

Simple Wavelength Assignment Protocol†‡

Stephen Suryaputra∗a, Joseph D. Touchb, and Joseph Bannisterb

aNortel Networks

bUSC/Information Sciences Institute

ABSTRACT

IP routers can be coupled with wavelength-selective optical cross-connects to support existing Internet infrastructure in a
wavelength division multiplexing (WDM) optical network. Because optical wavelength routing is transparent to IP, packets
can bypass traditional forwarding and pass directly through the optical cross-connect, resulting in very high throughput and
low delay routing. This approach shares features with label switching, but wavelengths are a much more scarce resource than
labels. Because optical switches have larger switching times than electronic switches, and wavelength conversions are
expensive, wavelength “label” swapping is not easily done. Wavelength “label” assignments must consider these limitations
to be practical in an optical environment. The performance of an instance of this approach, called Packet over Wavelengths
(POW) has been simulated and studied. A new signaling protocol, Simple Wavelength Assignment Protocol (SWAP) is
devised to be POW signaling protocol. SWAP takes into account the optical device limitations, and is designed to minimize
wavelength conversions, utilize wavelengths with the merging of flows, and reduce the reconfiguration of optical switches.
SWAP, to our knowledge, is the first approach to combine signaling and wavelength assignment in an on-line protocol. This
paper describes high level SWAP design challenges, decision, and overhead.

Keywords: Optical Networks, Wide-Area Lightwave Networks, Wavelength Division Multiplexing (WDM), Protocol,

Routing and Wavelength Assignment (RWA), Optical Network Control, IP Switching, MPLS.

1. INTRODUCTION

Internet protocol (IP) routers can be coupled with wavelength-selective optical cross-connects to enable existing Internet
infrastructure to operate in a wavelength division multiplexing (WDM) optical network. Because optical wavelength routing
is transparent to IP, very high throughput and low delay routing can be achieved when packets bypass the IP forwarding
process by passing directly through the optical cross-connect. Although this approach is similar to label switching in general,
there are several issues limiting its feasibility. Current label switching mechanisms assume a large label space, where label
swapping is inexpensive (ATM VPI:VCI space is 228 and MPLS label space is 216). Replacing labels with colors
(wavelengths) in a WDM network raises several challenges. Current WDM technology is limited to a few (eight to 64)
wavelengths per link, which is very small compared to the number of fine-grain network connections in the Internet today (in
the order of 80,000 flows [14]). Wavelength converters (an optical corollary to label swapping) are expensive [21]. Finally,
practical active (data-dependent) optical switching elements are slow, and thus costly to reconfigure. Of the four types of
optical switching elements: mechanical, electro-optical, thermo-optical, and SOA-based gate switched, only electro-optical
has low switching time, but it suffers from high cross-talk and loss [17]. Thus reconfiguration of a practical optical
wavelength cross-connect is generally slow.

These limitations warrant re-examination of IP/WDM switching approaches. The performance of an instance of this
approach, called Packet over Wavelengths (POW) has been simulated and studied [2]. This study is based on a signaling
protocol created to dynamically configure the lightpath for flows. This protocol is called the Simple Wavelength Assignment

† This research is partially supported by the Defense Advanced Research Projects Agency (DARPA) through contract MDA972-99-C-0022
of the Maryland Procurement Office. The U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes
notwithstanding any copyright annotation thereon. The views and conclusions contained in this document are those of the authors and
should not be interpreted as necessarily representing the official policies, either expressed or implied, of the Maryland Procurement Office,
DARPA, or the U.S. Government. The authors can be contacted at USC/ISI, 4676 Admiralty Way, Marina del Rey, CA, 90292-6601,
U.S.A., or by electronic mail at touch@isi.edu, joseph@isi.edu, or ssuryapu@nortelnetworks.com.
‡ An earlier version of this paper appeared as a USC/ISI Research Report [19].
∗ Work performed while a graduate student at USC/ISI.

Protocol (SWAP). SWAP modeling and simulation is performed on the VINT/ns simulator [NS]. POW has two forwarding
paths: regular (slow) and cut-through (fast) path. Initially all flows are forwarded on slow path while SWAP tries to identify a
flow. When a flow is detected, SWAP configures the fast-path and forwards the packets belonging to that flow on the
configured path. During signaling, all the packets of the flow are still forwarded on slow-path. A dedicated wavelength is
used as the slow path and the signaling path. Although the essential idea of POW is not new (it is basically IP switching
[13]), POW takes further steps beyond IP switching to increase the applicability of the approach to optical backbone. In
addition, we believe that SWAP is the first approach to combine signaling and wavelength assignment in an on-line protocol.

2. PRIOR AND RELATED WORK

POW forwarding is similar to label switching, i.e., they both replace complicated IP forwarding processing with a
comparatively simple label lookup. IP processing relies on longest-prefix match in a large routing table, followed by updates
of portions of the IP header, such as hop count (TTL) and checksum. Label processing indexes the label in a small fixed table
and performs a fixed label substitution. In POW, that lookup is done implicitly in the physical layer instead of in the link or
network layer by the wavelength of the packet signal. Another difference between POW and label switching approaches is
that label switching never has a notion of label unification that is essential to use wavelengths as labels. This section includes
further discussion of label switching approaches because of this similarity.

There are at least five known approaches to label switching: Toshiba Cell Switch Router (CSR), Ipsilon IP Switching, Cisco
Tag Switching, IBM Aggregate Route-Based IP Switching (ARIS), and Multiprotocol Label Switching [5]. Among these, the
most notable are MPLS and IP Switching. MPLS [4] is the IETF standard for label switching and its principal operation is
similar to Tag Switching; this discussion thus regards these two approaches as the same. The primary difference between
MPLS and IP Switching is the process of assigning labels to IP traffic. MPLS assigns flows based on routing protocol events;
IP switching is based on the actual traffic seen on the network. The taxonomy described in [5] thus considers MPLS as
control-driven and IP switching as data-driven. POW avoids routing protocol interactions, making it more responsive to
traffic trends. As a result, it is based on a data-driven approach similar to that of IP switching. Although IP switching has not
performed well in real systems due to over abundance of switchable flows and signaling latencies, POW takes further steps
by coarsely aggregating flows to and merging flows. By aggregating flows, POW reduces the number of flows handled by
each switch and minimizes the impact of signaling latency. By merging flows, POW localizes signaling dynamics to the
nodes near the edges of the network.

