616 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 5, NO. 5, OCTOBER 1997

Modeling the Performance of HTTP
Over Several Transport Protocols

John Heidemannyember, IEEE Katia Obraczka, and Joe ToudWlember, IEEE

Abstract—This paper considers the interaction of HTTP with bounce rapidly from site to site, as verified by both client [6]
several transport protocols, including TCP, Transaction TCP, a and server side traces [B]_

UDP-based request-response protocol, and HTTP with persistent ynfortunately, TCP is poorly suited to frequent, short,
TCP connections. We present an analytic model for each of these request—response-style traffic. Frequent connection setup and

protocols and use that model to evaluate network overhead carry- ¢ d ts burd ith fi left i
ing HTTP traffic across a variety of network characteristics. This ear-down CoSts burden servers with many connections Ieit in

model includes an analysis of the transient effects of TCP slow- TIME_WAIT state [9], [10]. Short connections can interact
start. We validate this model by comparing it to network packet poorly with TCP’s slow-start algorithm for congestion avoid-
traces measured with two protocols (HTTP and persistent HTTP) ance [10]. Finally, TCP’s initial three-way handshake adds
over local and wide-area networks. We show that the model is |atency to each transaction [10].
accurate within 5% of m_easured performance for wide_-are_a net- These mismatches between the needs of HTTP and the
works, but can underestimate latency when the bandwidth is high g0 jces provided by TCP contribute to increased latency for
and delay is low. We use the model to compare the connection- . L
setup costs of these protocols, bounding the possible performanceMOSt web users. Fundamentally, TCP is optimized for large-
improvement. We evaluate these costs for a range of network Scale bulk data transport, while HTTP often needs a light-
characteristics, finding that setup optimizations are relatively weight, request-response protocol. Other request-response-
unimportant for current modem, ISDN, and LAN users but can style services, including transfer of short e-mail messages or
provide moderate to substantial performance improvement over fijles and RPC protocols, would also benefit from protocol
high-speed WAN’s. We also use the model to predict performance ;
over future network characteristics Improvements.
' Prior work in this field (reviewed in the next section) has
Index Terms—Computer protocol performance, HTTP, inter- identified and proposed solutions to each of these problems.
networking, TCP. This paper builds upon that work in several ways. First, we
present analytic models for HTTP traffic over several transport
|. INTRODUCTION protocols. These models allow us to compare current and

]) future protocols in a common framework. We can also predict
T HE World Wide Web [1] has rapidly become one of theyrstocol performance on proposed networks. We validate our

most popular Internet services [2]. The popularity of thiodels by comparing them to measurements from an actual
web has resulted in a corresponding popularity for HTTRytem. Finally, we use the insight provided by the models to
the standard Hyper-Text Transport Protocol [3], [4]. HTTRgfiect on the needs of protocols for HTTP traffic.
is layered over TCP. , This paper makes several contributions to the field. First,
The strengths of TCP are well known. TCP is a welye provide a detailed examination of the transient effects of
understood protocol with carefully tuned flow control ané-cp connection start-up. We show that the start-up behavior of
congestion avoidance algorithms [5]. These charactenst_rpép,s slow-start algorithm depends on the acknowledgment
make TCP an excellent protocol for bulk data transport jicy of the receiver and that this fact often results in the
congested networks. congestion window opening significantly slower than has often
Web traffic is not ideally matched to TCP, however. Iheen described. These effects are particularly important for
practice, web access is request-response oriented with bugstsp (and similar short, request—response protocols) where
of numerous requests and small, unidirectional responsgansient effects often dominate performance. Second, we
Retrieval of a complete web page requires separate request ide an analytic model for web transport over several
text and each embedded image, thus making tr_affic_ inhererﬁ%tocms and use this model to compare these protocols
bursty. Responses are small to keep transmission times doyg to validate the experimental results of prior researchers.
several studies have documented typ|cal response size as 8§y, we apply our model to predict protocol performance
than 1 kB [6], 6 kB [7], or 21 kB [8]. Finally, web users often, 5 proad range of network characteristics including future

Manuscript received November 21, 1996; revised June 6, 1997; approve@tworks characteristics. Finally, we apply these predictions to
by IEEE/ACM TransAcTIONS ONNETWORKING Editor L. Peterson. This work evaluate the performance of recent HTTP enhancements. We

was supported by the Defense Advanced Research Projects Agency (DAR ; ;
under FBI Contracts J-FBI-95-185, entitled “Cities Online,” and J-FBI-QSﬁﬁ}j that while recent enhancements such as persistent HTTP

204, “Global Operating Systems Technologies.” The views and conclusiof§€ effective with high-bandwidth network characteristics, they
contained in this paper are those of the authors and should not be interpr@#&r much more modest gains in the medium- and low-
as necessarily representing the official policies, either expressed or implied,

of the Department of the Army, DARPA, or the U.S. Government.

The authors are with the Information Sciences Institute, University of South-1For example, from the 1995-1996 Boston University survey [6], we can
ern California, Marina del Rey, CA 90292-6695 USA (e-mail: johnh@isi.edwleduce that an upper bound on the mean number of unique URL'’s read from
katia@isi.edu; touch@isi.edu). each site is 15.5. The NCSA server-side traces suggest that clients read a

Publisher ltem Identifier S 1063-6692(97)07264-6. mean of 2.92 text pages at their site per-browsing session.

1063-6692/97$10.001 1997 IEEE

HEIDEMANN et al. MODELING THE PERFORMANCE OF HTTP 617

bandwidth network characteristics common to most Interneypass the TCP’s three-way handshake and avoid slow’start.
users today. T/TCP also shortens TCP’s TIMB/AIT period from 240 to
12 s, reducing the duration that per-connection state is retained.
Il. RELATED WORK Stevens compares the time to complete a client-server
This section summarizes previous and current work in tfinsaction using TCP, UDP, and T/TCP for different sizes
areas of HTTP performance evaluation as well as transpéftthe request and reply over Pentium-based hardware on a
protocols that have been proposed as alternatives to TCP.10 Mb/s Ethernet [16]. As expected, the UDP-based client-
A simplified version of the HTTP over TCP and cachingerver yields the smallest latency (11-81 ms, depending on
TCP models of this paper is under development [11]. Tha@cket size), and the TCP-based interaction takes the longest
paper focuses on comparison of HTTP with and withodi® complete (36-105 ms). In Stevens’ experiments, T/TCP is
persistent connections; this paper more accurately modaBput 5 ms more expensive than UDP for a given packet size
slow-start and workloads and analyzes additional protocols(@nd, therefore, 55%-18% faster than TCP).

more detail. We extend Steven'’s results by modeling HTTP traffic over
T/TCP. We also show that, with respect to connection es-
A. Persistent-Connection HTTP tablishment costs, HTTP traffic over T/TCP and persistent-

Padmanabhan and Mogul conducted experiments to qu§Annection TCP (P-HTTP over TCP) behave identically.
tify the cost of using TCP as HTTP’s transport mechanis
[10]. Their examination of a typical HTTP request—responsr(?;' UDP-Based Request-Response Protocols
demonstrated throughputs for short responses as small as 10#he Asynchronous Reliable Delivery Protocol (ARDP) is
of the throughput obtainable by bulk data transfers undene example of a reliable message passing protocol built atop
similar network conditions. They attribute these costs to TCP4DP for request-response-style interactions between a client
connection setup and slow-start mechanisms. and a server. ARDP was proposed and implemented as the
To amortize TCP’s connection overhead over multiplsansport mechanism for the Prospero information discovery
HTTP interactions, Padmanabhan and Mogul propose t@ol [17].
“persistent-connection” HTTP, or P-HTTP, a variant of HTTP ARDP’s main design goal is to provide a reliable yet
that uses one TCP connection to carry multiple HTTP requedightweight communication mechanism to transport requests
[10]. Mogul also investigates trace-driven simulations ¢ind responses between clients and servers. The current version
HTTP and P-HTTP, demonstrating that P-HTTP can avoRf ARDP (in development) borrows TCP-style flow-control,
these setup costs and achieve significantly better performaf@ggestion-avoidance, and retransmission algorithRDP
than HTTP when there is temporal locality in web accessayoids TCP's three-way handshake, instead randomly selecting
[12]. By requiring fewer TCP connections than HTTPgonnection identifiers. This approach trades connection setup
P-HTTP also conserves server and network resources. overhead for a chance of accidental (or intentional) connection
Padmanabhan and Mogul’s results have been corroborai@entifier reuse.
by Spero in an unpublished study [13]. A version of P-HTTP We will show that although avoiding the three-way hand-
is part of the specification of HTTP/1.1 [4]. shake is helpful, caching congestion-control information is
Both Padmanabhan and Mogul's and Spero’s analyzesi@foortant for optimal performance.
HTTP overhead were founded on measurements between
relatively well-connected Internet hosts (bandwidth about 1
Mb/s, roundtrip time 70 ms). We show that our analytic model To understand the performance of HTTP over different
of performance allows us to extend these results to othesinsport protocols, we must characterize the network and the
networks. We validate their results for well-connected hostisaffic we expect to send. We consider each of these in turn.
in such cases, P-HTTP will improve performance. We also
show that when either bandwidth or delay degrade (perhafysNetwork Model
due to wide-area congestion, bottleneck links such as a modenfig. 1 shows the beginning of a typical TCP packet ex-
or ISDN, or colocation of hosts), then P-HTTP performancghange. Several parameters are needed to characterize this
improvements are much more modest. exchange; we list these in Table I.
A recent technical note has suggested that use of pipeliningrhe first three parameters listed in Table I—roundtrip time,
is important to get good performance from the HTTP/1Bandwidth, and maximum segment Sizeare all properties of
implementation of P-HTTP [14]. Pipelining reduces the nuny given network path (although observed roundtrip time and
ber of packets transmitted and supports request independetsggdwidth may change due to variations in network and server
(as discussed in Section IV-A). We discuss the performanggd). The remaining two parameters can be derived from the
implications of HTTP/1.1 with pipelining in Section V-E. others. Segment-transmission time (the time it takes to send
the largest possible packet) is directly related to bandwidth

I1l. NETWORK AND TRAFFIC MODEL

B. Transaction TCP

Transaction TCP, or T/TCP [9], [15], was proposed to _ _ -
bridge the gap between the services provided by UDP anaWhlIe the functional specifications for T/TCP suggest that

L . congestion window be cached, the reference implementation (at
TCP for request-response applicati6i&TCP improves TCP ftp://ftp.isi.edu/pub/braden/TTCP.tar.Z) does not cache this value.

performance by CaChmg per-host information sufficient to 40lder versions of ARDP have a fixed window size of 16 1250-byte packets

2A T/TCP “transaction” is a request-response exchange, not a databzfgéq do not do slow-start.
style transaction. 50ur segment sizes already account for link-level headers.

