

A Global X-Bone for Network Experiments

Joseph D. Touch, Yu-Shun Wang, Venkata Pingali, Lars Eggert*, Runfang Zhou, Gregory G. Finn
USC/ISI and NEC Labs*

{touch,yushunwa,pingali,rzhou,finn}@isi.edu and lars.eggert@netlab.nec.de

Abstract

A global Internet overlay testbed is being deployed to
support the distributed, shared use of resources for
network research. The Global X-Bone (GX-Bone)
augments the X-Bone software system, enhancing its
coordination mechanisms to support deployment of local
overlays to world-wide, shared infrastructure. The
GX-Bone is based on the X-Bone’s Virtual Internet
Architecture which extends the Internet for both
concurrent, parallel and recursive overlays, and provides
decentralized, automated deployment and management.
GX-Bone supports host virtualization through the NetFS
file system, granting individual users compartmentalized
access and control of host and router configuration, and
the DataRouter extension to IP loose source routing that
supports application control of network-layer forwarding.
GX-Bone can be installed on user-modified kernels,
uniquely supporting both conventional kernel-level
protocol development and coordinated global
infrastructure sharing.

1. Introduction

X-Bone is a system for deploying and managing
Internet overlays [17][20]. It coordinates the
configuration and management of virtual networks,
enabling shared use of network resources (Figure 1). The
Global X-Bone extends the X-Bone implementation from
a stand-alone software system for local experiments to a
global infrastructure for wide-scale network research.

 Overlays can be used for isolation, concurrency,
and abstraction. They protect traffic, allowing new
protocols to be tested, and were originally used to protect
multicast IP addresses from leaking onto the conventional
Internet. Overlays isolate different protocols, such as was
used to deploy IPv6 incrementally over the current IPv4
Internet. Overlays also allow network components to be
shared, supporting network concurrency akin to
multiprocessing. This allows concurrent network
experiments to share core infrastructure, as the 6-Bone
and M-Bone currently do. Finally, overlays provide
abstraction of topology, allowing experiments with
routing protocols on rings, where, e.g., the physical
topology is a star, a ring, or of arbitrary design. This
allows the network topology to reflect forwarding

decisions, as is done with peer-to-peer architectures, e.g.,
based on hypercubes or Plaxton trees [16].

Figure 1 Multiple virtual Internets

The X-Bone applies a general architecture for network
virtualization to the Internet [20][22]. This architecture
supports concurrence, recursion and revisitation.
Concurrence allows deployment of multiple, parallel
concurrent overlays. Recursion enables deployment of
overlays inside other overlays. Revisitation enables reuse
of the same node in a single overlay more than once. The
core set of capabilities has been implemented as a
software system that allows programmatic deployment of
overlays through an XML interface; a web interface for
user-directed deployment is also available.

The X-Bone code has been available since 2000 as
both a FreeBSD port and a Linux RPM. It has been used
in numerous individual deployments to support overlay
and application experiments and the development of
advanced virtual networking architectures. Although the
X-Bone architecture already supports global resource
discovery, each of these installations has operated largely
independently. This remains a key feature of the X-Bone
system – each installation may remain completely
decentralized in both management and operation. No
global coordination is required.

An X-Bone overlay contains both named and unnamed
resources. The current X-Bone uses an expanding ring
multicast search to discover unnamed resources. Named
resources must be specified by IP address or DNS name.

Base Net

Ring VN

Star VN

Although this simple mechanism is sufficient for local
testbeds or pre-coordinated global experiments, it does
not easily support a global testbed. On a global scale, it is
inefficient to locate resources using multicast alone. The
existing implementation hence did not support the needs
of a global community of X-Bone users that share their
resources to create large-scale, distributed testbeds
spanning numerous administrative domains.

The Global X-Bone, which we call GX-Bone, is an
effort to support this worldwide X-Bone user community
in resource discovery and sharing. It augments the current
X-Bone software with a centralized registry, where
members publish information about resources they are
willing to share. Access control is an integral part of this
registry; members may indicate lists of users with whom
they wish to share each resource.

The remainder of this document presents a brief
overview of the Virtual Internet architecture that is the
basis of the X-Bone, and the X-Bone system itself. It then
describes the extensions that form the Global X-Bone,
and the advanced networking capabilities that are being
added to X-Bone nodes to address deficiencies of other
current overlay systems.

2. A Virtual Internet

A Virtual Internet (VI) is a virtual version of the
Internet. Just as the Internet is a graph of hosts and routers
connected through links, in a Virtual Internet, virtual
hosts and routers are connected by IP-encapsulation
tunneled links over the existing Internet.

A VI generalizes the tunneled backbones that helped
deploy multicast (M-Bone), IPv6 (6-Bone), and Active
Networks (A-Bone.) These testbeds supported wide-scale
networking research by enabling the testing and
incremental deployment of new protocols on existing
infrastructure [1][4][9]. Unlike those interim solutions,
VIs support persistent partial deployments of new
capabilities.