There have been several recent proposals optical switching techniques, both in the academic as well as industry (standard
bodies). Optical Burst Switching (OBS) [16] and Terabit Burst Switching [20] took fast circuit switching approach in early
1980’s. Burst switching uses pre-reservation of optical paths by sending a control message just before the burst of packets.
Burst switching maintains statistical multiplexing property of packet switching while keeping the burst in the optical domain.
A practical implication of applying burst switching to the current Internet is that either the boundary switch (the switch sits
between electrical and optical domains) needs to have adequate buffering to detect and collect the burst, or the session source,
knowing how big the burst will be, can function as the originator of the control message. Another problem of burst switching
that precludes its use for POW is the probability of lightpath blocking, as it implies buffering in intermediate switches,
changing the wavelength channel, deflection routing, or dropping. Our current study assumes that optical switches are slow,
wavelength conversions are expensive, and the burst size of domain-to-domain traffic is large. Because optical switches are
slow, then the delay between control message and the burst might need to be large. This requires even bigger buffers at the
boundary between electrical and optical. Moreover, if wavelength conversion is expensive and the burst size is large, it might
be better to construct the longest possible contiguous lightpath (to minimize wavelength conversions) and to forward the
burst conventionally while waiting for signaling to complete. SWAP is designed to match more closely with POW
requirements and assumptions.

Another approach is sub-carrier multiplexing (SCM) [3]. SCM operation is similar to MPLS, inserting a small header before
the IP packet. SCM node examines the header by doing optical to electronic conversion. Once the header has been
recognized, a rapid tunable laser is configured based on the header lookup information, the old header is stripped and a new
header is inserted. SCM requires (and assumes) that the optical to electronic to optical (O-E-O) conversion happens only for
the small header (or tag). SCM thus avoids buffering of the whole packet eliminating the need for large optical buffers or O-
E-O conversion of the payload. The key difference between SCM and POW are: 1) POW doesn’t require a rapidly tunable
laser, and 2) POW introduces the notion of merging traffic flow optically. However, SWAP approach of assigning
wavelengths can be applied for SCM.

Several IETF working groups have been exploring work on IP over optics, such as MPLS, TEWG, and IPO BOF. There are
a number of Internet drafts covering various topics such as a framework for IP and optical interworking, extensions to OSPF
and IS-IS, and extensions to RSVP [22] and CR-LDP [7]. Most of the IETF proposals use MPLS-based protocols to
distribute optical link characteristics (wavelengths) and to control optical switches. They are extensions to MPLS Traffic
Engineering proposals. Other forums are OIF and ODSI, which have similar proposal for signaling. POW focuses on creating
effective optical shortcuts based on the on-line traffic demand, thus it is closer to IP switching. SWAP is the traffic monitor
and the label distribution protocol for POW. Even though SWAP operation is similar to MPLS Label Distribution Protocol
(LDP), it introduces the new concept of label unification.

3. HIGH LEVEL DESIGN

The POW Switch Architecture consists of four major components (Figure 1):

• Control Processor: an IP router equipped with high-speed data interface(s) and a control interface. Depending on
the scalability-complexity trade-off, multiple data interfaces of the control processor could be implemented as a
single electronic interface, where the optical path is terminated early but the optical interface ID must be stored in
the form of internal headers (with increased complexity).

• Optical Fabric (λ switch): an interconnection network of optical switching elements. The elements are capable of
switching optical signals from one input port to one of a set of output ports, where the output port is selected based
on the wavelength of the signal at the input port.

• Wavelength Converters: these devices convert input signals with wavelength λin to output signals with wavelength
λout.

• Wavelength Mergers: merges optical signal so that two optical signals on the same wavelength that come from
different input ports but destined to the same output port can be merged on one wavelength channel. Merging device
can be viewed as path contention resolution strategy of POW switch and it enables POW to support merging of
traffic flows in optical domain.

• Wavelength mux/dmux: redirects a specific wavelength to a particular fabric, and merges the output of the fabrics to
the external fibers. These are special cases of statically-configured optical switching elements.

λ C onv erte rs
C

λ1 sw itc h
(N + 2) X (2 N +1)

IP R ou te r
(C o ntro l

P ro ce ss or)
λ0

λ1

λn

λn sw itc h
(N + 2) X (2 N +1)

. .
 .

λ m e rg ers
M

. .
 .

. .
 .

1

N

1

N

N

Figure 1 - POW switch architecture

Figure 1 shows an N×N POW switch where there are n optical switches, M wavelength mergers and C wavelength converters.
Each optical switch is an (N+2)×(2N+1) expander and is responsible of a specific wavelength interconnect. (N+2) input
connects N demuxes, 1 wavelength mergers and 1 wavelength converters, and (2N+1) output connects N outputs to the
muxes, N possible contending inputs to the mergers and 1 need-to-be-converted inputs to the converters. The arrangement of
the POW components follows share-with-local wavelength-convertible switch architecture [9] to reduce cost. Therefore it is
possible that M and C are less than N. It is important to note that POW requires one hop-by-hop default wavelength λ0 for
signaling and regular forwarding. This wavelength is connected to the control processor. The details of the POW
components, as well as their configuration, are under further study and beyond the scope of this paper.

There are several high-level requirements for the POW signaling protocol. First, it must be kept as simple and as light (using
few, brief messages) as possible. Second, the signaling should construct the continuous light path as far as possible. This
second requirement is driven by the hardware limitation. Non-continuous light paths require wavelength conversion, which
requires expensive hardware (this its use should be limited). Third, the protocol must support flow merging (grooming).
These high-level requirements are the motivation for the following design decisions for Simple Wavelength Assignment
Protocol (SWAP) signaling protocol.