618

HTTP HTTP
Client Server

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 5, NO. 5, OCTOBER 1997

TABLE I
NETWORK CHARACTERISTICS FORSEVERAL EXISTING NETWORKS N-Ethernet,
N-Fast-Internet, and N-Modem are discussed in Section V-E

A
t | round—trip network rit bw mss stt muws
selup | time (RTT) Ethernet 0.7ms 8.72Mb/s 1460 B 1.28ms 1 pkts
* Fast-Ethernet 0.7 100 1460 0.111 7
Slow-Internet 161 0.102 512 38.5 5
. Fast-Internet 89 1.02 512 3.85 24
initial Modem 250 0.0275 512 142 2
request A ISDN 30 0.122 512 32 1
server WAN-Modem 350 0.0275 512 142 3
y ‘think time WAN-ISDN 130 0.122 512 32 5
A ADSL 30 6 512 0.651 47
| 4 segment DirecPC 500 1 512 3.91 128
reply | transmission N-Ethernet 0.7 8.72 1460 1.28 1
A | v time N-Fast-Internet 80 1.17 1460 9.52 9
| | N-Modem 150 0.0275 1460 396 1
stall : : slow
Y ,Stan directly measured these parameters on actual systems. For
| Ethernet, we use observed bandwidth and latency measured
| between two Sun SPARC 20/71 hosts connected by a dedicated
x 10 Mb/s Ethernet. For the Internet, we employ two differ-
I ent values—"fast” and “slow” Internet—which correspond
| sustained to measured communications speeds between well-connected
| transfer hosts on the same and different continents, respectively.
: v Actual Internet performance represents a continuum between

these points. The fast-Internet case corresponds roughly to

Fig. 1. Packets exchanged in an HTTP over TCP connection not limited bnaracteristics present in Mogul's and Spero’s studies [12],
bandwidth. Bold arrows indicate data transfer, while thin arrows show SYIT13]_ DirecPC also presents measured values from a system

or ACK-only packets.
TABLE

NETWORK CHARACTERISTICS AFFECTING HTTP RERFORMANCE

with satellite down-link and a modem back-channel [18].
(We assume that the back-channel is not a factor limiting
performance.)

It roundtrip time For several other networks, we have had to estimate these
bw bandwidth . parameters. Modem and ISDN figures employ measured la-
nmss maximum segment size tencies and theoretical bandwidths. Fast-Ethernet and ADSL
stt segment-transmission time use theoretical bandwidths and latencies suggested by similar
muws maximum useful window size

and segment size:

stt =

mss

bw
Maximum useful window size is the bandwidth—delay prog¥ide-area limitations on latency and bandwidth; other cases

systems (10 Mb/s Ethernet and ISDN, respectively). We look
forward to replacing these estimates with actual measurements
as these systems become available.

Finally, only the Slow- and Fast-Internet figures consider

uct expressed in an integral number of packets. This fir@sume that the client is directly connected to the server by
parameter represents the number of segments which must/ie given networking technology. We can reflect wide-area
in flight to keep the network “pipe” full. When the Curremllmltatlons_ by adding latency and capping bandwidth to that
window size is less thamuws, there will be a delay while Observed in the Slow- and Fast-Internet cases. For Modem and
acknowledgment return to the sender; when window size is!®PN. we therefore show WAN version with 100 ms additional

leastmuws segments, then there will be continuous flow d@tency. For faster technologies (ADSL, DirecPC, Slow- and
data. Analytically,muws is Fast-Ethernets), bandwidth and latency can be approximated

by the Slow- to Fast-Internet cases.
rit . . .
muws = [_W We can already observe thatuws is fairly low in many
stt current networks, with the exception of the fast-Internet case.

A final network characteristic not considered here is tran®nce the transmission window has opened up past this value,
mission error rate. We discuss the effects of packet loss gtknowledgments of outstanding packets are returned as fast
our results when we validate our model in Section V-C. Thgs packets are transmitteduws is directly related to protocol
primary goal of this paper is to examine startup effects @lerhead; we will show later that when it is small, connection
transport protocols. A complete discussion of the effects gétup optimizations have little to optimize and so provide
error on transport performance are beyond the scope of tpigrformance similar to HTTP over TCP.
paper, so for the remainder of this paper we assume error-free
transmission.

Having defined these parameters, we can now quantify them

for the networks in which we are interested. These values are
; ; 8For the fast-Internet case, we measured communications between dark-
given in Table II. ! =t } e
| il th rameters t redict f star.isi.edu and prep.ai.mit.edu; for the slow case, between darkstar.isi.edu and
Our models will use these parameters to predict pe &p.connect.org.uk. These measurements were taken on a Saturday afternoon

mance across a range of networks. Where possible, we h@wve west of UTC) on May 11, 1996.

HEIDEMANN et al. MODELING THE PERFORMANCE OF HTTP 619

B. Traffic Model To examine these protocols against a consistent baseline, we

Performance of transport protocols also depends upon {H&t consider a lower bound on transaction time.
traffic characteristics of HTTP. We consider several potentigl

HTTP workloads. Minimum Transmit Times

Small page Single 5 kB web page. Logically, the minimum possible transaction time is the one
Medium page Single 25 kB web page. roundtrip time delay inherent in communication, plus the time
Large page Single 100 kB web page. it takes to send the request and receive the reply, and any time

Small cluster. Single 6651 B page with embedded 3883 Bpent at the server:
and 1866 B images.

Medium cluster: Single 3220 B page with three embedded Tonin =t
images, sizes 57613 B, 2344 B, and 14199 B. + Teqmin
Large cluster: Single 100 kB page with 10 embedded 25 + processing
kB images. +reply, .
Notice that at each change in size (from small to medium to Feqsine e
large), the total amount of data exchanged is about five times T€Gmin = — =
larger. _ _ reply, .
Each of the cluster workloads requires multiple HTTP reply, .. :ﬁ. ()

requests, one per page or image. In multirequest exchange

we assume that all requests are independent. Requests

and B are independent if request B can be initiated befoqgtﬁ size dlvr:deg_ﬁby bandmd:jh. Wel p_rt_aser;)t tin thlds_ﬁdetan
request A has completed. Although a simple client progralfi ! ustrate the differences and similarities between different

would sequentially request each item, modern multithreadB@"SPOrt protocols. o
browsers initiate multiple parallel image requests as the basid® Se€riés ofn independent requests will incur only one
HTML page is received, thus allowing some degree of requégyndtnp latency because they are pipelined. The total required

1his equation is straightforward and can be reduced to

independence. time will, therefore, be
Choice of traffic will influence our protocol evaluation. The 1)
small and medium cases are representative of typical web Smin = rtt+ > [Tomin(i) — rtt]. 2)
=1

pages today. We consider the large cases representative of
what may become common in the future as networks with The assumption of independent requests implies a browser
higher bandwidth become more widely available. which is multithreaded or which pipelines requests and that the
Finally, we also need to model the size of HTTP requesgsibsequent requests are sent immediately without waiting for
and the time it takes a server to parse and interpret the requbst prior response. (In particular, we assume that the second
(server processing time). To simplify our model, we assuniequest can be made before the complete results of the first
a constant request size of 256 B and zero processing timerejuest have returned.) If we were to assume a single-threaded
more complex model of request size is not warranted sinpeowser makingn sequential requests, we would then add
requests almost always fit in one segment and so performaage additional(n — 1) x rtt delay to (2), while the client
is dominated by response siZeThe zero processing-time determines and requests the next page. If we assume that no
assumption is clearly incorrect; request-handling overheggditional requests could be made until the first was completed
depends strongly on server hardware, software, and load. ¥§§ would be the case in a multithreaded browser where all

remove this effect from our computations to focus instegghage references are in the last segment of the first page), we
on the network protocol aspects of HTTP instead of Servglhuld add one additionattt.

implementation. We reconsider processing time when w

e . .
X . X Because of our assumptions about request size and process-
validate our model in Section V. P q P

ing time, the primary factor influencing minimal transmission
IV. PROTOCOL ANALYSIS times will be reply,,,,. Table lll summarizes the minimum

. IPossible transmission times for the networks and workloads
We next examine protocol performance for the networ \Se consider

and traffic patterns we are considering. We examine the
interactions between HTTP and several classes of protocolg. Simple Model