The VI Architecture (VIA) extends the Internet model
composed of data sources and sinks (hosts), data transits
(routers or gateways), and links between them [22]. The
VI virtualizes each of those components, resulting in
virtual hosts (VHs), virtual routers (VRs), and virtual
links. The latter are typically encapsulation tunnels. The
VI architecture has three basic tenets:

TENET 1. Internet-like: VIs are composed of VRs
and VHs connected by encapsulated tunnel links,
emulating the Internet

TENET 2. All-Virtual: VIs are completely virtual,
decoupled from their base network

TENET 3. Recursion-as-router: A VI recurses when
some of its VRs are VI networks (the inner VI is
modeled as a VR)

A number of corollaries follow from these tenets:

Corollary 1-A: Virtual hosts increase or decrease the
number of headers on a packet

Corollary 1-B: Virtual routers do not change the
number of headers on a packet

Corollary 2-A: VIs support concurrence

Corollary 2-B: VIs support revisitation

These tenets and corollaries are the basis of VIA. They

evolved out of analogies between the VIA and
multiprocessing and virtual memory (VM). Like both
multiprocessing and VM, VIA allows multiple parties
concurrent shared, protected use of a single resource in
virtual ways. Like VM, VIA can use a small number of
physical resources (memory page frames, network
interfaces, respectively) to emulate a larger number
(memory pages, virtual interfaces) by revisitation
(swapping, known as revisitation in VIA). All can be
layered recursively, and all provide a simpler, uniform
abstract programming interface.

3. The X-Bone

The X-Bone is a system for the dynamic deployment
and management of Internet overlay networks
[17][20][27]. Overlay networks are used to deploy
infrastructure on top of existing networks, to isolate tests
of new protocols, partition capacity, or present an
environment with a simplified topology. Current overlay
systems include commercial virtual private networks
(VPNs), and IP tunneled networks (M-Bone, 6-Bone)
[1][9]. The X-Bone system provides a high-level interface
where users or applications request DWIM (do what I
mean) deployment, e.g.: create an overlay of 6 routers in
a ring, each with 2 hosts. The X-Bone automatically
discovers available components, configures, and monitors
them.

The X-Bone system allows different applications on
the same end host or router to be associated with different
overlay networks. For example, a single generic network
mapping utility on one host might have different views of
the network depending on whether it was attached to the
base network or one of the overlays (Figure 2).

Figure 2 User’s view of overlays

Some overlay systems require OS and/or application
modifications, restrict the number of overlays a router or
host can participate in, or require manual component
configuration. The X-Bone requires no specific OS or
application modifications and only basic IP in IP
encapsulation, and uses existing implementations of IP
services such as dynamic routing, name service, and other
infrastructure. Finally, the X-Bone virtualizes the current
Internet architecture to support overlays, and supports
stacking (recursion) of overlays for fault tolerance and
capacity sub-provisioning for experiments.

Within each overlay, the X-Bone provides a
completely standard networking interface that includes,
for example, network interfaces, routing tables, and
firewalls. Applications continue to interact with the
virtualized versions of these mechanisms that are part of
the overlay abstraction just as they interact with the
regular, physical interfaces. This capability enables
experimentation with advanced networking applications
within a global, virtual network. Furthermore, the X-Bone
supports experimentation with kernel-level networking
modifications.

The X-Bone uses a two-layer tunnel mechanism, rather
than the single layer used in conventional overlays. It is
this two-layer scheme which supports stacked overlays, as
well as permitting use of unmodified applications and
network services inside a deployed overlay. It also
permits network resources (hosts, routers) to participate
multiple times in a single overlay, and is the only known
overlay system that integrates both IPsec support and
dynamic routing [18].

3.1. X-Bone Review

The X-Bone is a distributed system composed of
Resource Daemons (RDs) and Overlay Managers (OMs),
with a graphical user interface (GUI) and a more direct
API. These components are shown in Figure 3. The
functions of the RD and OM have been incorporated into
a single daemon, but operationally they can be discussed
as distinct units.

link

web
GUI

RD

host

RD

OM

API

router
Figure 3 X-Bone architectural components

OMs deploy overlays; a user creates an overlay by
sending a request to an OM, either via a web-based GUI
(Figure 4) or by sending an XML message directly to the
OM API. Each overlay is coordinated by a single OM.
Large overlays can be created by divide-and-conquer,
where a single OM will fork sub-overlay requests to other
OMs. Fault tolerance can be achieved by replicating state
in multiple backup OMs. Both of these latter capabilities
(recursion, fault tolerance) are supported in the X-Bone
architecture, though not yet implemented in current
releases.

Figure 4 X-Bone graphical user interface

star ring

Base

An OM creates an overlay in phases, using various
mechanisms to locate the specific resources required for
its construction. These discovery mechanisms include the
existing multicast ring-search (shown in Figure 5), or the
new registry that is part of GX-Bone. The overlay request
is translated to an invitation, and the invitation is
transmitted using UDP. An invitation indicates a set of
simple conditions, e.g., a specific set of host operating
systems, bandwidth requirements, etc. Invitations
currently fit in a single UDP packet; where they do not,
IP’s automatic fragmentation and reassembly is utilized.