For simplicity, SWAP is implemented on top of a reliable transport layer; this decouples the protocol from its reliable
transmission. This is common practice for signaling protocols, e.g. the ATM signaling protocol is implemented on top of
Service-Specific Connection-Oriented Protocol (SSCOP), a reliable transport above AAL5 [8]. The telephone Signaling
System 7 (SS7) [11] and LDP-based MPLS signaling [1][7] make the same choice. SWAP establishes per-neighbor reliable
transport connections (like TCP or SCTP [18] connections), over which the signals are sent. These connections enable SWAP
to determine whether it is running on the first, the last or the intermediate hop for a particular flow, which is used to simplify
the signaling, failure detection, and recovery. Neighbor relationships are maintained per link of the switches (one connection
per link). Neighbor discoveries as well as the underlying reliable transport are not the main aspect of SWAP therefore it is not
part of the design space.

λ1,λ 2,λ 3,λ4 λ1,λ3 λ2,λ3 λ1,λ 2,λ3,λ4

S E T U P
(λ1

,λ
2
,λ

3
,λ

4)
S E T U P
(λ1

,λ
3)

S E T U P
(λ3)

C O M M I T
(λ3)

C O M M I T
(λ3)

C O M M I T
(λ3)

Figure 2 - Time sequence diagram of first-hop-initiated

signaling

λ1,λ2,λ3,λ4 λ1,λ3λ2,λ3 λ1,λ2,λ3,λ4

S E T U P
(λ1

,λ
2
,λ

3
,λ

4)
S E T U P
(λ1

,λ
3)

S E T U P
(λ3)

C O M M I T
(λ3)

C O M M I T
(λ3)C O M M I T

(λ3)

C O M M I T _ O K
C O M M I T _ O K

C O M M I T _ O K

Figure 3 – Time sequence diagram of last-hop-initiated
signaling

Constructing the contiguous light path as far as possible requires SWAP to pick a common free wavelength along the flow
path, therefore SWAP must collect the list of free wavelengths for each hop. If there is one free wavelength common to all
the hops, it will be picked. If not, SWAP may choose to construct a non-contiguous light path (if so configured) if there are
sufficient wavelength converters available. This feature distinguishes SWAP from label swapping, because SWAP’s decision
to pick a “label” (wavelength here functions as label) is a global decision. SWAP tries to minimize or eliminate swapping of
“labels”. Therefore, SWAP incurs a round-trip time to select a wavelength. The wavelength resource must be also locked
during signaling to avoid race-condition. SWAP could potentially do crank-back mechanism to eliminate locking, i.e. the free
wavelength can be taken by another flow when it is time to setup (COMMIT) the switches. The rationale behind not doing
crank-back is: 1) it increases expected signaling delay (due to back-and-forth signaling) therefore the flow might not be able
to fully utilize the path; 2) it might not necessary since the target flow aggregation of POW is very coarse (between electrical
domains) and the number of wavelengths per link is increasing significantly.

Next SWAP decides where to initiate the signaling. Either end of the path is appropriate, as they natural places where SWAP
can efficiently gather complete path information. The first hop is good because a source SWAP can propagate its free
wavelength set when it detects an active flow (SETUP). When the next hop receives that set, it intersects that set with its own
free wavelength set, and forwards the result to the next hop. Assuming the final set is not empty, the last hop picks one free
wavelength from the resulting set, configures its local switch, and send an acknowledgement (COMMIT) back to the
previous hop with the chosen wavelength. Upon receiving an acknowledgement, the previous hop configures its local switch
and passes the acknowledgement to its previous hop, until the packet is received by the first hop. The process is illustrated in
Figure 2.

However, it is better to initiate the signaling from the last hop, for a number of reasons, notably in the presence of grooming
(merging). In merging, there is a single last hop, but multiple first hops, which would complicate a source-initiated protocol.

The last hop will also notice the flow earlier, as the traffic merges there. Second, it will simplify the protocol because there
could be more than one outstanding setup request from upstream and the protocol must keep track of the upstream status so
that it can selectively send the COMMITs back to it. Third, last-hop-initiated signaling will ease flow merging. ARIS takes
the same approach as it allows route aggregation.

The drawback of last hop initiated signaling is that it will take more time to complete the setup. The first sequence is similar
to the first-hop initiated, however the previous hop should not start sending the packets using the new wavelength unless the
next hop has already setup the switch (to avoid losses). SWAP could emulate IP Switching, that the switch will send the
packets using the slow path (through the IP router) while waiting for response from the next hop. However, because this
technique requires temporary path termination and optical switches take a long time to setup, it is undesirable to do so.
Instead in SWAP, the first hop will wait one round-time for signaling propagation to complete. The process is shown in
Figure 2.

Flow aggregation (grooming) also affects where to initiate the teardown mechanism. The last hop is undesirable, because
drops in an aggregated flow are noticed at the sources first. Merging hops is also not desired because it requires the hop to
monitor the optical signal. Therefore, it is the responsibility for the first hops to initiate the teardown. If the first hop switches
of a switched flow detect a drop in the throughput, it will send TEARDOWN to the next hop and the next hop will pass it to
further hops if there are no switched incoming branches. Figure 4 illustrates this effect on an aggregated flow. There are
common available wavelengths for all examples below. Specific case when wavelength conversion is needed will be
described later in implementation section.

