be considered, the best of
which are:

• Modify MD5 to increase its performance
• Propose an alternative hash algorithm

6.1: MD5++
MD5 has performance limitations and design choices that

affect its use in IPv6. First and foremost, the choice of little-endian
byte-order is a detriment to its use in the Internet, where network-
standard byte order is big-endian. Redefining MD5++ to use big-
endian order will increase its implementation speed by 33% on
native architectures. This argument is based on the assumption that
IP processing should uniformly occur in big-endian order, because

much of it already is. This modification will have no effect on the
security analysis of the algorithm.

Another modification to MD5 would permit parallelization,
both in custom hardware and software on integer-parallel architec-
tures. There are several proposals to modify MD5 to permit finite
parallelism over a single stream. One solution replaces chaining
with per-block seeds [8]. Each seed is computed as a hash of the
offset of the block in the stream, thus retaining the block-order
dependency of block chaining. It does not retain the property that
the digest of a block is dependent on the contents of all prior
blocks. Another proposes to replace a linear block-chain (Figure 9)
with a finite number of block chains (Figure 10). A predetermined
finite number of chains are processed from independent seeds,
such that the I-th block is part of the “I mod K”-th chain. The
resulting sequence of K digests forms another message, which can
be MD5-encoded using a single-block algorithm1. This supports
finite parallelism to provide adequate bandwidth at current pro-
cessing rates, without providing arbitrary power for spoofing. Fur-
ther analysis is required to determine its authentication properties.

FIGURE 9. MD5 linear block-chained digest algorithm

FIGURE 10. MD5 interleaved block-chained digest
algorithm (with final digest-of-digest shown)

This proposal increases the performance of MD5 over continu-
ous streams of blocks. IPv6 uses per-header authentication digests,
so that a simple per-packet parallelization would suffice. This
assumes that packet digests are not chained for other reasons. Nei-
ther parallel solution increases the performance of MD5 on a sin-
gle processor. The IPv6 performance criterion requires
implementations to operate as fast as IPv4, presumably on a single
processor. MD5 does not, partly due to the complexity of the algo-
rithm, and partly due to its processing the entire body of a packet
(rather than only the header).

These two proposals together, of big-endian byte order and 4-
way parallelism, comprise a modified MD5 that we call
“MD5++”.

1. proposed independently by the author [30] and by Burt Kaliski of RSA, Inc.

6.2: An alternate hash algorithm
In the process of analyzing MD5, there are several design prin-

ciples that were observed. Some affect the performance of hard-
ware, some affect the performance of software:

• Avoid bit-based operations (slows software)
• Avoid carry-based scrambling (slows hardware)
• Realize that rotates can be costly (as much as 3 opcodes)
• Use finite parallelism (will help software and hardware)

These techniques have been used elsewhere to develop hash
algorithms with as little as ~10 opcodes per 32-bit word of input.
down from the 40-50 that MD5 uses [29]. Performance measure-
ments for that algorithm were not available at the time of publica-
tion, but that estimate uses self-modifying code, which may affect
its performance on processors with write-through instruction
caches.

In RC5, a parameterized number of phases of data-dependent
rotates are used to compute a symmetric block-cipher (comparable
to DES) [26]. For a 32-bit quantity to have the resulting hash
depend on a 32-bit data-dependent rotate would require 7 rounds
of 5-bit hashes. Data-dependent rotates are costly in software,
requiring 2 additional opcodes per rotate (mask constant, shift data
to right of register), not including the fact that rotates are not single
opcodes on many RISC processors. As a result, this algorithm may
not be competitive with MD5 in performance, although analysis
was not possible prior to this publication. RC5 has the feature of
being parameterized, such that the levels of security and perfor-
mance can be adjusted by changing the number of rounds, word
size, and key size. This is a useful feature for any hash or encryp-
tion algorithm.

An alternate hash algorithm can be developed by using some of
these recognitions, together with a few trade-offs. Note that hash-
ing does not have the advantage of off-line precomputation of one-
time pads that suffices for encryption. By design, a hash must
access every word of input with a high level of “strength”, to pro-
vide authentication over the entire data stream in a uniform fash-
ion.