RDs are daemons that configure and monitor the
resources of routers and hosts. RDs listen for UDP
invitations, and respond when their capabilities, available
resources and permissions match. The RDs respond with
UDP messages, indicating their willingness to participate
in an overlay, and their capabilities (protocol version, OS
type, etc.). The OM arbitrarily selects a suitable subset
from among the responding RDs and opens TCP/SSL
connections to each chosen RD. The OM determines
configuration information, such as tunnel endpoint
addresses and routing table entries, and sends specific
configuration information to each RD. Subsequent
overlay actions initiated by the OM include keep-alive
pings, liveliness and status requests, and modifying or
dismantling configurations.

TCP/SSL secures the reliable configuration channel
only. The X-Bone supports S/MIME authentication to
secure invitations; responses need not be secured, because
they will be validated by subsequent TCP/SSL
connections to the invited nodes, which will confirm their
availability at that time anyway.

6 connect
via TCP/SSL

Pick 5
for overlay

Configure

Figure 5 Responding to invites, selecting, and

configuring the overlay

3.2. Distributed System Implementation

The X-Bone is a distributed system, where each
overlay is coordinated by one OM, and each OM instructs
RDs and possibly other OMs how to deploy and
coordinate an overlay. A single overlay may be replicated
at one or more other additional OMs, but at any given
time, exactly one OM is managing each given overlay. A
single OM usually manages many overlays.

Users decide which OM manages a given overlay
when the overlay is deployed, by which OM receives the
initial request. Delegated sub-overlays are each managed

at exactly one other OM, and these sub-OMs report back
to the primary OM. RDs execute all local commands.

The X-Bone is implemented in Perl, where the RDs
run as root on local resources (hosts, routers) or on
buddy-hosts from which they issue privileged
configuration commands (e.g., for Cisco routers).

3.3. GUI/API for Configuration Control

The X-Bone includes two separate APIs, XB_API for
overlay configuration requests and replies (TCP reserved
port 2165), and XB_CTL for issuing the generic resource
configuration commands (UDP and TCP reserved
privileged port 265). XB_API uses XML for a web-based
front-end, to enable human-readable overlay requests.
This control interface includes support for user-specified
netlists, i.e., network connectivity lists, to indicate
specific topologies. It also supports a small set of
preprogrammed topologies: star, ring, and line.

XB_CTL issues standardized configuration requests,
which are translated by the RD into local versions, e.g.,
specific to the operating system and other node properties.

3.4. System for Application Deployment

The X-Bone includes a system for scripted application
deployment (Figure 6) [24][25]. A single script is
submitted during a request to deploy an overlay, with
parameters instantiated on a per-overlay and per-node
basis. The scripts accept a set of generic commands
(config, start, stop, status) issued by the OM. These
scripts have been used to deploy a set of web (squid
proxy) caches, a set of FreeBSD jails, and to configure
kernel modules for fault-tolerant layered overlays
(DynaBone) [11][19]. The script deployment system is
designed to deploy application-layer code, in the context
of the addresses and DNS names of a particular overlay,
on each node of an overlay in a coordinated fashion, as
part of the automatic deployment system.

Action File
Generator

Script

Application
Generator

Script

ring-

A

B

D C

RD

(User Input)
Application-Instance

Specific
Parameters

(XBone-Auto)
Overlay/Node-Specific

Parameters:
Ovl Name, IPs,

Topology

RD

Node
Action

File

1

3

2
5

OM

edit

4

6

Figure 6 Application deployment system

3.5. Safety & Security

The X-Bone design and implementation focus on
security. The RDs need to run as root to configure
interfaces, setup tunnels, and install IPsec keys; as such,
they present a substantial potential security challenge.
Further, distributed overlay deployment relies on
selecting a number of nodes based on their capabilities;
knowing these capabilities can also present a security
hole. Finally, application deployment needs to be
carefully controlled.

The X-Bone uses an X.509 certificate hierarchy
together with TCP/SSL to authenticate and encrypt all
communication [10]. Each RD has its own access control
list (ACL), which provides limits for each resource based
on user’s names (via patterns). Such resources include
number of overlays, number of tunnels, queue limits,
bandwidth limits, etc. Further, there are global resource
limits for each node, as well as hard-coded constraints,
which limit overlays to using RFC1918 address space,
e.g.

The X-Bone sends S/MIME authenticated UDP
invitations, and each node decides whether it has the
resources indicated, as well as whether the user named in
the request should be allocated those resources. Nodes
respond to invitations only when they want to participate
in the indicated overlay; otherwise, they can remain silent
and anonymous. Some of this model needs to be relaxed
in the GX-Bone, because it is not globally feasible to send
invitations everywhere.

All commands issued by the OM are authenticated
based on the signed key of the OM, and recorded in the
RD. Each RD has its own rollback and recovery
mechanism, which allows RDs to re-install state on
reboot, but also dismantles overlay configuration unless a
heartbeat is received from the appropriate OM that
created the corresponding overlay.