Domain
A

Domain
B

A

E

B

Domain
C

G

H

F D

POW Domain

15

5

45
25

15 C

Domain
H

20 45

Non-switched sub-path

Switched sub-path

Domain
E

15

5

15

10

Figure 4 – Flow aggregation scheme

Switch Link Free Wavelengths Set
H GH λGH = {λ1,λ2,λ3,λ4}
G FG λFG = {λ2,λ3,λ4}

EF λEF = {λ3,λ4} F
DF λDF = {λ1,λ2}
CD λCD = {λ1, λ2, λ4} D
BD λBD = {λ3, λ4}

Table 1 – Free wavelengths at Figure 4 switches

Suppose SWAP was set to use X/Y classifier [10] and 20 packet per second (pps) was a threshold to switch a flow. Switch D,
F, G, and H all see an aggregate outgoing throughput of 20 pps or higher for flow F1 (* Domain H, i.e., traffic going to H)
and because switch H knows it is the last hop, it locks the free wavelength resource λGH and send SETUP(F1, λGH) to G.
Upon receiving that SETUP, G does the wavelength set intersection λx = λGH ∩ λFG = {λ2,λ3,λ4}, lock λFG and sends
SETUP(F1, λx) to F. F does the same intersection λy = λx ∩ λDF = {λ2} and λz = λx ∩ λEF = {λ3,λ4}. Then it will send
SETUP(F1, λy) to D and SETUP(F1, λz) to E. Both D and E know that they are the first hops for that path because there is no
upstream neighbor for the path, or there is no incoming branches that have a high incoming throughput. Knowing that they
are the first path, D will send COMMIT(F1, λ2) and E will send COMMIT(F1, λ3). Meanwhile, F waits for responses from
both. Upon receiving the responses, F picks λ3 because it is an element of λEF and E contributed more to the aggregate
throughput than D. F removes λ3 from the set λEF and λ2 from the set λDF, and sends COMMIT(F1, λ3) to G. G removes λ3
from the set λFG, unlocks it and forwards COMMIT(F1, λ3) to H. Then, H removes λ3 from the set λGH, unlocks it,
configuring its optical switch and flow converter to convert λ3 back to the default wavelength λ0, and send
COMMIT_OK(F1) to G.

Upon receiving COMMIT_OK(F1) from H, G sends COMMIT_OK(F1) to F, and F extends the message to both D and E.
When E receives COMMIT_OK(F1) from F, it starts sending the flow through a wavelength converter that converts default
wavelength λ0 to λ3. D does the same conversion for λ0 to λ2. Wavelength from branch E, λ3, was selected during COMMIT
phase because E contributes more to the aggregate throughput and it is more likely to stay that way. If other branches become

inactive, they will likely become a sub-path. The wavelengths of low flow branches are picked arbitrarily and merged to the
target wavelength. Now suppose there is an increase in the F1 throughput from B to D. D realizes that the flow has been
switched, so it sends SETUP(F1, λBD) to B. Current design of SWAP doesn’t attempt to maintain wavelength continuity after
the lightpath has been set up, however if if λ2 is an element of λBD then D will send SETUP(F, {λ2}). B determines that it is
the first hop and sends COMMIT(F1, λ3). Upon receiving from B, D configures its optical switch and sends
COMMIT_OK(F1) to B, and B sends the flow using λ3 when it receives the message. If, subsequently, E detects that F1
throughput drop, it will send TEARDOWN(F1) to F. Switch F will not forward the message further because it still has a
switched branch, i.e.: DF. As a result, F only frees the wavelength, removes the switched-path from its optical switch to its IP
router, and its IP router will merge the incoming flow to the outgoing switched flow.

Finally, SWAP requires that neighbor protocol emit periodic keep-alive messages so the POW switch will detect neighbor
failures. The keep-alive message should incorporate a mechanism to detect the case of neighbor failure and subsequent
recovery and up again prior to the timeout of its neighbor entry. This is handled by the routing protocol. If the failed neighbor
is the previous hop, then the switch will do the same thing as if it received TEARDOWN(F1), TEARDOWN(F2), …,
TEARDOWN(Fn) where F1-n are the switched flows coming from the neighbor. If the failed neighbor is the next hop and
there is no previous hop switched, then the switch just sends the flow using the default wavelength λ0. However, if there is a
switched previous hop, the switch will take the last hop role, i.e., converting the switched flow back to λ0.

To summarize the SWAP design points:

1. Implemented on top of a reliable transport protocol.
2. First-hop is defined as the point where there is no upstream neighbor, or there are upstream neighbors with

insufficient incoming throughputs to trigger a flow. Last hop is similarly defined as the point where there is no
downstream neighbor.

3. Use last-hop-initiated setup if there is no switched path and aggregation-point-initiated setup if the aggregation point
already has the flow switched (i.e., the aggregation point is the last hop of the augmentation to the existing switched
path)

4. Use first-hop-initiated teardown. Teardown messages are terminated at the merging point if there is still a switched
incoming branch.

5. Resources (free wavelengths) are maintained and locked independently for each incoming link.
6. Grooming points maintain the flow status for each incoming branch and the flow packet count for each non-

switched incoming branch.
7. Whether the switch is the first, the intermediate or the last hop is determined using te neighbor protocol.
8. The neighbor protocol is assumed to be available or be provided by routing protocols.
9. If the neighbor protocol reports that there are neither upstream nor downstream neighbors at a node, SWAP will be

disabled there because SWAP implementation assumes there are at least two POW switches in sequence (actually, it
is useful only if there are at least three switches in a row).

4. IMPLEMENTATION

There are 6 (six) messages related to wavelength assignment (connection setup and teardown):

• SETUP(F, λ). Ask the previous hop to pick a wavelength to setup the connection by sending the free wavelength set
for the sub-path (also lock it). The recepients intersect this set with their own free wavelength set, and forward the
result to the subsequent hop when they detect a high incoming throughput for a flow.

• SETUP_CONFLICT(F). Inform the next hop that one of the wavelength sets on the path has been locked by others.
Intermediate hops will pass this message to the next hop. The initiating hop will perform a “backoff” procedure.

• SETUP_FAIL(F). Inform the next hop that the connection cannot be made, as there are no free resources
(wavelengths or devices needed to setup the lightpath). Intermediate hops will pass this message to the next hop if
they are not the initiating hop.

• COMMIT(F, λ). Inform the next hop to use λ as the incoming wavelength. Intermediate hops will pass this message
to the next hop if they are not the initiating hop.

• COMMIT_OK(F). Inform the previous hop that the optical switch has been setup. Intermediate hops will pass this
message to the previous hop. This message will not be forwarded further if there are no branches waiting for it.

• TEARDOWN(F). Inform the next hop to tear down the connection. Intermediate hops will pass this message to the
next hop.