TCP: HTTP currently runs over TCP, opening a new .)
connection for each transaction. We can construct a very simple estimate of when transport

setup overheads, P-HTTP and T/TCP cache connectionsObrthe bandwidth—delay product to the transaction size. In

connection information across multiple requests. any streaming transport protocol, several roundtrip exchanges
UDP-based request—response protocolsARDP em- are required to reach steady-state performance (assuming net-
ploys UDP to avoid TCP setup costs. working conditions are not knowa priori). When the offered

transaction is too small, stability is not achieved, and transient

7The front page (http:/www.yahoo.com) at Yahoo on May 1, 1996. effects are ampliﬁed. o .
8The front page (http:/ww.gnn.com) at GNN on May 1, 1996. We can approximate the minimum amount of time a con-

9Some older browsers had substantially longer requests [13]. Performaﬁk%cuon' would have t.O Ste_‘blhze by comparing the r‘?‘tlo of
concerns are one reason modern browsers keep requests short. transmitted data to pipe size. For an HTTP transaction, as-

620 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 5, NO. 5, OCTOBER 1997

TABLE I
MINIMAL THEORETICAL TIMES TO SEND DIFFERENT WORKLOADS ACROSS DIFFERENT NETWORKS

network small-page mediom-page large-page small-cluster mediam-cluster laFge-cluster
Ethsrn=t 5.4dms 23 3ms Bl Sms 12.2ms 9. 3ms 217ms
Fasi-Fitharnst 1.11 2 RY B.53 1.7 A GR s
Slhow-Intearnet 565 F100 TaT 1150 EO50 FTALR
Fast-Iniernsl 123 2R3 350 158 &6TH 2E0
Mlaodem 1740 T450 20300 3810 230D TIFLCHHE
IS XRA (=53] 450 353 45950 FHGHE
WA N-Madem 1 &40 7530 2300 2010 22100 TR CHHE
WAN-ISDM 450 1754 AAGD0 053 GO0 21010
ADSL 568 631.9 161 48,7 130 484
L¥igae PO 541 BT 1 230] (] J250
TABLE IV

APPROXIMATION OF ONE ROUNDTRIP OVERHEAD PER TRANSACTION [EQuUATION (4)]. Highlighted values indicate ratios more than 0.25,
where transient effects may dominate performance. for cluster workloads, ratios are given assuming separate and single connections

small- medium- large- small- medium- large-
network page page page cluster cluster cluster
Ethernet 0.16 0.03 0.01 0.19 / 0.06 0.04 / 0.01 0.02 / 0.00
Fast-Ethernet 1.79* 0.36* 0.09 2.22*% 0.74* 0.{7% 0.12 0.28* 0.03
Slow-Internet 0.42% 0.08 0.02 0.52% 0.17 0.11 /0.03 0.07 /0.01
Fast-Internet 2.81* 0.46* 0.12 2.87*% 0.96% 0.61% 0.15 0.36*/ 0.03
Modem 0.18 0.04 0.01 0.22 / 0.07 0.05 / 0.01 0.03 / 0.00
ISDN 0.09 0.02 0.00 0.12 / 0.04 0.02 /0.01 0.01 / 0.00
WAN-Modem 0.25 0.05 0.01 0.30% 0.10 0.07 / 0.02 0.04 / 0.00
WAN-ISDN 0.41* 0.08 0.02 0.50% 0.17 0.11 /0.03 0.06 / 0.01
ADSL 4.61% 0.92* 0.23 5.71*% 1.90* 1.22*% 0.30% 0.72% 0.07
DirecPC 12.80* 2.56* 0.64* 15.86* 5.29% 8.39% 0.85*% 2.01% 0.18
suming thatreq,,,. is zero, this ratio is TABLE V
reply v NUMBER OF SEGMENTS BETWEEN SLOW-START STAL!_S FOR
T size (3) DIFFERENT ACKNOWLEDGMENT PoLicies. The cumulative number
bw x rtt of segments sent is given in parentheses. these columns represent
When this ratio is small, we would expect protocol setup 5¢95nda(1)[cs€g5nda(1)], segsda(i)[csegsqa(i)], and

costs to dominate performance; when it is large, setup costd9sac(Dlesegsac(i)] from the Appendix, wheré is the stall number

would be amortized.

An alternate view of the same concept inverts this ratio to - W:C'-‘Jﬁ-'f‘d ":';-;:d ACK ki
. ata 5 e AT
get the pipe size in reply-sized units. i 2 (91 2 (2] 7 (2
Tt @) 2 3 [5] X (5] 4 (8}
_ a 3 [B) 5 {10 B 14}
_ o reply bw _ r & (14) & {18) 16 (34)
This equation is a good approximation for one roundtrip 5 8 (23} L2 {30] 32 |62)
overhead per reply (the exact value would¢/7;,;,). We 8 Il;”: !?:; ;ﬁ EEZJI f_‘j‘q [['1*’_'53]
can use this equation to provide a first approximation for setup 8 27 (80] 41 (116) 236 (510)
overheads. To estimate overhead for single page retrievals, | 42 {122 G2 (17TH] BLE [1022)
we apply this equation directly. For clusters of retrievals, we 1 fid 145} w3 (2T1) 102 [2046)

use the harmonic me#hof ratios for each retrieval, if each
retrieval requires a separate connection. If connection overhead
is amortized across all of a cluster’s replies (as it would be if
retrievals were batched over a single connection), we treat gll HTTP Over TCP

replies as a single large response. = We next consider the overhead present in TCP when com-
Table IV shows these ratios, highlighting exchanges whe dred to the minimum transaction time. TCP adds several

the overhead approximation exceeds 25%. These simple edqua-)
. i . : ources of overhead: protocol headers, the three-way hand-
tions provide a good predictor of where transient effects wi

be high, but they fail to accurately capture these effects Wgﬂake at connection setup, the slow-start algorithm, and re-

the bandwidth/delay product rises. To accurately estim gnsmissions and congestion control delay due to packet loss.
performance of actual network protocols in these cases, Wgcket loss rates depend on a number of factors beyond the

next consider the effects of congestion avoidance protocols.":fCOpe of this paper; we, therefore, consider only the first three
sources of overhead. We discuss how packet loss would impact

our model in Section V-C.
An idealized packet trace for a request—response transaction
over TCP is shown in Fig. 1. In this packet trace, we can
10The harmonic mean of values isn/(31/;). see how the three-way handshake (labeled setup) adds one

HEIDEMANN et al. MODELING THE PERFORMANCE OF HTTP 621

roundtrip time overhead. We next consider the effects of TCP’s
slow-start algorithm.
1) TCP Slow-Start: TCP’s slow-start algorithm limits

)

i

later by 1/cwnd (congestion avoidance phase). TCP is thug
“clocked” by the flow of acknowledgments.
For high bandwidth/delay—product paths, TCP initially al-g
ternates between segment transmission and stalls waiting @rz
ACK’s from these segments to return. The number of segmengs
sent per stall increases exponentially during slow-start untd
enough segments are in flight that ACK’s return continuously.
To model slow-start behavior, we therefore need to know how
many segments are sent between stalls, how much time each
stall wastes, and how many stalls occur until steady state fgndwidth (bits/second) 1060 RTT (miliseconds)
reached.o'r transmission ends. Fig. 2. TCP congestion avoidance overhead for various bandwidth—delay
We originally expected that the number of packets bet\NeSf%ducts Srop/Smn), for a 512 B segment size and the small-cluster
each stall would follow a simple exponential pattern: 1, 2yorkload.
4, 8, and so on. Modern TCP implementations deviate from
this behavior for two reasons. First, in BSD-derived TCP
implementations, the ACK of the SYN packet on the HTTRescribe the other lines of this table in the following sections).
server opens the congestion window, sodhed for the reply To highlight significant overhead, we indicate ratios higher
begins at 2. Second, TCP’'s delayed-acknowledgment algRan 1.25 with italics.
rithm normally causes the client to ACK every other segment, \We can draw several conclusions from these results. First,
not each segment [19]. Because the congestion window opeRgrhead for the Ethernet, modem, and ISDN networks is
per ACK received rather than per segment acknowledgggasonable (less than 25% overhead) for all workloads (al-
the slow-start window opens much slower than is usualiough adding WAN delays raises small-page and small-
assumed. We develop the exact relationship and review ii@ster overheads to significant levels). These networks have
details of slow-start and delayed acknowledgments in th@ muws at most 2 and so do not pay any slow-start
Appendix. Table V summarizes our findings for three differeqfenalty. The extra roundtrip cost of the three-way handshake
acknowledgment policies. The rightmost column illustrates oy proportionally largest for short responses, but even there,
original expectations, the left column shows a lower-bound @verhead is less than 25%.
slow-start performance. On the other hand, network such as Fast-Ethernet, Fast-
Not all the time of each stall is completely wasted: amternet, ADSL, and DirecPC have substantially higher
increasing part of each stall is spent sending packets, umtilerheads because they have much highetvs sizes. The
cwnd opens pastnuws. The Appendix quantifies this costhigh bandwidth—delay product of these networks requires
with the formulaslowstart-cp. In the next section, we useseven to 128 segments in-transit to fill the communications
this result to develop HTTP over TCP transaction time. pipe; for small files, substantial time is spent waiting
2) Performance and Discussione can summarize thefor packet acknowledgments. These overheads are most
cost of accessing an object via HTTP over TCP by includinggonounced when smaller workloads are processed, since
the extra roundtrip of the setup and the slow-start costs larger workloads are able to expand the congestion window
and amortize the connection setup cost over the duration of

transmission by a congestion windowufd) which is E1o S \\\\°§5§§§§§§§§$§§\\\\\
S . - 5 oSSR N
initialized to one segment and increases each time an ACK \\\x\\\\\\\\\\\\‘tt\\\‘tt\\\\\\‘ttt\\’\\“{\\\\\\\\\\\
is received [5]. The size of increase changes: initialynd £ ° WWM{\\\\\\\%\\\\
grows in one segment increments (the slow-start phase), then ’&;‘ \\\\\\\\Q\\\\\\\\\Qt\\\\\\\\\\\\\\\\\\\\k\\k\\\\\\\\\

to mi

4

R
i
W

Trep =2 % 7tt)
+req, the connection. . .
mn Local-area networks behave differently than wide-area net-
+ processing works in two ways that affect performance. First, many
+ replyrep TCP implementations disable slow-start on LAN’s where

reply,c.p» = slowstartc p congestion control is done at the link layer. Second_, most
| 5 LAN’s allow TCP segments much larger than are typical in

o Freply,,. -) waN's (1460 B instead of 512 or 536 B), although wide

The cost of a series of independent requests is then deployment of path-MTU discovery supports larger WAN