Application deployment is controlled by limiting
which functions are run as root. Although the RD uses
root privileges for most configuration operations,
application scripts are run as nobody, or as some
preconfigured username. It is further possible to limit
which scripts can be run on which nodes in the ACL, as
well as to limit scripts to a predefined, preconfigured,
signed set of defaults. Further compartmentalization of
access is provided by NetFS [23].

4. A Global X-Bone Testbed

As noted before, the X-Bone to date has been deployed
as stand-alone software, to avoid the need for any
centralized coordination. The X-Bone has already been
deployed in a number of stand-alone testbeds. The first
was a combined USC/ISI-UCL (Univ. College London)
testbed in 2000, which was used for Active Nets demos

involving nodes in Marina del Rey, CA and London, U.K.
Other X-Bone systems were deployed in Ottowa, Canada,
Univ. Catalonia, Spain, and Univ. Kentucky. Note that we
do not have a list of all sites where the X-Bone has been
deployed because the system does not require any central
coordination. Although this allows testbeds to be
autonomous and not rely on ongoing USC/ISI support, it
also fails to leverage shared resources when such sharing
is desired.

As a result of our experience with independent
deployments of the X-Bone, we are now preparing a
global X-Bone deployment based on modified software.
The new GX-Bone release includes an option, defaulted
to “off”, to join the global X-Bone testbed. Joining this
infrastructure involves several steps, each discussed in
detail below:

• advertising a node in the GX-Bone registry
• incorporating a filtered copy of the GX-Bone

ACL
• incorporating a filtered copy of the GX-Bone

certificate authority list

The basic purpose of these three components is,
respectively, to assist with global resource discovery, to
enable global use of shared resources by a known set of
users, and to support distributed authentication at low
cost.

There are other capabilities, developed in conjunction
with the X-Bone to support overlay research, which are
expected to be part of the GX-Bone. These include
NetFS, a system for partitioning root permission
requirements, and DataRouter, a string-rewriting routing
system which supports application forwarding at the
network layer.

4.1. The GX-Bone Registry

In order to find nodes that may be anywhere on the
globe, an OM needs to direct its invitations more
intelligently than by multicast advertisement. Although
multicast can be used, it is inefficient when most of the
nodes lack the capabilities or locations desired. The
simplest alternative is to have individual nodes register
with a central database, indicating their willingness to
participate in the GX-Bone. This registration may include
any of a node’s properties, but should include enough
information to limit the number of global invitations the
node would receive.

Once registered, there are a number of alternatives that
can be employed to assist OMs in locating desired
shareable resources. The simplest is to have the OM
download the database periodically, or have it pushed
when sufficient changes accumulate, and have each OM
scan its local copy when searching for resources. Note

that it is not necessary that the database be up-to-date,
because OMs still send invitations to RDs, which are need
to confirm their willingness to participate anyway. At
worst, errors in the database will result in wasted
invitations sent or available resources not found.

Distributing a copy of the registry has other
implications, however. One of the reasons the X-Bone
used an “invite-reply” protocol is to keep the resources of
the local nodes private. Nodes respond only when they
have the desired resources which can be allocated for the
indicated user. Nodes that want to remain truly private
need never make their presence known except to a limited
set of parties. The central registry violates this principle,
because it may contain sensitive information, such as a
node’s OS, patches, etc.

There are two ways to combat this privacy issue. First,
information in the registry need not be complete; the less
specific a node’s description, the more likely it will
receive invitations from other GX-Bone OMs. Those
invitations are not likely to be a source of denial-of-
service themselves, and so can simply be ignored if
desired. Second, the registry need not be downloaded to
the OMs; instead, invitations can be forwarded to the
registry as part of a ‘scan’ process. The registry can
respond with a list of potential invitees based not only on
the invitation parameters (OS=Linux, Testbed=CAIRN,
etc.), but also based on the context of the issuing OM.
This variant allows individual nodes to place some of
their configuration information in the trust of the central
registry.

As with any resource location system, the GX-Bone
registry has issues with scalability and performance. Like
any database, it can be implemented in a hierarchical
fashion with delegation along any parameter desired, e.g.,
by geographic region, by DNS suffix, by IP prefix, by
propagation latency, or by capability (e.g., IPsec, IPv6,
etc.). For the purposes of a global network testbed, a
single central database suffices for overlay deployment
timescales (seconds) and for the numbers of nodes
expected in the near term (tens of thousands).

4.2. The GX-Bone ACL

The use of a global registry enables resource
discovery, but is insufficient to enable users to utilize
nodes that were unaware of their need. In addition, there
needs to be a global ACL, to indicate what kind of
resources are to be shared to the general public or subsets
thereof. The current X-Bone ACL can already express
this sort of default, in the degenerate case, e.g., where
name=“.*”; this is sufficient to allow users who are not
otherwise listed to have resource permissions indicated.