Current SWAP experiment uses an X/Y classifier to detect a flow with the following default parameters:
• FlowDetectionTimer = 20 secs
• FlowActiveTimer = 20 secs
• HighThreshold = 10 packets
• LowThreshold = 5 packets
• BackoffPeriod = 1 ms
• BackoffLimit = 10 retries
• WavelengthConvertEnable = true for merging, false otherwise
• PartialPathAllowed = false

The messages and the parameters will initiate various state transitions. Each SWAP entity maintains two types of states for
each flow entry: incoming and outgoing states. Each incoming branch has its own incoming state, but there is only one
outgoing state. Some transitions in the incoming state will initiate further transitions in the outgoing one, and vice versa. This
interaction is illustrated in Figure 5 and Figure 6. Discussions in the following paragraph don’t elaborate the detailed SWAP
state machine since the detailed description is included in the appendix.

To understand SWAP state transitions, some definitions are provided for the further discussion. First, a switchable branch is
a branch with PacketCount higher than HighThreshold and has an upstream neighbor. Second, consecutive switchable
branches will potentially construct a lightpath. SWAP could construct several combinations of lightpaths: contiguous or non-
contiguous, and partial or full. A contiguous lightpath is a ligthpath that consist of several branches switched using the same
wavelength. A non-contiguous lightpath is a lightpath that consists of several branches switched using different wavelengths.
Non-contiguous lightpaths can be constructed if the SWAP parameter of WavelengthConvertEnable is true. A partial
lightpath is a path where not all the switchable branches are switched. A partial lightpath is constructed only if SWAP cannot
acquire the necessary free resources along the entire path and the parameter PartialPathAllowed is True. Full lightpath is a
path where all switchable branches are switched.

Nonexistent
Branch B

PASSIVE

ACTIVE

WAIT
COMMIT

WAIT OUT
SWITCHED

IN
SWITCHED

SETUP
SENT

(I1)

(I2)

(I3)

(I3)

(I4) (I5)

(I6)

(I7) (I8)

(I9)

(I10)

(I11)

(I12)

(I15)

(I16)

(I16)

BACKOFF
(I13)

(I14)

Figure 5 – Incoming state transition

The state of a traffic flow start as a new incoming flow F is received on a branch B (an interface of the switch). For a flow-
branch tuple (F, B), a SWAP process for that particular flow, S, will perform different roles based on the following criteria:

IC1: The output state of F has already been switched.
IC2: S has a downstream neighbor in the direction of F.

In the case of IC1 is true, then S will actively monitor the throughput of the flow (path I2 in Figure 5). If IC1 is not true, IC2
will be used to make the decision. If IC2 is true, indicating S is not the egress node, then S creates a state for F, passively
monitors F, and waits for further signaling messages (path I2 in Figure 5). However, if IC2 is not true, S is the egress node
therefore it will actively monitor the flow F. Both ‘active S’ and ‘passive S’ need to monitor the flow so that the state for F
eventually dies with the flow. A timer FlowDetectionTimer is used to facilitate this.

Once ‘active S’ (SA) determines that the throughput of F1 on branch B is high, (F1, B) becomes a switchable branch, and S
will lock λB and send SETUP(F1, λB) to its upstream neighbor, SP. If λB was locked by another on-going signaling for flow
F2, SA will do a backoff procedure similar to that of CSMA/CD (path I13 and I14 on Figure 5). Once SA completes its
backoff, it will retry the SETUP procedure. If after BackoffLimit tries, SA still cannot get the lock, it will give up the
opportunity to switch F1 and monitor it for another detection window.

The upstream neighbor SP (passive role) upon receiving SETUP(F, λin) will use the following criteria:

IC3: There is at least one switchable (F, B).
IC4: Full lightpath construction is feasible, which means wavelength continuity is achievable or wavelength conversion

is allowed and possible.
IC5: Partial lightpath construction is allowed and feasible.

If IC3 and IC4 are true, then for every switchable (F, Bn), n=0,1,2,…,N, SP will spawn a task SPn, which locks λn, assign λ =
λin ∩ λn and send SETUP(F, λ) to the upstream neighbor. Here the outgoing state of F becomes WAIT_ALL_COMMIT (Figure
6). However, if IC3 and IC5 are true, SP will pick λουτ ∈ λn and send COMMIT(F, λουτ) and upon receiving
COMMIT_OK(F), it will take the active role (transition O5 and O6 in Figure 6, transition I4 in Figure 5).

(O4) C O M M I T
S E N T

OUT ACTIVE
S W I T C H E D

W A I T A L L
C O M M I T

W A I T
C O M M I T O K

Nonex is ten t
Ent ry F

(I17)
A B O U T T O

T E A R D O W N

OUT NOT
S W I T C H E D

O U T
S W I T C H E D

(O1) (O2)

(O3)

(O5)
(O6)

(O7)

(O8)
(O9)

(O11)(O12)

(O10)

(O13)

(O14)

Figure 6 - Outgoing state transition

On the second phase of signaling, where SP is in the WAIT_ALL_COMMIT state, it will collect all COMMIT(F, λ) received
on any switchable branch Bn, n=0,1,2…,N and pick one wavelength λx, x=0,1,2,…,N such that Bx is the branch with the
highest throughput. SP then will send COMMIT(F, λx) downstream. Meanwhile, SP also records the wavelength of preference
of each branch. This COMMIT(F, λx) will eventually be received by SA, the egress node. SA will configure the switch
immediately, rather than (as SP) waiting for all COMMIT messages to arrive before acting. The SA switch thus converts λx to
λ0 (the slow path wavelength), terminating the lightpath. There is a possibility that each branch picks different wavelength
therefore creates potentially more wavelength discontinuity in the lightpath. To avoid this problem, SWAP could be modified
so that λ in COMMIT(F, λ) is a set and SP picks λx such that λx is the common element of all the branch sets.

If the criteria IC3, IC4, and IC5 cannot be met concurrently, SPn will send a SETUP_FAIL(F) message downstream. This
message will not be propagated by downstream nodes if there are other signaling tasks persisting for a switchable branch Bm.
However, if IC3, IC4, and IC5 can all be met, but the wavelength sets for the branch were locked, SPn will send
SETUP_CONFLICT(F) toward SA so that SA can commence its backoff procedure. Setup conflict messages must be
propagated along the entire signaling path because every SWAP node Sn along the path has locked the wavelength set for the
branch. By releasing those locks, SWAP creates opportunities to setup paths belonging to other flows.