The alternate hash algorithm (called “AHA” for brevity only)
should provide cross-bit scrambling like 23-bit addition or data-
dependent rotates, but more efficiently. A lookup-table provides
arbitrary bit scrambling, of which rotates and additions are
instances. Such a lookup table also trades space and memory band-
width for computation speed. Provided that the table can reside in
a local cache, a performance advantage might be achieved.

The AHA is based on the notion of finite-state-machine hash
algorithms. It uses 16-bit table lookups, because 64 K-word tables
can be stored effectively current caches. The basis of the algorithm
is as follows:

state ^= table[state ^ data[i]]

AHA grabs the data in 16-bit units, XOR’s that with the current
state, looks the result up in a 64 K table of 32-bit words, and XORs
the result back into the state. By keeping 8 words of state and
weaving the state variable accesses, an integer parallelism of 8 is
achieved.

The AHA algorithm is thus based on FSM hashes. The table
lookup depends on the current state and the input, thus making the
algorithm input-order sensitive, although allowing finite parallel-
ism of the input data (because there are 8 half-words of state). The
table is small enough to fit in a local cache. The use of lookups
replaces that of rotates or additions, to perform thorough scram-
bling of the data. The table can be either constant or session-

dependent, as required to ensure sufficient authentication without
unnecessary overhead.

This algorithm was measured on a Sun SPARC 20/71, and uses
13 opcodes per 32-bit word of input on a SPARC, and 10 opcodes
per 32-bit word of input on a 68040. The algorithm achieved 115
Mbps without caching, and 121 Mbps with caching on the Sun 20/
71, compared with 57-59 Mbps for MD5. Analysis of the imple-
mentation may yield up to another 50% increase in performance.
The current performance is sufficient to support existing IP rates
on that host. Further performance analysis and cryptographic
strength analysis is underway.

AHA is believed to be useful as a minimal hash, because it is
derived from the principles of performance first. Even if its crypto-
graphic strength is low, it may prove useful for the authentication
of high bandwidth traffic, where the sheer volume of data obviates
the need for the same strength as off-line data would require.

7: Conclusions

MD5 cannot be implemented in existing technology at rates in
excess of 100 Mbps, and cannot be implemented in special-pur-
pose CMOS hardware feasibly at rates in excess of 175 Mbps.
MD5 cannot be used to support IP authentication in existing net-
works at existing rates. Although MD5 will support higher band-
width in the future due to technological advances, these will be
offset by similar advances in protocol processing. The MD5 man-
date in IPv6 should be reconsidered.

At a minimum, the IPv6 specification should recognize the per-
formance limitations of MD5. The use of MD5 in high-perfor-
mance environments should be recommended against. The
modified MD5++ or alternate hash algorithms, as well as other
hash algorithms, should be considered before a default standard is
specified.

The source code for the optimized version of MD5 presented
here is available at <ftp://ftp.isi.edu/pub/hocc-papers/touch/md5-
opt.tar.Z>. Current information on the status of this work is avail-
able at <http://www.isi.edu/div7/atomic2/md5.html>.

This document was prepared with the assistance and feedback
of Steve Kent at BBN, Burt Kaliski, Victor Chang, and Steve Bur-
nett at RSA, and Ran Atkinson at the NRL. Mike Carlton of USC/
ISI assisted with the byte-swapping code, cache interaction, and
performance measurement analysis. The alternate hash algorithm
(AHA) was developed in conjunction with Amir Herzberg, Hugo
Krawczyk, and Moti Yung of IBM.

8: References

[1] Atkinson, R., “IPv6 Authentication Header,” (working draft -
draft-ietf-ipngwg-auth-00.txt), February 1995.

[2] Atkinson, R., “IPv6 Security Architecture,” (working draft -
draft-ietf-ipngwg-sec-00.txt), February 1995.

[3] Atkinson, R., “IPv6 Encapsulating Security Payload (ESP),”
(working draft - draft-ietf-ipngwg-esp-00.txt), February
1995.

[4] Baker, F., and Atkinson, R., “OSPF MD5 Authentication,”
(working draft - draft-ietf-osp5-md5-03.txt), March 1995.

[5] Baker, F., and Atkinson, R., “RIP-II Cryptographic Authenti-
cation,” (working draft - draft-ietf-ripv2-md5-04.txt), March
1995.

[6] Bradner, S., and Mankin, A., “The Recommendation for the
IP Next Generation Protocol,” RFC 1752, Harvard Univer-
sity, USC/Information Sciences Institute, January 1995.