In a global testbed, however, a single, global default is
not always the best. It is safer for users to advertise their
general needs, e.g., 5 virtual interfaces per node, 2
overlays per node, etc., in advance. These general

resource requests are listed in the GX-Bone ACL.
Individual nodes can import any subset of entries in the
GX-Bone ACL, e.g., via filters (import any where
interfaces<5 and where name ends in “.edu”). Users
managing nodes can review these requests, and enable or
deny individual entries in their own ACL as desired.

4.3. The GX-Bone CA list

The X-Bone relies heavily on the X.509 certificate
system, which presumes that identity is established based
on certificate authorities (CAs) known a-priori. This is
similar to web browsers, which have the CA certs of a
known subset of commercial CAs loaded at compile-time.
Browsers allow override of this list of CAs by two
mechanisms: manual loading of new CA certs, and
manual approval of certificates signed by unknown CAs
(typically asking, “This certificate is signed by an
unknown CA; would you like to enable it a)for this
connection, b) for this browser session, or c) forever?”)

Because the X-Bone RDs are completely automatic,
and because the OM may be interacting with a program
rather than by a browser GUI, such manual confirmation
is not appropriate. Instead, the list of CA certs which are
used by nodes joining the GX-Bone is listed in a central
database, which OMs and RDs can load (or load subsets
of) as desired.

One alternative would be to preload a set of fixed CAs,
as done with current web browsers, and assume that most
X-Bone deployments have X.509 certificates signed by
these known CAs. Unfortunately, X.509 certificates from
these commercial CAs are often prohibitively expensive
for research testbed use.

5. Augmented Kernel Options

The X-Bone makes no specific requirements about the
kernel on which it is deployed; provided the control
software (PERL code) has been ported, any operating
system will suffice. There are porting requirements, e.g.,
to support multilayer tunnels, to support IPsec transport
mode on virtual interfaces, etc.; these generic capabilities
are already provided in current versions of FreeBSD and
Linux. The X-Bone allows nodes to be deployed on
customized kernels with modified networking stacks as
well.

There are two modifications developed at USC/ISI in
conjunction with the X-Bone system which may be
deployed at GX-Bone nodes, to further enable advanced
distributed network testbed capabilities. DataRouter
supports packet routing based on string matching and
rewriting, and is used to support application-layer
forwarding in a network-layer overlay. NetFS supports
partitioned permissions to limit root access within each
overlay.

Neither of these kernel modifications is required for a
node to join the GX-Bone, but each will be indicated in
the registry. These thus represent new capabilities which
we hope will further support virtual network research.

5.1. DataRouter

The X-Bone was intended to support application-
specific overlays, where the topology of an overlay would
be uniquely matched to a particular application’s
requirements. The goal was to have a single, network-
layer system which could leverage existing protocols
while supporting per-application topologies. This avoids
having each application determine how best to deploy its
own overlay.

Peer-to-peer networks have become the
counterexample to this goal. They implement application-
specific overlays to forward requests at the application-
layer, based on application-layer information. They
cannot use typical network-layer overlays, because they
require application control over forwarding rules, and
require that the forwarding mechanism examine
application data.

DataRouter augments existing IP loose source routing
(LSR) with string-based routes [21]. Individual next-hops
are still indicated, as with LSR, by IP addresses, but
subsequent hops are indicated by strings in the LSR field
(Figure 7). When reaching a DataRouter LSR router, the
string is matched against a list of patterns, and the
matching rewriting rule applied. The rule also indicates
the next-hop IP address, as with a conventional routing
table entry.

Figure 7 DataRouter LSR as string rewriting

DataRouter has already been applied to moving Chord
peer-to-peer forwarding to the network layer, with a 30x
increase in performance [16]. As importantly,
DataRouter-Chord applications need not implement a new
reliable transport protocol on top of the application layer;
it can reuse TCP/IP, achieving not only higher
performance, but also congestion control compatibility.

5.2. NetFS

NetFS enables applications inside an individual
overlay to retain control over the configuration of a subset

of interfaces, without running the application as root. It
maps local network resources – interfaces, tunnels,
routing tables, IPsec databases, etc., to a virtual file
system much like /proc maps processes to virtual files
(Figure 8).

/net

iface route ipfw proto

fxp0 lo

default alias1 alias2

ether ip

tcp udp

25 26

mask addr

10.0.0.1 default

1 0

addr mask

255.0.0.0

ipsec

10.3.0.0 255.255.0.0

Figure 8 NetFS maps network configuration to a

virtual file system

There are two advantages to such a mapping. First,
root permissions can be partitioned, where applications
deployed on one overlay can configure some network
parameters but not others. Second, use of NetFS by
applications simplifies portability; given multiple systems
that support NetFS, a single application can manage
network configuration on all systems.

6. Prior and Related Work

The X-Bone was developed to automate the effort of
tunnel-based testbeds of the 1990s, notably the M-Bone
and 6-Bone (the “X” in X-Bone is intended to denote a
variable). It provides a more detailed architectural
virtualization of the Internet, inspired by VPNs. It is
designed to provide high-performance, shared network
resources for application-specific use, rather than
requiring recapitulation of effort as with peer networks.
The GX-Bone variant is designed to provide a persistent
network research infrastructure in the spirit of DartNet
and CAIRN, but using primarily overlays rather than
dedicated links. GX-Bone is a network version of
distributed, global application testbeds such as the Grid
and PlanetLab.