The last part of SWAP signaling handles the teardown mechanism (transitions O7, O8, and O9 in Figure 6). If an active node
S detects that the throughput of a swiched branch (F, B) drops below LowThreshold for a specific detection duration
FlowActiveTimer, S will monitor that flow for another FlowActiveTimer window (transition O7). If after the second
window, the throughput remains below LowThreshold, S will send a TEARDOWN(F) message upstream (transition O8). S
then becomes active or passive based on its position in flow tree.

5. MODELING AND SIMULATION

SWAP was designed to enable the evaluation of the performance of the POW architecture. To ease SWAP development and
verification and to evaluate specific POW topology, SWAP was implemented in VINT/ns, a popular network simulation
package [15]. Essential NS components of the POW switch simulation model include (Figure 8):

• Optical Classifier: models the optical switching fabric. For simulation purposes wavelenghts are represented as an
integer value in our specific.

• Router Links: model the bi-directional electrical data interfaces between the IP router and the fabric. The interface
operates at OC-12 rates.

• Inter-switch Links: model the high speed optical links between POW switch. This interface operates at OC-48 rates.
• Wavelength Converters: simulate wavelength converter banks in the POW switches. For the simulation, a

wavelength converter reassigns the integer value in the header representing the wavelength.
• Address Classifiers: model IP router forwarders. The classifier determines which output link a packet should be

directed to. Locally-destined packets are delivered to the local application.
• Flow analyzer: an X/Y classifier, where X is HighThreshold (10 pkts) and Y is FlowDetectionTimer (20 secs). The

analyzer may perform flow classification based on several tuples (see below).
• SWAP agent: models signaling between the POW switches.

Router Link
OC-12

SWAP
Agent

O t h e r A g e n t

Flow Analyzer Router Link
OC-12

Interswitch Link
OC-48

Interswitch Link
OC-48

Interswitch Link
OC-48

Wavelength
Converter

Wavelength
Converter

Address
Classifier

e n t r y _

Optical Classifier

o u t _ d m u x _

op t i ca l_dmux_

IP Rou te r

. . .

Address
Classifier

Port
Classifier

Figure 7 – NS model of POW switch

RTO

HAY
DNJ

DNG

HSJ
AST

NOR
PYM

WOR

NCSA

SDSC

WAE

CHT
SEJ

PSC

NCAR

Active
Inactive

Figure 8 - vBNS backbone topology

The POW flow analyzer is equipped to classify several traffic flows based on the following types of tuples:

• Fine Grain: {ingress switch, src ip, src tcp port} {egress switch, dst ip, dst tcp port}
• Medium Grain: {ingress switch, src ip} {egress switch, dst ip}
• Coarse Grain: {ingress switch} {egress switch}.
• Merged Fine Grain: * {egress switch, dst ip, dst tcp port}.
• Merged Medium Grain: * {egress switch, dst ip}
• Merged Coarse Grain: * {egress switch}

POW nodes are interconnected using NS Tcl script which encodes the vBNS backbone topology as of September 18, 1998,
shown in Figure 8. The vBNS network is a good example of the type of environment where POW would be useful. vBNS
currently provides IP service on top of an ATM network. vBNS nodes are connected by a complete mesh of PVCs to each
other. POW can replace this mesh with a more effective optical Internet. Although the main goal of POW is to evaluate the
number of wavelengths required per link, we also evaluated the overhead of SWAP protocol. LBL-PKT5 [6] was chosen as
the traffic model. In the interest of understanding SWAP overhead, we intentionally setup the simulation so that there always
enough wavelength converters and mergers.

To instrument the performance measure of SWAP in term of the overhead, the number of SWAP messages is compared to
the offered traffic and expressed as a ratio. Five schemes are evaluated: non-merged fine, medium and coarse grain flows and
merged fine and coarse grain flows with different numbers of available wavelengths: 0, 4, 8, 16, 32, and 64. The default
wavelength λ0 is implicit and is not counted.

Figure 9 and Figure 10 indicate that for most cases, SWAP overhead is proportional to the number of switchable flows. For
non-merged fine grain case, there is an unexpected increase in the overhead for 32 and 64 wavelengths. Figure 11 indicates
that there is no significant increase in the number of flows being switched. Simulation traces show that there were large
amounts of unsuccessful signaling due to the high number of swichable branches. Primarily there were not enough common
wavelengths to construct the lightpaths, and SWAP incurred a high percentage of unsuccessful signaling attempts. If the

flows persist after such a failure, this will significantly increase the number of SWAP messages exchanged. Similar behavior
is observed for merged-flows.

0
1
2
3
4
5
6
7
8
9

10

0 4 8 16 32 64

Available wavelengths per fiber

Si
gn

al
in

g
ov

er
he

ad
 (%

)

Fine Grain Medium Grain Coarse Grain

Figure 9 - SWAP overhead for non-merging flows

0

0.5

1

1.5

2

0 4 8 16 32 64

Available wavelengths per fiber

Si
gn

al
in

g
O

ve
rh

ea
d

(%
)

Merged Fine Grain Merged Coarse Grain

Figure 10 - SWAP overhead for merged flows

0

20

40

60

80

100

0 4 8 16 32 64

Available wavelengths per fiber

Pe
rc

en
ta

ge
 P

ac
ke

ts

Sw
itc

he
d

 (%
)

Fine Grain Medium Grain Coarse Grain

Figure 11 - Percentage of packets swithed for non-merged flows

Figure 10 exhibits this behavior more clearly for merged-flows, where SWAP has three different impediments: insufficient
wavelengths overall, sufficient wavelengths but insufficient common wavelength along the path, and insufficient switchable
flows. Both Figures 9 and 10 show three phases in the graph. For the merging case, the first phase is between 0 and 8
available wavelengths. This phase shows the overhead of SWAP when there were not enough wavelengths: the number of
signaling messages grows slowly because most of the messages are SETUP and SETUP_FAIL. In this phase, most SETUP
attempts fail quickly because the free wavelength sets for the links between the last hop to the previous hop were empty.