" . segment size [20]. An interesting observation is that employing
Step = rtt + Z [Trcp(i) — rtt]. (6) slow-start does not substantially affect performance over 10
] i=1 Mb/s Ethernet because large segment-size and low roundtrip
We can now define the overhead of HTTP over TCP as time result in a smallnuws.
overheagc p = STCP_) To explore the effepts of th_ese overhgads for a wider variety
S'min of network characteristics, Fig. 2 examines a single workload

The TCP lines of Table VI showverheadp [given by (the small-cluster workload) with a fixed segment size (512 B)
(7)] for a variety of workloads and network characteristics (wand a range of bandwidths and roundtrip times.

622 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 5, NO. 5, OCTOBER 1997

TABLE VI
RATIOS OF PREDICTED PROTOCOL TRANSACTION TIMES TO MINIMUM TRANSACTION TIME FOR DIFFERENT PROTOCOL MODELS,
WORKLOADS, AND NETWORK CHARACTERISTICS Ratios are for the HTTP Over TCP Moded£¢p/Suin); HTTP Over TCP
with connection caching, assuming no cache Bit,(rec-miss/ Swmin, With cache hits the performance ratio is
always 1); AND HTTP OVER ARDP f4rpr/Swmin)- Highlighted values indicate overheads larger than 0.25

small- medium- large- small- medium- large-
network model page page page cluster cluster cluster
Ethernet TCP 1.13 1.03 1.01 1.17 1.04 1.02
caching 1.13 1.03 1.01 1.06 1.01 1.00
ARDP 1.00 1.00 1.00 1.00 1.00 1.00
Fast-Ethernet TCP 2.16* 1.62% 1.19 2.99% 1.79%* 1.64*
caching 2.16* 1.62% 1.19 1.76* 1.19 1.06
ARDP 1.53* 1.36%* 1.11 1.69* 1.897*% 1.37*
Slow-Internet TCP 1.50% 1.13 1.04 1.74% 1.19 1.11
caching 1.50% 1.13 1.04 1.25 1.05 1.01
ARDP 1.22 1.06 1.02 1.82* 1.08 1.05
Fast-Internet TCP 2.94* 2.11% 1.36* 4.60%* 2.55* 2.23%
caching 2.94* 2.11% 1.86* 2.84* 1.87* 1.11
ARDP 2.26%* 1.79* 1.26* 3.18* 2.08* 1.88*
Modem TCP 1.14 1.03 1.01 1.19 1.05 1.03
caching 1.14 1.03 1.01 1.06 1.01 1.00
ARDP 1.00 1.00 1.00 1.00 1.00 1.00
ISDN TCP 1.08 1.02 1.00 1.11 1.02 1.01
caching 1.08 1.02 1.00 1.04 1.01 1.00
ARDP 1.00 1.00 1.00 1.00 1.00 1.00
WAN-Modem TCP 1.30% 1.07 1.02 1.42% 1.10 1.06
caching 1.80* 1.07 1.02 1.14 1.03 1.01
ARDP 1.11 1.03 1.01 1.16 1.04 1.02
WAN-ISDN TCP 1.49% 1.13 1.03 1.72% 1.18 1.11
caching 1.49%* 1.13 1.03 1.24 1.05 1.01
ARDP 1.21 1.06 1.01 1.31%* 1.08 1.05
ADSL TCP 3.37% 3.12% 1.85% 6.01% 4.03% 3.99%
caching 3.37* 3.12%* 1.85%* 2.87* 1.67* 1.27*
ARDP 2.56* 2.64%* 1.64%* 4.08%* 3.10* 3.32*
DirecPC TCP 774F 144F 336% 7.60% 757% 9.90%
caching 2.74* 444 3.36% 3.47* 2.95* 1.93*
ARDP 2.82% 3.72* 2.97* 5.10* 5.75% 7.61%

Again, we observe in this graph that overhead is fairly Stevens has suggested the use of T/TCP for HTTP traffic
low when the bandwidth—delay product (and sawws) is [16]. T/TCP [9] is an extension of TCP enhanced to support
small, either because of small bandwidths or small roundtrifansactions. T/TCP caches TCP connection setup information
times. Overhead rises sharply when the product of these valges that subsequent TCP connections avoid the three-way
grows. Finally, overhead tops out at about 9 times the minima&ndshake and reduce slow-start cost. Thus, like P-HTTP,
transfer time. T/TCP pays the full cost of TCP setup for the first connection

This workload-dependent limit indicates network chara@nd avoids setup costs for subsequent connections. Cached
teristics where all transmission time for all transactions {§TCP information will be flushed using algorithms similar to
spent in the slow-start realm. (For the medium-cluster caiose for breaking P-HTTP connections (for example, using a
the maximum possible overhead is about 16 times minimégast-recently used or a periodic time-out).
for large-cluster it is about 55 times minimal.) Although P-HTTP provides connection caching at the user

Note that these high overheads occur only when the bar@vel and T/TCP does so in the kernel, a series of requests in
width—delay product is very large, as in a satellite connectiofither protocol performs identically (at the level of detail we
It is well known that TCP is not the best protocol for suci§onsider here). In each protocol, the first request pays the full

situations. When either bandwidth is low or delay is very lowgOSt to open a standard TCP connection, but subsequent re-
TCP performs much better. quests avoid the three-way handshake and continue to develop

the slow-start window. We, therefore, model these protocols
D. HTTP Over TCP with Connection Caching together as “HTTP over caching TCP" protocols. _
P-HTTP [10] has been proposed as a solution to SeV_There are two possible costs for caching protocols, with

eral problems resulting from running HTTP over TCP, anand without cache hits:

persistent connections are part of the HTTP/1.1 standard [4]. P- Trvche-miss = Trep (8)
HTTP reuses a single TCP connection to amortize connection Toocho-nit = Tons (9)
setup and congestion avoidance costs across several HTTP cachethat T min:

requests. When a transaction is completed, the TCP connectiom a series of requests to a new server, the first will always
is left open for subsequent transactions. This connectionhis a miss and subsequent requests will usually be hits.
reused for subsequent requests; it will be closed if server orfTo quantify a series of requests we make the simpli-
client demand is high, or when idle for a given length of timdying assumption that after the first exchange the conges-

HEIDEMANN et al. MODELING THE PERFORMANCE OF HTTP 623

tion window will be completely opened. For the purpos&. HTTP Over Multiple, Concurrent TCP Connections

of our model, the congestion window is fully opened when \1any web browsers open multiple concurrent connections
cwnd > muws, since opening the window further will noty, mitigate TCP start-up costs (HTTP over parallel connec-
impact performance. Therefore, for our assumption 10 B&ns) “We can bound their performance by HTTP over TCP
true, cund[stalig[reply,;.. /mss])] > muws after the first \in 3nd without connection caching. Our HTTP-over-TCP
exchange, whereeply,;., is the size of the first reply from 46| overestimates transmission time by not considering
the server. (We analyzewnd and stalls in the Appendix.) harajielism in the concurrent slow-start of each connection.
Our workloads satisfy this assumption for the networks list§¢r1p over connection caching underestimates transmission
in Table I satisfy this assumption. _ . time by assuming that there is no penalty for slow-starts of
Given this assumption, all requests after the first will beer requests in a cluster. A better approximation might be
cache hits under conditions of normal load (under high load tRgiained by treatingt+ as if it werertt/n, for n concurrent
client or server may terminate connections causing additiona),nections. Completely specifying behavior with multiple

cache misses). The first request may or may not be a Ca??ﬁ'allel connections is an area of continuing work.
hit depending on the user’s browsing pattern and server load.