The X-Bone itself is inspired by the way in which
testbeds evolved in the early 1990s, from dedicated
routers and links in DartNet and CAIRN to tunnel-based
overlays in the M-Bone, 6-Bone, and A-Bone
[1][4][5][9]. Similar systems were envisioned earlier,
notably MorphNet and SupraNet, in particular which
described overlays at multiple layers in the protocol stack,
or which explored recursion [2][6][7]. The X-Bone is the
first deployment system to bring these architectural

PTR isi.edu SRC D1 freebird #55fea3

dst. ↔ lookup(freebird)
replace ‘isi’ with usc’

ptr++

#55fea3 PTR usc.edu SRC D2 D1

components together in a single, proof-of-concept
implementation.

The X-Bone’s network-layer overlays complement
link-layer testbeds, such as Emulab, and application-layer
testbeds such as PlanetLab [13][26]. Both of these
systems are persistent testbeds of shared components,
PlanetLab being the larger-scale example. GX-Bone
builds on PlanetLab’s set of global resources by
deploying network overlays, as well as by providing
coordinated deployment of applications by the X-Bone’s
automated script capability.

GX-Bone is a global testbed that can deploy overlays
on-demand. Other overlay testbeds have been deployed,
notably the M-Bone and 6-Bone, as well as testbeds for
specific research projects, notably the RON testbed [3].
RON represents a single, static set of overlay tunnels, in
effect being an instance of a single GX-Bone overlay.
Other overlay experiments, such as Detour, and VANs
(virtual active networks), were deployed using tunnels,
but did not have a persistent infrastructure beyond the
individual experiment [12][15].

7. Benefits

The GX-Bone provides a new infrastructure for
network research. It provides a simple, user-level
interface to dynamic overlay deployment. It supports
concurrent overlays with automated resource
management, avoiding the need for 1960’s-style pegboard
reservation schedules. It supports very high performance
research, and allows the reuse of existing application,
transport, and network layer protocols, as well as existing
applications. It also allows experiments based on the
existing knowledge base of kernel-level modifications,
allowing custom kernels to participate in a global, shared
infrastructure.

7.1. Ease of use

The X-Bone provides a web-based, do-what-I-mean
GUI for overlay deployment. Resources are used as
available, where nodes support concurrent overlays where
possible, and avoid them (via resource counts, e.g.,
num_overlays=1) where necessary. There is no need for a
1960’s style pegboard reservation system, no need to
reserve resources in advance. The X-Bone brings overlay
deployment and use into the realm of multitasking, a kind
of network multitasking operating system.

This contrasts to previous network testbeds, such as
DartNet and CAIRN, where resources were reserved by
calendar system [5]. It also contrasts to PlanetLab, where
‘slices’ – sets of vservers deployed on a set of nodes – are
deployed a-priori and left in place [13]. Further, due to
how vservers operate, it is not possible to configure the
network interface of a vserver from within that vserver,

and PlanetLab configures the vservers but does not create
tunnels between them. The X-Bone has already
demonstrated ‘slice’ deployment using our application
deployment system, where a simple script –written in a
few hours – was used to deploy a set of vservers
connected by a set of IPsec-encrypted tunnels.

Further, the X-Bone, and GX-Bone as a result, can
deploy overlays emulating different network
characteristics, using dummynet [14]. A deployed overlay
can be configured with additional link latency, link
bandwidth limits, link queue limits, or emulated link
losses. Dummynet is only one example; any system that
can be configured from the command line can configured
by the X-Bone’s application deployment system or
incorporated into the core system’s configuration
instructions (X-Bone runs as source), as desired.

7.2. Performance

The X-Bone has achieved performance of
gigabits/second and hundreds of thousands of packets/sec
on commodity PC platforms [19]. It forwards packets in
the existing kernel code, at existing kernel rates. The X-
Bone’s RD code configures the host or router, but
otherwise packets are processed by the conventional,
optimized code. The X-Bone software has been
demonstrated to support hundreds of concurrent overlays
on a single, conventional PC, and recursive overlays up to
16 levels deep.

X-Bone packets are forwarded at IP forwarding rates at
intermediate nodes. At overlay routers, there are
additional encapsulation and decapsulation steps, as well
as additional forwarding steps. With modern processors,
the encapsulation and decapsulation steps are negligible,
and the forwarding rate is limited only by the additional
pass through the kernel that two-layer encapsulation
requires. As a result, a single-level overlay (not recursive)
forwards at roughly half the conventional IP forwarding
rate.

This contrasts to the performance of peer-to-peer
systems, which typically ‘forward’ messages at 1/30 the
rate of IP forwarding (5,000 pkts/sec, vs. 150,000 pkts/sec
for an overlay, vs. 300,000 pkts/sec. base IP forwarding
on a 2.4Ghz Xeon PC).