The second phase between 8 and 32 available wavelengths corresponds to the case when there were enough wavelengths
(more opportunity to switch the flows), and SWAP became more active performing its signaling. However, because there
were insufficient common wavelengths along the enture path, SWAP kept trying unsuccessfully. In this case, the number of
SWAP messages grows more rapidly in this case, and this could affect the scalability if SWAP were used when the ratio
between Common Wavelengths available per the number of Switched Flows (CW/SF) is small. In this case the competition
for the wavelengths is not self-limiting, as in the case with too few switched flows. It may be necessary to consider
preemption, where new large flows cause current small switched flows to be torn down, and wavelengths reassigned. Another
alternative would be to limit the propagation of setup messages, relative to the number of current flows, number of
wavelengths, and likely length of the path. Either of these alternatives would require augmentation of the SWAP protocol.

Last phase is between 32 and 64 available wavelengths, and corresponds to sufficient common free wavelengths, where the
number of SWAP messages during signaling was bounded. In this case, most of the SETUP attempts succeed. These three
phases give an insight on the scalability of SWAP in term of the messaging overhead when CW/SF is very small

(approaching zero), small, and large. This last behavior also supports our rationale before that SWAP locks the resources
(wavelength sets) and avoids crank-back mechanism when CW/SF is large.

6. CONCLUSION

The SWAP protocol is an approach to assigning wavelengths dynamically based on traffic demand, and was created to
facilitate the Packet over Wavelength (POW) architecture. SWAP wavelength assignment is similar to IP switching; it is
data-driven, rather than control-driven. A notable difference is that SWAP introduces flow merging to reduce the number of
wavelengths required. This requires SWAP nodes to perform both active and passive roles based on their positions in the
flow tree. These roles must be performed at the point where electrical signals are still available: the first hop or last hop of the
lightpaths.

During POW simulation, SWAP overhead was measured under three conditions: where the Common Wavelength Per
Switchable Flows (CW/SF) ratio is zero, small, and large. SWAP scales well for zero and large CW/SF. For a small CW/SF
ratio, SWAP scales poorly due to the breadth of wasted signaling. This may suggest that SWAP need to be augmented to
support lightpath preemption, where new larger flows cause smaller existing flows to be torn down, and wavelengths
reassigned. Preemption will enable SWAP to switch the N most significant switchable flows (for N free wavelengths), where
the SWAP overhead would thus be bounded. SWAP overhead is the first important measure of its performance because of
the dynamics of the traffic flows contribute to the number of signaling messages being exchanged.

Future study is required to measure SWAP overhead under higher traffic loads. In addition, further investigation is required
to determine how SWAP parameters affect its steady-state and transient performance. SWAP performance under different
traffic models and different flow detection (considering flow bandwidth usage) mechanism is not known at the time of this
publication. These are certainly areas for further study.

ACKNOWLEDGEMENTS

The authors thank the anonymous referees for their comments. They also thank Utham Kamath for fruitful discussions.

REFERENCES

1. L. Anderson, et.al, “LDP Specification,” (work in progress).
2. J. Bannister, J. Touch, A. Willner, S. Suryaputra, “How Many Wavelengths Do We Really Need in an Internet Optical

Backbone?,” Protocols for High-Speed Networks VI, Kluwer, 1999, pp. 43-60.
3. D.J. Blumenthal, et.al., “All-Optical Label Swapping with Wavelength Conversion for WDM-IP Networks with

Subcarrier Multiplexed Addressing,” IEEE Photonics Technology Letters, Vol. 11, No. 11, Nov. 1999, pp. 1497-1499.
4. R. Callon, et.al., “A Framework for Multiprotocol Label Switching,” (work in progress).
5. B. Davie, P. Doolan, and Y. Rekhter, Switching in IP Networks: IP Switching, Tag Switching and Related Technologies,

Morgan Kaufmann, San Francisco CA, 1998.
6. http://ita.ee.lbl.gov/html/traces.html
7. B. Jamoussi (editor), “Constraint-Based LSP Setup using LDP,” (work in progress).
8. S. Keshav, An Engineering Approach to Computer Networking: ATM Networks, the Internet and the Telephone Network,

Addison-Wesley, Reading MA, 1997.
9. K.C. Lee and V. O. K. Li, “A Wavelength-Convertible Optical network,” Journal of Lightwave Technology, Vol. 11, No.

5/6, May 1993, pp. 962-970.
10. S. Lin and N. McKeown, “A Simulation Study of IP Switching,” Proceedings of ACM SIGCOMM 1997, pp 15-24.
11. A. R. Modarressi and R. A. Skoog, “Signaling System No. 7: A Tutorial,” IEEE Communications Magazine, July 1990,

pp. 19-35.
12. B. Mukherjee, Optical Communication Networks, McGraw-Hill, New York NY, 1997.
13. P. Newman, G. Minshall, and T. Lyon, “IP Switching - ATM Under IP,” IEEE/ACM Transactions on Networking, 6(2),

April 1998, pp. 117-129.
14. http://www.nlanr.net/NA/Learn/aggregation.html
15. http://netweb.usc.edu/vint
16. C. Qiao and M. Yoo, “Optical burst switching (OBS) – a new paradigm for an Optical Internet,” Journal of High Speed

Networks (JHSN), vol. 8, no. 1, pp. 69-84, 1999.

R. Ramaswami and K.N. Sivirajan, Optical Networks: A Practical Perspective, Morgan Kaufmann, San Francisco CA,
1998.

19. S. Suryaputra, J. Touch, J. Bannister, “Simple Wavelength Assignment Protocol,” ISI Research Report, ISI/RR-99-473,
Oct., 1999.

20. J.S. Turner, “Terabit burst switching,” Journal of High Speed Networks (JHSN), vol. 8, no. 1, pp. 3-16, 1999.
21. S.J.B. Yoo, “Wavelength Conversion Technologies for WDM Network Applications,” IEEE Journal of Lightwave

Technology, Vol. 14 No. 6, June 1996, pp. 955-965.
22. L. Zhang, S. Deering, D. Estrin, et.al. “RSVP: A New Resource ReSerVation Protocol,” IEEE Network, Vol. 5,

September 1993, pp. 8-18.