We therefore define two formulas for series of independent

accesses—one assuming that the first request is a cache'%ﬁit',_|TTP Over UDP-Based Protocols

and one assuming that it's not Since web access is typically request—response oriented, we
examine the performance of HTTP over a request-response
style protocol such as ARDP. ARDP avoids TCP’s three-

Sirst-miss :T‘:“CZ@"’”SS(D way handshake, while it keeps TCP'’s slow-start algorithm
N for congestion avoidance. Therefore, the time to complete an
+ z_; [Leache-nit (1) = rtt] (19 HTTP transaction over ARDP is
" T, =rtt
Sfirst'hit =rit+ Z [Tcache'hit (L) - 7tt] ARDE !
i=1 +7reqarDP
= Sin - (11) + processing
+reply rpp
Finally, overhead is again TCYARDP = TCqmin
reply, rpp = slowstart¢p
S rst=miss .
OVErNea . siomiss = Lot tss (12) 1 % (14)
Smin bw
S wrst-hi . . .
overhead;,t-nit = % The total time to complete a series of independent HTTP
min requests is given b
—1 13) 9 given by
S, =rtt + T, 1) — rtt 15
The caching lines of Table VI show the performance results ARDE ;[aror{i)] (13)

of our workloads, assuming that the first web page access does
not use a cached connecti@vprheag;, ;-miss in (12)]. Note and the overhead by
that for the cluster workloads, accesses after the first are cache SurDP
hits. overheadrpp = —c——. (16)
Several observations about HTTP over connection-caching e
TCP protocols are apparent from this table. First, HTTP overThe ARDP lines of Table VI shovoverhead zppr [(16)
caching TCP performance is the same as standard HTTP ofearthe different workloads and network characteristics]. Note
TCP performance for single page queries. Second, cachitigat for the Ethernet, modem, and ISDN networks, HTTP
TCP performance is somewhat better than standard TCP fiansactions over ARDP result in minimal transaction times.
the cluster cases because connections after the first n&bds confirms that because of their small maximum useful
not pay for three-way handshake or slow-start. We explovandow size {nuws), these networks do not pay any slow-start
this relationship further in Section VI. Finally, overhead ipenalty.
still high for the Fast-Ethernet and Fast-Internet cases withOn the other hand, ARDP’s overhead becomes noticeable
cluster workloads. In these cases, the large bandwidth—deiaythe higher bandwidth—delay-product cases (Fast-Ethernet,
product results in significant overhead, while the congestidaoth Internets, ADSL, and DirecPC). ARDP also incurs higher
window is opened even when amortized over an entire serigerhead than TCP with connection caching for the cluster
of connections. workloads. This overhead is due to the fact that ARDP always
Finally, if we assume that the first transaction results islow-starts, while caching the connection setup parameters
a cache-hit for a caching-TCP protocol (13), then cachinglows the caching protocols to avoid slow-start every time.
TCP has no overhead. Thus, when caches last long enoughAvoiding the three-way handshake is especially helpful for
to encompass access of multiple clusters, caching protocsisgle, brief request—response interactions. For a series of re-
are very helpful. Implementation issues can limit this benefijuests to the same server, though, ARDP performance suffers
however [21]. because we do not cache congestion information between calls.

624 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 5, NO. 5, OCTOBER 1997

As a result of this observation, we plan to provide simple first request «_second ,___third
congestion-information caching in a future version of ARDP. T , . request §’e°“es‘ —
12000 |-
roquest O dependent delays § 3
V. VALIDATION oo L data X)><< ° |
To relate the analytic results of the prior section to reag- ack © X ©
world performance, we next validate them using traces pf "I X °
actual HTTP traffic. This validation has three goals. Firs}j, a3 o o 7]
to show that we model aspects of the protocol relevant o T
performance. Second, to show that comparisons between ghe ** [~ s % ° .
modeled protocols are valid. Finally, we will look for area§ X ©
where implementations can be improved. @ 000 e Z ° .
Since it would be impractical to validate each of the handshake x o
150 combinations of workload, network, and the protocols =0 [x o _
described in this paper, we instead consider only four cases: x I
HTTP over simple and caching TCP transport protocols with 0 - S ! ! I L g 1 m L
the small-cluster workload, and Ethernet and Fast-Internet o 01 02 03 04 05 06 07 08 09 1
networks. time since first SYN (in seconds)
Fig. 3. A packet trace of the HTTP over caching TCP (HTTRHK®)
A. Methodology requests for the small-cluster workload.

Our experiments consisted of the four combinations of
Ethernet and Fast-Internet networks and HTTP over simglen: Keep-Alive” header; the server returned MIME-style
and caching TCP protocols. In all cases, our server compukt@aders and page contents with page size determined by the
was a Sun SPARC model 20/71 running SunOS 4.1.3 wi@pntent-Length header.
some TCP/IP modifications (IP-multicast support and a 16 kB
default TCP window size). We describe server software amd Slow-Start Validation
client hardware configurations below. In all cases, our HTTP
client was a custom-written Perl script retrieving the small-
cluster workload* We also logged all relevant TCP traffic ONig dependent upon the clients ACK rate; when a client

the server's network. acknowledges every other segment with delayed acknowl-

For experimgnts over Ethernet, the client computer W%%Igments, the congestion window opens much more slowly
a Sun4-20/71 identical to the server. These computers wate i every segment is explicitly acknowledged. Table V

connected by a dedicated 10 Mb/s Ethernet. Note that Sun marizes these effects based upon bounds of the slow-start
bypasses TCP slow-start when both computers are on developed in the Appendix
same physical network. We wanted to measure the effects o o validate that our bounds on the slow-start rate are

standard TCP in a high-bandwidth, low-latency environmegp.ate e examined a number of packet traces of HTTP
rather than that of a particular TCP implementation, so WS er cac,hing TCP (HTTP/14KA) and FTP traffic between
removed this optimization for our experiments. Los Angeles, CA, and Washington, DC, hosts. Fig. 3 shows

For the Fast-Internet experiments, the client computer was representative plot of the packets exchanged for the

a Sun SPARC-20 running unmodified SunOS 4.1.3. Measufgrrp1 o1 KA requests for the small-cluster workload. As
ments between the server (located in Los Angeles, CA) and be seen from this graph, the roundtrip time is about 133
client (in Washington, DC) were taken over the Internet With o' -4 the client acknowle,dges every other packet. From
evening (U.S. West-coast time) background t.raffic prese?e pattern of ACK’s, we can infer that no timeout-induced
Average roundtrip time was 133 ms and bandwidth was 0.74d)5 4 acknowledgments occurred in these transactions.
Mb/s (as measured by repeated FTP of a 1.5 MB file) overryqjigate our slow-start model, we will examine two parts

the 11 hops between the client and our server at ISI. . :
: i i of the total exchange, the first request (from time 0-0.7 s) and
Our implementation of HTTP over simple TCP wa he second (from 87_09 s) q ()

HTTP/1.0 with an Apache 1.0.5 server. The client made In the first request, we see the pattern predicted by the no-

HTTP/1.0-style requests. ; .
. elayed-acknowledgment analysis of Table V: 2, 3, 3, and 6
For HTTP over caching TCP protocols, we used the fOur@égments, each with anl r¢t delay stall between them. (Note

beta version of Apache 1.1 with some modifications. Thﬁ;lat in the 6-segment stall, the sixth segment advances the

Server |mpI(_aments kee_p-allve HT_TP connections, an e equence number by only 19 bytes and so is plotted nearly on
perimental implementation of persistent connection HTT,

. L . op of the fifth segment, and that the ACK for this segment
(abbreviated HTTP/1:6KA) similar in character to persistent iqavbacked on th t tYE thi lud
connections recently standardized as HTTP/1.1 [4]. This serwas piggybacked on the next request.) From this we conclude

YRAt, in the absence of delayed acknowledgments, we correctl
was slightly modified to avoid two interactions between P:__ y g ' y

. . yredict segments per stall.
HTTP and TCP which substantially reduce performance [Zﬂ. In BSD implementations of TCP, the delayed ACK timer
Our client made HTTP/1.0-style requests with the

"Connegias every 200 ms, independent of packet arrival. We expect

11Although the program is interpreted, we have verified that it can satureﬂé_at delayed AC_K’S will speed up opening of the SlOW'Start
our Ethernet and so does not pose a performance bottleneck. window by causing occasional single-segment ACK’s instead

We have observed that a key aspect of HTTP over TCP
erformance is slow-start behavior. Slow-start performance

HEIDEMANN et al. MODELING THE PERFORMANCE OF HTTP 625

TABLE VII
VALIDATION EXPERIMENTS FOROUR MODELS. ALL EXPERIMENTS USED THE SMALL -CLUSTER WORKLOAD. Basicindicates our basic (unadjusted)
model; adjustedis the model corrected as described in Section We@asuredindicates the average over 100 trials with the standard
deviation and 95% confidence intervals given in parenthesgis; m : « shows the ratio of measured to prediction/adjusted times

prediction ratio
protocol implement. network basic adjusted measured m:a
TCP HTTP/1.0 Ethernet 12.8ms 26.8ms 36.8ms(10ms, 42.0ms) 1.37
caching-TCP HTTP/1.0+KA Ethernet 11.4 25.4 26.6 (8.8, £1.7) 1.05
TCP HTTP/1.0 Fast-Internet 977 1730 1716 (101, £20.1) 0.99
caching-TCP HTTP/1.0+KA Fast-Internet 536 1070 1103 (48, £9.5) 1.03

of delays until two packets have been received. In practice, wetup costs would likely be overwhelmed by loss-recovery,
observe that delayed ACK’s sometimes alter both the patteand therefore, the benefits of connection caching protocols
of packet transmission between stalls and the stall delay. Fess noticeable.
the small-cluster workload, delayed ACK'’s seem to have little
effect on overall performance.