7.3. Reuse of net and transport protocols

The X-Bone enables network level research without
the need for applications to reinvent transport and other
protocols. DataRouter extends conventional IP forwarding
with string matching and rewriting loose source routing,
allowing an overlay to support peer-to-peer forwarding
with network layer performance. Messages need not be
terminated at each hop, e.g., using hop-by-hop (HBH)
RPCs, as is done in Chord; such HBH behavior at the

application layer requires additional application
mechanisms to provide transport protocol properties, such
as reliable, in-order delivery [16].

Further, network layer overlays can reuse existing
network and transport protocol mechanisms, such as
dynamic routing dynamic routing, congestion control, and
windowing. This avoids the need for applications to
reinvent – or rediscover – solutions to these well-known
problems.

By using network solutions to these issues, the X-Bone
allows existing applications to operate over deployed
overlays. Existing implementations of FTP, ping,
traceroute, web servers, mail servers, etc. all operate over
X-Bone overlays. This leverages the installed base, and
avoids additional effort and errors of recapitulation.

7.4. Allows custom kernels to participate

The X-Bone’s design relies on conventional IP packet
forwarding, with common extensions for IP
encapsulation, where the entire X-Bone system is
deployed at the application layer. RDs and OMs configure
network interfaces, tunnels, and routing table entries;
packets continue to be forwarded by existing kernel
mechanisms. DataRouter is a good example of how
conventional kernel-based network protocol experiments
can be incorporated into an X-Bone overlay; the X-Bone
system is deployed on a DataRouter kernel [21]. Similar
modifications can be deployed anywhere in the GX-Bone,
flagged by labels which can be used by experimenters to
find appropriate nodes anywhere in the world (e.g., find
“DataRouter” nodes).

8. Future Work

The GX-Bone, like the X-Bone on which it is based,
represents an ongoing effort at USC/ISI to develop and
explore the Virtual Internet Architecture. In addition to
the ongoing development of the GX-Bone system,
including its registries and discovery system, we are
working to enable more complex, layered deployment of
large-scale overlays. Two specific avenues of future work
involve support for partitioned resources and support for
inter-overlay gateways.

8.1. Partitioned resources

The X-Bone currently deploys network-layer overlays,
assuming individual nodes can participate in multiple
overlays without mutual interference at the network layer.
NetFS is designed to avoid the interference of root
permissions among these overlays, but there are other
ways in which overlays compete at shared resources. In
particular, it can be challenging to limit computational
resources, disk volumes, etc. across overlay instances, as

current hosts and routers do not expect to virtualize their
resources.

Jail partitions some of these resources, notably disk
volume access, and provides localized root permissions
for some purposes. Unfortunately, jail and its variants
(vservers, VMware, etc.) do not fully support our Virtual
Internet Architecture’s notion of network reentrancy,
where wildcards like INADDR_ANY map only within
each partition. These systems also do not support sets of
associated interfaces within a jail, partitioned from other
sets in other jails.

Clonable stacks are a step in the right direction [28].
Although intended to support alternate network stacks,
e.g., TCP-Reno and TCP-Tahoe, it can be used to support
the associations required for network reentrancy. In
particular, interfaces within a single overlay at virtual
router instance are associated with a weak-host model,
and interfaces between such interfaces are associated by
the strong-host model.

Clonable stacks also offer new opportunities to limit
the amount of CPU load allocated to each stack, thus
limiting the computational resource interference of
multiple virtual hosts or virtual routers instantiated on a
single node. There remains substantial work to explore
and validate this capability, and to port it to other systems.

8.2. Inter-overlay Gateways

The current X-Bone deployment system assumes that
individual overlays are strongly partitioned, avoiding
inter-overlay interaction. This prohibits inter-overlay
gateways, such as would be used to splice together
disparate services running on individual overlays. It is not
yet clear what best architectural extension would support
this capability, because we prefer the Internet model
(common communication framework) to that of
concatenating disparate network layers. One possible
option is to explore recursion for this capability, where
each recursive component represents a unique network
architecture, and the overarching “outerlay” (to borrow
terminology from DynaBone) supports the gatewaying
capability [19].

9. Acknowledgments

The authors thank the numerous contributors to the
code and architecture of the X-Bone project, both within
projects of USC/ISI (X-Bone, DynaBone, NetFS,
DataRouter) as well as in collaboration. These include
Steve Hotz, Amy Hughes, Josh Train, and Nimish Kasat
and others at USC/ISI, Peter Kirstein, Panos Gevros,
Manash Lad, Piers O’Hanlon, and others at UCL in the
U.K., and Gregorio Martinez and Manuel Gil Perez and
others at the Univ. Murcia in Spain.

This work was partly supported by the NSF STI-
XTEND (ANI-0230789) and NETFS (ANI-0129689)
projects. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of
the authors and do not necessarily reflect the views of the
National Science Foundation.

10. References

[1] 6-Bone URL – www.6bone.net

[2] Aiken, R., et. al., “Architecture of the Multi-Modal
Organizational Research and Production Heterogeneous
Network (MORPHnet),” ANL-97/1, Argonne National Lab, IL.,
Jan. 1997.