APPENDIX – DETAILED SWAP TRANSITION TRIGGERS AND ACTIONS

Incoming State

Nonexistent
Branch

PASSIVE

ACTIVE

WAIT
COMMIT

WAIT OUT
SWITCHED

IN
SWITCHED

SETUP
SENT

(I1)

(I2)

(I3)

(I3)

(I4) (I5)

(I6)

(I7) (I8)

(I9)

(I10)

(I11)

(I12)

(I15)

(I16)

(I16)

BACKOFF
(I13)

(I14)

Triggers Actions
I1 A packet is received and there is no branch entry

associated with the packet and there is a downstream
neighbor.

A new branch is created.

I2 A packet is received and there is no branch entry
associated with the packet, and there is no downstream
neighbor or outgoing state is either
OUT_ACTIVE_SWITCHED or OUT_SWITCHED.

A new branch is created.

I3 FlowDetectionTimer expires and PacketCount is
equal to zero.

Delete branch.

I4 Transition O6 or O11 happens. The branch becomes ACTIVE and start monitoring.
I5 Transition O9 or O12 happens. The branch becomes PASSIVE and stop monitoring
I6 FlowDetectionTimer expires and PacketCount is

greater or equal to HighThreshold.
Set PacketCount to zero and send SETUP(F, λbanch) to the
upstream neighbor of the branch.

I7 Transition O3 happens and the branch is a switchable
branch.

Determine λout = λin ∩ λbranch.
If λout is ∅, reserve a wavelength converter and send SETUP(F,
λbranch) to the upstream neighbor of the branch.
Else send SETUP(F, λout) to upstream neighbor of the branch.

I8 Receive COMMIT(F, λx) from the upstream neighbor.

Set λin = λx

I9 Transition O6 happens.

Setup the optical switch to redirect input from the link of the
branch with λin to output link of the flow using λout.
Send COMMIT_OK(F) to the upstream neighbor.

I10 Receive COMMIT(F, λx) from the upstream neighbor. Set λin = λx
Setup the optical switch to redirect input from the link of the
branch with λin to a wavelength converter that convert the input to
λ0.
Send COMMIT_OK(F) to the upstream neighbor.

17.

18. R. R. Stewart, et.al., “Stream Control Transmission Protocol,” (work in progress).

I11 Receive TEARDOWN(F) and there is a downstream
neighbor and this is the only branch in IN_SWITCHED
state.

I12 Receive TEARDOWN(F) and there is no downstream
neighbor, or
Receive TEARDOWN(F) and this is not the only branch in
IN_SWITCHED state.

I13 Receive SETUP_CONFLICT(F) or first hop cannot get the
lock for the wavelengths set and BackoffCount is less
than BackoffLimit.

Increase BackoffCount.
Schedule BackoffTimer.

I14 BackoffTimer expires. Send SETUP(F, λbanch) to the upstream neighbor of the branch.
I15 Receive SETUP_CONFLICT(F) and BackoffCount is

greater or equal to BackoffLimit.

I16 Receive SETUP_FAIL(F)

Outgoing State

(O 4) C O M M I T
S E N T

O U T A C T I V E
S W I T C H E D

W A I T A L L
C O M M I T

W A I T
C O M M I T O K

Nonex is ten t
En t r y

(I17)
A B O U T T O

T E A R D O W N

O U T N O T
S W I T C H E D

O U T
S W I T C H E D

(O 1) (O 2)

(O 3)

(O 5)
(O 6)

(O 7)

(O 8)
(O 9)

(O 1 1)(O 1 2)

(O 1 0)

(O 1 3)

(O 1 4)

Triggers Actions
O1 New branch is created and there is no flow entry associated

with the packet.
Creates the flow entry.

O2 Transitions I3 happens and the deleted branch is the last
branch of the flow entry.

Delete the flow entry.

O3 Receives SETUP(F, λin) from downstream neighbor and
there is at least one switchable branch and full path
construction is possible (That is λin ∩ λbranch ≠ ∅ or there is
a free wavelength converter and
WavelengthConvertEnable is true).

Pick λoutgoing ∈ λin. If the lightpath is potentially contiguous,
λoutgoing will be determined later after get COMMIT(F) from the
upstream. In the case of non-contiguous, pick one arbitrarily.
For each switchable branch where full path construction is
possible, do transition I7.

O4 Receives SETUP(F, λin) from downstream neighbor and
there is at least one switchable branch and full path
construction is not possible and PartialPathAllowed
is not set.

Send SETUP_FAIL(F) to the downstream neighbor.

O5 Receives SETUP(F, λin) from downstream neighbor and
there is no switchable branch, or there is a switchable
branch, full path construction is not possible and
PartialPathAllowed is true.

Pick λoutgoing ∈ λin arbitrarily.
Send COMMIT(F, λoutgoing) to the downstream neighbor.

O6 Receives COMMIT_OK(F) from downstream neighbor. Redirect λ0 to λoutgoing.
O7 FlowActiveTimer expires and aggregate packet count

is less than LowThreshold.
Schedule FlowActiveTimer.

O8 FlowActiveTimer expires and aggregate packet count is
higher than LowThreshold

O9 FlowActiveTimer expires and aggregate packet count is
less than LowThreshold

Undo λ0 to λoutgoing conversion.
Send TEARDOWN(F) to downstream neighbor.

O10 I8 happens and the branch is the only branch in
WAIT_COMMIT state.

Send COMMIT(F, λoutgoing) to downstream neighbor.

O11 Receive COMMIT_OK(F) from downstream Redirect λin to λoutgoing
O12 I11 happens and aggregate packet count is less than

LowThreshold.
Send TEARDOWN(F) to downstream neighbor.
Undo λincoming to λoutgoing redirection.

O13 I11 happens and aggregate packet count is higher or equal
to HighThreshold.

Undo λincoming to λoutgoing redirection.
Convert λ0 to λoutgoing .

O14 I10 happens Cancel FlowActiveTimer