In the second request, we see back-to-back transmissiorPefModel Validation and Discussion

all nine segments (again, the final segment is short and isye undertook this validation with two goals: to compare
obscured by the previous segment on the plot). This behavigfr analysis to reality, and to ensure that comparisons among
is consistent with our model of the congestion window; thgyr analytic results are valid. We evaluate these goals below.
window started at two and was opened by one for each of the aqdition, in the process of validation, we found several

seven acknowledgments received. _ interactions between P-HTTP and TCP which substantially
Based on analysis of packet traces from which these §¥guce performance.

amples are drawn, we conclude that our lower bound forgycept for the case of HTTP/1.0 over Ethernet, our
segments-per-stall is accurate assuming that no delayed ACHgidation suggests that the model, when adjusted, is accurate
are triggered. within 5% of measured values. The HTTP/1.0 over Ethernet
case shows a discrepancy of about 40%. A high bandwidth
. and low delay link (like Ethernet) makes modeled network
C. Model Adjustments overhead small, so other kinds of overheads (which are
Our model focuses on transport-layer issues and therefor® modeled) can be noticeable. Furthermore, the modeled
makes several simplifying assumptions about client and seresterhead is very sensitive to latency at high bandwidths
software. To validate our results, we must account for theae is shown in Figs. 2 and 4.
assumptions; in particular, the following. Another source of error in our model results from interac-
Server processing time Our basic model assumes zerdgions between the application-level behavior and the under-
processing time. In our experiments we observe an averdgieg TCP implementation. In the course of validation, we
3.7 ms server processing time, so we must add 3.7 ms jpaund two such interactions that crippled HTTPAKA per-
page to our adjusted model. formance [21]. In both cases, packets shorter than maximum-
Request independenceOur basic model assumes that alkegment-size caused our TCP connection to wait for a delayed
requests are independent. Unlike modern browsers, our simgt&nowledgment, stalling data transfer for up to 200 ms. We
client is not multithreaded and so issues dependent requestsfasked around both these problems with small application-
described in Section I1I-B. We can see two such stalls (mark&sel changes, eliminating these sources of error. Other inter-
“dependent delay”) in Fig. 3. We correct for this artifact byactions between the application-level interface and our TCP
adding 1rtt delay per page after the first. implementation result in the transmission of short segments.
Inexact bandwidths: Our basic model assumed that Faste do not believe that this interaction causes the catastrophic
Internet bandwidth was 1 Mb/s with 89 m#t. We selected performance loss observed in the other interactions, but it is
these characteristics to emulate experimental characteristicaafource of some model error.
other researchers. Our validation experiments instead observeWe believe that our second goal has also been met: valid
a bandwidth of 0.734 Mb/s and arit of 133 ms; we correct comparisons of what is modeled can be made between the
for this using observed network characteristics in our revis@uotocols. The Ethernet case suggests that care must be taken
estimate. when transaction time is small (say, less than 50 ms), but the
Table VII shows our original predictions and our predictionperformance of wide-area HTTP exchanges is dominated by
adjusted for these factors. We interpret these results in the neatwork protocol behavior described in our model. Since the
section. models capture the essence of performance in such networks,
Finally, our model assumes no packet loss. We believe tlrmimparisons between the models should correspond to com-
we experienced no packet loss in our Ethernet experiments gradisons between the protocols operating in actual networks.
loss in only one of the fast-Internet transactions. Packet loss " L
depends heavily on congestion. Because packet loss is detefted\dditional Validation
by timeout and causes reevaluation of congestion control, everA recent technical note by the World-Wide Web Con-
low packet loss rates can cause measured values substantsdifium has suggested that pipelining substantially reduces
longer than predicted by our model. In such cases, connectjmacket counts for HTTP/1.1 [14]. We call the resulting pro-

626 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 5, NO. 5, OCTOBER 1997

TABLE VIII
ADDITIONAL VALIDATION EXPERIMENTS FOROUR MODELS. THESE EXPERIMENTS USE THE WORKLOAD DESCRIBED IN SECTION V-E. Basicindicates our basic
(unadjusted) modelAdjustedis the model adjusted for processing timdeasuremenindicates performance as measured in [14] with
two values for N-Fast-Internet as described in Section \REtio m : a shows the ratio of the measurement to prediction/adjusted

prediction ratio
protocol implement. network server basic adjusted measurement m:a
caching-TCP HTTP/1.14P N-Ethernet Jigsaw 160ms 316ms 690ms 2.18
caching-TCP HTTP/1.1+P N-Ethernet Apache 160 316 520 1.64
caching-TCP HTTP/1.1+P N-Fast-Internet Jigsaw 1470 1620 2860 / 1860 1.77 / 1.15
caching-TCP HTTP/1.14P N-Fast-Internet Apache 1470 1620 3500 / 2419 2.16 / 1.49
caching-TCP HTTP/1.1+P N-Modem Jigsaw 49600 49800 52810 1.06
caching-TCP HTTP/1.1+P N-Modem Apache 49600 49800 52360 1.05

tocol persistent-connection HTTP with pipelining, abbreviatedindow avoidance [22], similar to the odd/short-final-segment
HTTP/1.14-P. A comparison of their results with our model'sproblem we encountered in our experiments [21]. If so, this
predictions is particularly interesting, both because their obsérteraction can be avoided by appropriate buffering. We correct
vations are made with different client and server software, afat it by subtracting 1 s from the measured times. With this
because they have optimized the buffering of their system ¢orrection, our model is much closer to the measured values
improve performance. This comparison provides an additionshich are 1.15-1.49 times slower.
level of validation of our model. For the N-Modem case, the prediction corresponds closely
Their experiments compare first-fetch and the cache valide- observed performance. These experiments corroborate
tion of a 42 kB web page with 41 embedded images totaliriir validation, suggesting that although our models can be
125 kB. They examined performance for three networks: higihaccurate when applied to LAN'’s, they can provide guidance
bandwidth, low latency; high bandwidth, high latency; and low® protocol designers for wide-area and low-bandwidth
bandwidth, high latency. These nearly match our Ethern@gtwork conditions. We also note that models can provide
Fast-Internet, and Modem results and are shown in Tablealluseful “sanity check” against observed performance and
as N-Ethernet, N-Fast-Internet, and N-Modem, although ealéldl us to investigate the anomaly in the N-Fast-Internet case.
case used a 1460 R ss. (We estimated bandwidth for N-Fast-
Internet based on examination of their traces; they presented VI. PROTOCOL DISCUSSION

bandwidths andrtts for the other cases.) They considered We h q Vi dels for HTTP |
four protocols: HTTP/1.0 with multiple parallel connections, e have presented analytic models for OVer severa

HTTP/1.1, HTTP/L.1 with pipelining, and HTTP/1.1 withransport protocols and demonstrated that, with care, these

pipelining and compression. We consider only the case dels can be applied to current as well as future network
HTTP/L.1 with pipelining, designating it HTTP/LP. (We characteristics. From this work, we can draw several con-
did not ;:onsider HTTPllb because we do not modél para%ysions about the interactions between HTTP and different
connections, HTTP/1.1 because of the buffering problems th 9nsport protocols.

experienced, and HTTP/1.1 with pipelining and compressionF'rSt’ HTTP over TCP overhead is fairly low under net-

secause v do o model compresson) T clent sotve 2010 sracteate (oday, Fo & shovs 3 contonr o
was either a custom robot in the cases we consider. Thgll’

. . mall-cluster workload. In this two-dimensional representation
server software was either Apache or Jigsaw. A complete de- :
e i : : -_Qf the graph of Fig. 2, we solve for overhea¢p/S,,.,) for
scription of their methodology can be found in their technica) ; . ! .
note [14] a set of representative points and employ linear interpolation

. . etween them. We show contour lines at every 50% increase
Table VIll summarizes the results of their Measurements ,verhead. Of networking technologies deployed today, onl
and our predictions. The adjusted portion of the predi : 9 9 ploy y, only

. . fﬁe Fast-Internet case shows substantial overhead. Modem and
tion corresponds to addition of a 3.7 ms server processingy technologies used for the “last mile” of the Internet

time. . .
oday show moderate overhead when coupled with wide-area
The N-Ethernet and N-Fast-Internet cases show substanﬁ%ncy, but little overhead if the server is nearby.

Qiscrepgncy from our predicted values. We do not hqve enoug econd, TCP overhead becomes significant when the band-
information about their traces to understand the d'scr?pa%}ﬁth—delay product rises. Again, referring to Fig. 4, the fast-
fSor tth © N\;El:t)he_rnix':\la}se at this tll(mte, although, as ﬁ_eﬁc_r IbedI ernet performance shows substantial room for improvement
ec '%n d , I S(’j [:l)er-pac € prﬁclessmg (w Ich 1S nO{current performance is 5.20 times slower than the theoretically
considered in our model) can overwhelm connection startjfi,ina) transfer time), as do developing last-mile technologies

COEtS- he NoFast. 5o found sub _ IdSUCh as ADSL and DirecPE.
or the N-Fast-Internet case, we also found substantial disy, hege cases, HTTP optimizations become important.
crepancy (1.77-2.16 times slower performance than predicteg), 5 shows the advantage of connection-caching protocols

Examination of their traces for this network configuratiot, " jitferent network configurations. In this graph, the long

shows a consistent stall of about 1 s following the thirfashed Jine shows when standard HTTP takes 1.5 times as
segment of the reply. We believe that this stall is due to

an interaction between a short TCP segment and TCP silly12The DirecPC region falls out of scale and is not shown in the graph.