[3] Anderson, D., Balakrishnan, H., Kaashoek, M. F., Morris,
R., “Resilient Overlay Networks,” Proc. 18th ACM SOSP,
Banff, Canada, October 2001.

[4] A-Bone URL – www.isi.edu/abone

[5] CAIRN web pages – www.cairn.net

[6] Campbell, A., et al., “Spawning Networks,” IEEE Network,
July/Aug. 1999, pp. 16-29.

[7] Delgrossi, L., Ferrari, D., “A Virtual Network Service for
Integrated-Services Internetworks,” 7th Int’l Workshop on
Netw. and OS Support for Digital Audio and Video, May 1997.

[8] DynaBone web pages – www.isi.edu/dynabone

[9] Eriksson, H., “MBone: The Multicast Backbone,”
Communications of the ACM, Aug. 1994, pp.54-60.

[10] Hickman, Kipp, “The SSL Protocol,” Netscape
Communications Corp., Feb. 1995.

[11] Kamp, P., Watson, R., “Jails: Confining the omnipotent
root,” Proc. 2nd International System Administration and
Networking Conference (SANE), May 2000.

[12] Lim, L., Gao, J., Ng, T., Chandra, P., Steenkiste, P., Zhang,
H., “Customizable Virtual Private Network Service with QoS,”
Computer Networks, July 2001, pp. 137-152.

[13] PlanetLab – www.planetlab.org

[14] Rizzo, L., “Dummynet: A Simple Approach to the
Evaluation of Network Protocols,” ACM Computer
Communications Review (CCR), v27 n1, Jan. 1997, pp. 31-41.

[15] Savage, S., et al., “Detour: a Case for Informed Internet
Routing and Transport,” IEEE Micro, pp. 50-59, v 19, n 1, Jan.
1999.

[16] Stoica, I., Morris, R., et. al., “Chord: A Scalable Peer-to-
Peer Lookup Service for Internet Applications,” Proc. Sigcomm
2001, Aug. 2001, pp. 149-160.

[17] Touch, J., “Dynamic Internet Overlay Deployment and
Management Using the X-Bone,” Computer Networks, July
2001, pp. 117-135.

[18] Touch, J., Eggert, L., Wang, Y., “Use of IPsec Transport
Mode for Dynamic Routing,” RFC-3884, Sep. 2004.

[19] Touch, J., Finn, G., Wang, Y., Eggert, L., “DynaBone:
Dynamic Defense Using Multi-layer Internet Overlays,” Proc.
3rd DARPA Information Survivability Conf. and Exposition
(DISCEX-III), April 22-24, 2003, Vol. 2, pp. 271-276.

[20] Touch, J., Hotz, S., “The X-Bone,” in Proc. Third Global
Internet Mini-Conference, Proc. Globecom ’98, Sydney,
Australia Nov. 1998.

[21] Touch, J., Pingali, V., “DataRouter: A Network-Layer
Service for Application-Layer Forwarding,” Proc. Int’l Wkshp.
on Active Networks (IWAN), Springer-Verlag, Dec. 2003.

[22] Touch, J., Wang, Y., Eggert, L., Finn, G., “Virtual Internet
Architecture,” Future Developments of Network Architectures
(FDNA) at Sigcomm, August 2003. (ISI-TR-2003-570).

[23] Train, J., Touch, J., Eggert, L., Wang, Y., “NetFS:
Networking through the File System,” ISI Technical Report ISI-
TR-2003-579.

[24] Villanueva, O.A., Touch, J., “Web Service Deployment and
Management Using the X-Bone,” Spanish Symposium on
Distributed Computing, SEID2000, Sept. 25-27, 2000.

[25] Wang, Y., Touch, J., “Application Deployment in Virtual
Networks Using the X-Bone,” Proc. DANCE: DARPA Active
Networks Conference and Exposition, May 2002, pp. 484-493.

[26] White, B., Lepreau, et al., “An Integrated Experimental
Environment for Distributed Systems and Networks,” Proc.
Fifth Symp. on OS Des. and Impl. (OSDI), 2002, pp. 255-270.

[27] X-Bone web pages – www.isi.edu/xbone

[28] Zec, M., “Implementing a Clonable Network Stack in the
FreeBSD Kernel,” Proc. USENIX 2003/FREENIX, pp. 137-150.

	Introduction
	A Virtual Internet
	The X-Bone
	X-Bone Review
	Distributed System Implementation
	GUI/API for Configuration Control
	System for Application Deployment
	Safety & Security

	A Global X-Bone Testbed
	The GX-Bone Registry
	The GX-Bone ACL
	The GX-Bone CA list

	Augmented Kernel Options
	DataRouter
	NetFS

	Prior and Related Work
	Benefits
	Ease of use
	Performance
	Reuse of net and transport protocols
	Allows custom kernels to participate

	Future Work
	Partitioned resources
	Inter-overlay Gateways

	Acknowledgments
	References