[7] Deering, S., “Simple Internet Protocol Plus (SIPP),” (working
draft - draft-ietf-sipp-spec-01.txt), July 1994.

[8] DiMarco, J., “Spec Benchmark table, V4.12” <ftp://
ftp.cdf.toronto.edu/pub/spectable>.

[9] Feldmeier, D., and McAuley, A., “Reducing Protocol Order-
ing Constraints to Improve Performance,” inProtocols for
High-Speed Networks, III, Eds. Pehrson, B., Gunningberg, P.,
and Pink, S., North-Holland, Amsterdam, 1992, pp. 3-17.

[10] Galvin, J., and McCloghrie, H., “Security Protocols for ver-
sion 2 of the Simple Network Management Proto-
col(SNMPv2),” RFC 1446, Trusted Information Systems,
Hughes LAN Systems, April 1993.

[11] Heffernan, A., “TCP MD5 Signature Option,” (working draft
- draft-hefferman-tcp-md5-01.txt), March 1995.

[12] Hinden, R., “Internet Protocol, Version 6 (IPv6) Specifica-
tion,” (working draft- draft-ietf-ipngwg-ipv6-spec-01.txt),
March 1995.

[13] Hostetler, J., and Sink, E., “A Proposed Extension to HTTP:
SimpleMD5 Access Authorization,” (work in progress).

[14] Irissou, B., DesignTechniques for High-Speed Datapaths,
Master's Thesis, University of California at Berkeley, CSD,
November 1992.

[15] Kaliski, B., “The MD2 Message-Digest Algorithm,” RFC-
1319, RSA Data Security, Inc., April 1992.

[16] Leech, M., “Key-seeded MD5 authentication for SOCKS,”
(working draft - draft-ietf-aft-socks-md5-auth-00.txt), Octo-
ber 1994.

[17] Malkin, G., “RIP for IPv6,” (working draft - draft-ietf-ripv2-
ripng-00.txt), November 1994.

[18] McCanne, S., and Torek, C., “A Randomized Sampling Clock
for CPU Utilization Estimation and Code Profiling,” Proc.
Winter USENIX, San Diego, January 1993.

[19] Metzger, P., Karn, P., and Simpson, W., “The ESP DES-CBC
Transform,” (working draft - draft-ietf-ipsec-esp-des-cbc-
04.txt), April 1995.

[20] Metzger, P., and Simpson, W., “IP Authentication using
Keyed MD5,” (working draft - draft-ietf-ipsec-ah-md5-
03.txt), April 1995.

[21] National Bureau of Standards,Data Encryption Standard,
Federal Information Processing Standards Publication 46,
Government Printing Office, Washington, D.C., 1977.

[22] National Institute for Standards and Technology,Secure Hash
Standard, Federal Information Processing Standards Publica-
tion 180, Government Printing Office, Washington, D.C.,
1993.

[23] Partridge, C., and Kastenholz, F., “Technical Criteria for
Choosing IP The Next Generation (IPng),” RFC 1726, BBN
Systems and Technologies, FTP Software, December 1994.

[24] Postel, J., “Internet Protocol - DARPA Internet Program Pro-
tocol Specification,” STD-5, RFC-791, ISI, September 1981.

[25] Rescorla, E., and Schiffman, A., “The Secure HyperText
Transfer Protocol,” (working draft - draft-rescorla-shttp-
0.txt), December 1994.

[26] Rivest, R., “The RC5 Encryption Algorithm,” RSA Data
Security Technical Report, April 1995.

[27] Rivest, R., “The MD4 Message-Digest Algorithm,” RFC-
1320, MIT LCS and RSA Data Security, Inc., April 1992.

[28] Rivest, R., “The MD5 Message-Digest Algorithm,” RFC-
1321, MIT LCS and RSA Data Security, Inc., April 1992.

[29] Rogaway, P., “Bucket Hashing and its Application to Fast
Message Authentication,” to appear in Advanced in Cryptol-
ogy, Crypto ‘95.

[30] Touch, J., “Report on MD5 Performance,” (working draft -
draft-touch-md5-performance-00.txt), December 1994.

[31] Touch, J., “Implementing the Internet Checksum in Hard-
ware,” (work in progress).