HEIDEMANN et al. MODELING THE PERFORMANCE OF HTTP 627

03l 15 225'3354455556657758 85 9 95

025 |-

02

0.15 |

latency (sec)

0.05 -

N Fas}-Elhernet

0
10000 100000 16+06 16407 1e+08
bandwidth (bps)

Fig. 4. Predicted overheads of HTTP over TCP relative to minimum possible costs. The two axes show primary network paraseders; segment size
and workload are fixed at 512 and small-cluster, respectively. Contour lines show the surface corresponding to TCP Syerte/as (.,); solid lines are a
factor of 1, dashed lines 0.5 times minimum. Label centers indicate bandwidth and latency points corresponding to the sample networks desdeled in th

T T T —T T T
03+ 1;1 1;21:3 1.‘.41.‘51.:6 1;7 1.8 1.9

\
\
[
Vo
[
i
\

025 | Modémi i | : 4

02 |

Lo

B SRR

Slow-interngt
Ly

0.15 |-

latency (sec)

0.1} .
-, Fastdnternet

ISDN "™ ADSL

1 1 N -Ethqrnet Fas}-Efhernet

0 N
10000 100000 1e+06 1e+07 1e+08
bandwidth (bps)

Fig. 5. Predicted ratio of HTTP over TCP to HTTP over caching TCP, assuming no initial connection caching. The two axes show primary network
parameterdw and rtt; segment size and workload are fixed at 512 and small-cluster, respectively. Contour lines show the surface corresponding to the
ratio S p/ Syirsi-miss; long dashed lines are a factor of 0.5; fine dashed lines, 0.1. Label centers indicate bandwidth and latency points corresponding
to the sample networks described in the text.

long as caching protocols, while dotted lines show intervaperformance improvement always approaches a workload-
of 0.1. As can be seen, performance is marginally better thdependent limit as the bandwidth—delay product rises; in this
simple HTTP over TCP in many cases (Modem, ISDN, anthse, the asymptote is 2, the ratio of: 8 (noncaching:
Slow-Internet); caching protocols are 80% faster only whesaching) roundtrip delays.

presented with network characteristics similar to Fast-InternetA recent technical note by W3C has suggested that
(moderate bandwidth and latency), ADSL (high-bandwidtipipelining substantially reduces packet counts for persistent-
low-latency), or DirecPC (high bandwidth and latency). Theonnection HTTP [14]. Although they substantially reduce

628 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 5, NO. 5, OCTOBER 1997

packet counts, their measurements of elapsed times supportfuture work. Validation of these experiments have detected
the conclusion that HTTP over caching-TCP protocoisiteractions between application- and kernel-level networking
offer comparatively modest performance improvements ovirat substantially reduce performance [21].
low-bandwidth—delay connections today but can provide A broader question is how to optimize TCP for brief,
substantial improvement when conditions approach the Fastquest-response-style traffic. We are currently exploring two
Internet case. approaches to this problem. We are examining how TCP
We note that our model can be used to predict HTTP pegongestion-control information should be initialized for mul-
formance for network technologies only now being deploydiple connections separated by space or time [23]; this work
such as ADSL and DirecPC. The ability to vary workload anihvestigates alternatives to divide bandwidth among existing
network characteristics is important here. and new connections and for reusing cached congestion infor-
Finally, our protocol analysis has influenced design a@hation. Given a large initial window, we are investigating how
UDP-based protocols at ISI. We are currently in the procegsrate-limited addition to slow-start can prevent overloading
of adapting ARDP to use TCP-like congestion avoidandgtermediate routers [21].
algorithms. As a result of this study, we have concluded We have generalized our experiences with TCP to other
that ARDP must cache information about recent congestigigansport protocols. We have also found that the performance

window behavior to provide good performance for largef protocols that fail to cache congestion-control information
request-response exchanges. suffers in high-bandwidth—delay conditions, and have modified

our design for ARDP accordingly.

VIl. CONCLUSIONS AND FUTURE WORK
APPENDIX

This work makes three contributions to the study of THE TCP S0oW-START ALGORITHM IN DETAIL
HTTP. First, we have developed a simple analytic model
for HTTP performance over different networks and transpart
protocols. Second, we have used this model to comp
the relative performance of existing protocols for variou
network characteristics and workloads. Finally, this mod
has given us insight into the needs of request-response-sty
protocols.

Our analytic model of request—-response performance is im-
portant both because it allows comparison of existing protocdls The Slow-Start Rate
under current network characteristics and because it allowsThe basic slow-start algorithm (as presented in [5]) is that
prediction of protocol performance under future networkinthe cwnd begins at one segment worth of data and then is
and workload characteristics. Our model predicts web perfdncreased by an additional segment for each ACK received.
mance within 5% of measured values for wide-area traffic. Fohis algorithm results in an exponential increasecimd;
networks with high bandwidth and low delay, it becomes lesghen cuwnd reaches a threshold{thresh, initialized to 64
accurate as nonmodeled costs become noticeable. With #B, this increase is slowed to lineatd /cwnd per ACK
caveat, we believe that the model can be an effective meangeseived). The exact rate of this exponential is dependent
comparing different protocols at a given network configuratiodn the receiver's acknowledgment rate and will be bounded
and across different network characteristics. by muws. In this appendix, we assume infiniteuws and

In addition to providing a model useful for HTTP, ourssthresh and examine the effect of different acknowledgment
analysis of slow-start behavior applies to other uses of TG#es. We also continue with the assumptions used in the rest
where transient behavior cannot be ignored. Applicatio®$ the paper: connection bandwidth ard are stable over the
might include RPC-systems, and transfer of short e-m@ngth of the connection and packet loss does not occur. In a
messages or FTP of short files. real systemgcwnd growth will be limited by packet loss due

By applying our model to existing protocols and networkd® congestion, buffer overflow, or connection window size.
we were able to draw several conclusions about their be-We can, therefore, divide TCP behavior into a period
havior. We confirmed that TCP overhead is low when tHeonsisting of a series of transmitted segments followed by
bandwidth—delay product is low. In the Ethernet, modem, a@dstall’® Formally, we definescgs(i) to be the number
ISDN cases, overhead was consistently less than 25% for 6firsegments sent in théh period. To derivesegs(i) we
workloads. Even when latency rose to WAN levels, modeill use cwnd(i), the congestion window at the beginning
and ISDN overhead was only moderate for certain workload®, the period (measured in segmentsyks(i), the number
We demonstrated that overhead was very significant when #feacknowledgment messages sent in responsecs(i),
bandwidth—delay product was large. and_unacked(i), the number of unacknowledged segments in

Connection caching protocols reduce overhead for the clyiriod:. The number of segments sent in period given by
ter cases (where a cluster represents the text and images #tfollowing recurrence relation:
make up a single web page); we therefore conclude that these
protocols will be useful even if users visit only single “pages” segs(i) = cwnd(t) — unacked(i) (17)

on sites before changing servers. 13 .
Finall lidati f del h led insiaht i Since segments are sent only in response to an ACK, segments tend to
inally, validation of our m(_) el has led to Insight INtOye sent back to back (this behavior was first noted by Shenker, Zhang, and
request—response protocol design and suggested several arrasin simulation experiments [24]).

As described in Section IV-C1, the TCP slow-start algo-
hm limits transmission by congestion window(nd) when
onnection begins. Table V summarizes our analysis of slow-
art performance. This appendix looks at the details behind
is table, both the rate at which the congestion window opens
@ the amount of time spent waiting.

HEIDEMANN et al. MODELING THE PERFORMANCE OF HTTP 629

where Again, from (17) and (18),
cwnd(i) = cund(i — 1) + acks(i — 1)

$€gSnda(t) = cwndpgqe (1) — unacked,gq (%)
cwnd(1) =2. (18)

cwndygq (1) = cund,g, (i — 1) + ackspgq (i — 1)

Our goal is to determine how many stalls occur when — cWndnda(1) =2.
sending a given number of packets. The cumulative numberT

; he effects of this algorithm on slow-start performance
of segments sent is helpful:

are illustrated in the second column of Table V, with
n esegsnde(t) Shown in parentheses. Although battrgs,. (%)
csegs(t) :Z segs(i). and csegsna.(t) grow exponentially, csegs,q,(i) lags
i=1 substantially.
. . This description is slightly more pessimistic than actually
Thzhreescee];\%rrn?Aﬁi:ﬁgglsfysﬁg\?v-ssiggteg;lgg aAS(_E,)ECrtZtgf S\}\(/)(Zvviﬁ Etcurg in B(.arkelley TCP implementations. In BSD, the delayed
indicate the client's ACK policy with subscripts For. a clien CK timer fires independent of segment receipt every 2-00 ms,
hat ack led h ket ' 0 we expect delayed_ ACK’S_ to be generated occasionally,
that acknowledges each packe each time acknowledging a single segment.
acksqe(i) = segsee (i) We can place an upper bound on Reno’s performance by
, assuming that the delayed-ACK timer always fires immedi-
unackedae (i) =0 ately for the last odd-numbered segment of any stall. This
so from (17) and (18), means that the receiver acknowledges every other packet and
delay-acknowledges odd packets. The revised relations are
8€98qe (1) = cwndge (1)

. S€GSda(t
cwndge (1) = cundge(i — 1) + acksge (i — 1) acksgq (i) = [7(1()—‘

2
cwndge(1) =2. unackedg, (i) =0.
The recurrence relation fokegs..(i) simplifies to the And, from (17) and (18),
familiar exponential
$€984q (1) = cumdyq (i)

5¢g8ac(1) = 2", cwndge (1) = cundg, (i — 1) + acksg, (i — 1)

The fourth column of Table V shows sample values of cwndge(1) = 2.
(1) and «<(1), the cumulative number of segments
5695 (i) cscgac(i) g Both segsq,(4) and csegsqq(¢) are shown in the third

sent when clients acknowledge every segment.) N
These equations describe TCP behavior for older (4.38SERIUMN of Table V'.l}Nh”ecﬁ(igsda(’)h's somewhat larger than
Tahoe) implementations; modern implementations implemeii?93nda (%), it is still much lower thancsegsqe (é).

delayed acknowledgments [19].
C. Amount of Wasted Time

B. Delayed Acknowledgments We would like to quantify the amount of time wasted during

TCP implementations with delayed ACK’s send Ack Each staII._ An upper bound on wasted time is otmé per _
only after receipt of two full-size segments or a delay of uPtall. the time an ACK takes to return to the server and its

to a half-second. (Most BSD-derived implementations lim Fp_lacement segment to travel to the clignt. A more accurate
(P timate would consider that the ACK which triggers the start

this delay to 200 ms.) This approach avoids ACK'’s for man e i
short segments while preserving TCP ACK-clocking. It risk f the next perlod_ls generate_zd by the first one or two Segme”ts
transient effects in data-stream start-up [21], and it also redu@ééhe current period. FOIIO.V\."ng the ACK, therefore, the c||er_1t
the rate ofcund growth. spends time usefully receiving any other segments of the first
We can place a lower-bound on the ACK rate by assumim riod. We can see this in Fig. 1; in the first stall, the second
that delayed ACK's never occur (or that they occur only whe _gme;]nt IS recel_vedl after thﬁ f';\sct:KACK has been sen'i: (The
all segments have been acknowledged). If we assume thignt here must implement the -every-segment po_lcy.)
delayed ACK's were timed from receipt of the last (odd e can quantify the amount of useful work accomplished
packet, and if the-tt was less than the delay, then delayeéuring a stall, and from there the exact amount of wasted time:
acknowledgments will never trigger. We adjust for this in) segs(i) — k
; fulstalltime;) = 22420 — ©
our recurrence by halving the number of ACK’s per stall, usefulstalltimei) =
rounding, and carrying over appropriately

bw
wastedstalltim@) =rtt — usefulstalltimé;)

acksnga(i) = {3693"‘1‘1(1) +unackednga (4 ~ 1)J wherek is either 1 (if every segment is acknowledged) or 2
2 (if delayed acknowledgments are used).

unackednga(0) =0 To determine the amount of wasted time for an entire

transaction, we must know the number of stalls that occur over

) transaction. Leks_segs be the number of segments sent while

— acksnga(i) X 2. TCP slow-starts. A connection will slow-start until it either

unacked, 4o (1) = s€98n4e (1) + unacked, g (i — 1)

630

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 5, NO. 5, OCTOBER 1997

runs out of data to send, reachesiws (and so is sending www.w3.0rg/pub/WWW/Protocols/HTTP/Performance/Pipeline.html,
data continuously), or reachestiresh and, therefore, begins Feb. 7, 1997.

congestion avoidance. Thus,

[15] R. Braden, “T/TCP-TCP extensions for transactions functional specifi-
cation,” RFC 1644, Internet request for comments, July 1994.

. [16] W. R. Stevens,TCP/IP lllustrated,vol. 3. Reading, MA: Addison-

ss_segs = man (muws, reply,,../mss, ssthresh). Wesley, 1996.

[17] B. C. Neuman, “The virtual system model: A scalable approach to

The number of stalls acrosss_segs, stalls(ss_segs) is organizing large systems,” Ph.D. dissertation, Univ. Washington, Seattle,
then the smallest such that 1992.

[18] D. DelLucia, “DirecPC performance,” personal communication, Oct.
1996.

R. Braden, “Requirements for Internet hosts—Communication layers,”
RFC 1122, Internet request for comments, Oct. 1989.

ss_segs < csegs(i). [19]

For a givenss_segs, stalls(ss_segs) can be obtained from [20] J. Mogul and S. Deering, “Path MTU discovery,” Internet request for
the first column in Table V using the appropriate receiver's = comments, RFC 1191, Nov. 1990.

ACK algorithm. Finally, we can determine the slow-start delag?1

J. Heidemann, “Performance interactions between P-HTTP and TCP
implementations,”ACM Computer Commun. Rewgol. 27, pp. 6573,

for a transaction: Apr. 1997.

[22] D.D. Clark, “Window and acknowledgment strategy in TCP,” RFC 813,

stalls(ss-segs) Internet request for comments, July 1982.

slowstartdelay..p = Z wastedstalltimé). [23] J. Touch, “TCP control block interdependence,” RFC 2140, Internet

izl request for comments, Apr. 1997.
[24] S. Shenker, L. Zhang, and D. D. Clark, “Some observations on the
dynamics of a congestion control algorithrTM Computer Commun.
ACKNOWLEDGMENT Rev.,vol. 20, pp. 30-39, Oct. 1990.

The authors would like to thank K. Jog for his early work on
our HTTP benchmarking scripts. They would also like to thank

T. Faber for his discussions about web performance analysis
and B. C. Neuman, R. Van Meter, S. Augart, B. Tung, C
Kuenning, J. Bannister, J. Postel, and the anonymous refer
for comments about the paper. Finally, the authors are grate
to A. Mankin, D. DelLucia, and B. C. Neuman for access t
computer facilities for the cross-Internet measurements.
The software used in the validation of these measureme
is available at(http://www.isi.edu/Isam}/

(1]
(2]

(3]

(4]

(5]
(6]
(7]

(8]

(9]
[10]

(11]

[12]
[13]

[14]

John Heidemann (M’'90) received the B.S. degree
from the University of Nebraska, Lincoln, and the
M.S. and Ph.D. degrees from the University of
California, Los Angeles (UCLA).

He is a Research Scientist at the Information
Sciences Institute (ISI), University of Southern Cal-
ifornia, Marina del Rey, where he investigates net-
work and web performance issues. He has also
examined wide-area and replicated filing and file-
system layering at ISI and UCLA.

REFERENCES

T. Berners-Lee, R. Cailliae, A. Luotonen, H. F. Nielsen, and A. Secret,
“The World-Wide Web,"Commun. ACMyol. 37, pp. 76—82, Aug. 1994.

V. Paxson, “Empirically-derived analytic models of wide-area TCF
connections,’ACM/IEEE Trans. Networkingsol. 2, pp. 316-336, Aug.
1994.

T. Berners-Lee, R. Fielding, and H. Frystyk, “Hypertext transfer pro
tocol—HTTP/1.0,” RFC 1945, Internet request for comments, Ma
1995.

R. Fielding, J. Gettys, J. Mogul, H. Frystyk, and T. Berners-Lee
“Hypertext transfer protocol—HTTP/1.1,” RFC 2068, Internet reques € € : ,
for comments, Jan. 1997. Information Sciences Institute, Marina del Rey, and
V. Jacobson, “Congestion avoidance and control,” Rmoc. SIG- " is also a Research Assistant Professor at USC.
COMM'88, Aug. 1988, pp. 314-329. Her research interests include multicast congestion
C. Cunha, A. Bestavros, and M. Crovella, “Characteristics of WwWwgontrol, computer networks, distributed systems, Internet information systems,
client-based traces,” Tech. Rep. 95-010, Boston Univ., Apr. 1995. and operating systems.

J. Touch, “Defining ‘high speed’ protocols: Five challenges and an

example that survives the challengelsEE J. Select. Areas Commun.,
vol. 13, pp. 828-835, June 1995.

M. F. Arlitt and C. L. Williamson, “Web server workload characteri-
zation: The search for invariants,” iRroc. ACM SIGMETRICSMay
1996, pp. 126-137.

R. Braden, “Extending TCP for transactions—Concepts,” RFC 137
Internet request for comments, Nov. 1992.

V. N. Padmanabhan and J. C. Mogul, “Improving HTTP latency,” i
Proc. 2nd Int. World Wide Web ConfQct. 1994.

J. Touch, J. Heidemann, and K. Obraczka, “Analysis of HTTP pe i

formance,” released as Web page http://www.isi.edu/lsam/publicatior,

/http-perf/; currently submitted for publication, June 1996. f 1 ¢

J. C. Mogul, “The case for persistent-connection HTTP,” Rroc. l" . is also a Research Assistant Professor in the USC
SIGCOMM'95,Aug. 1995, pp. 299-313. Department of Computer Science.

S. E. Spero, “Analysis of HTTP performance problems,” Dr. Touch is a member of the program committees of IEEE Infocomm and
http://sunsite.unc.edu/mdma-release/http-prob.html, 1995. IEEE Global Internet, and is chair of IEEE Gigabit Networks Workshop’98.
H. F. Nielsen, J. Gettys, A. Baird-Smith, E. Prud’hommeaux, H. WHe serves as Technical Activities Chair of the IEEE Technical Committee on
Lie, and C. Lilley, “Network performance effects of HTTP/1.1, CSS1Gigabit Networking and is on the editorial board IBFEE Network He is a

and PNG,” NOTE-pipelining-970207, available as Web page http:hember of Sigma Xi.

Katia Obraczka received the B.S. and M.S. degrees
in electrical and computer engineering from the
Federal University of Rio de Janeiro, Brazil, and the
M.S and Ph.D. degrees in computer science from
the University of Southern California (USC), Los
Angeles.

She currently is a member of the Global Operat-
ing Systems Technologies (GOST) group at USC's

Joe Touch (M'92) received the Ph.D. degree from
the University of Pennsylvania, Philadelphia.

He is a Project Leader in the Computer Networks
Division, Information Sciences Institute, University
of Southern California (USC), Marina del Rey,
coordinating the ATOMIC-2 and Large-Scale Active
Middleware (LSAM) groups. His research focuses
on high-speed protocols, multicast web caching,
protocol performance, and network management. He

