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Abstract  

A global Internet overlay testbed is being deployed to 
support the distributed, shared use of resources for 
network research. The Global X-Bone (GX-Bone) 
augments the X-Bone software system, enhancing its 
coordination mechanisms to support deployment of local 
overlays to world-wide, shared infrastructure. The 
GX-Bone is based on the X-Bone’s Virtual Internet 
Architecture which extends the Internet for both 
concurrent, parallel and recursive overlays, and provides 
decentralized, automated deployment and management. 
GX-Bone supports host virtualization through the NetFS 
file system, granting individual users compartmentalized 
access and control of host and router configuration, and 
the DataRouter extension to IP loose source routing that 
supports application control of network-layer forwarding. 
GX-Bone can be installed on user-modified kernels, 
uniquely supporting both conventional kernel-level 
protocol development and coordinated global 
infrastructure sharing. 

1. Introduction 

X-Bone is a system for deploying and managing 
Internet overlays [17][20]. It coordinates the 
configuration and management of virtual networks, 
enabling shared use of network resources (Figure 1). The 
Global X-Bone extends the X-Bone implementation from 
a stand-alone software system for local experiments to a 
global infrastructure for wide-scale network research. 

 Overlays can be used for isolation, concurrency, 
and abstraction. They protect traffic, allowing new 
protocols to be tested, and were originally used to protect 
multicast IP addresses from leaking onto the conventional 
Internet. Overlays isolate different protocols, such as was 
used to deploy IPv6 incrementally over the current IPv4 
Internet. Overlays also allow network components to be 
shared, supporting network concurrency akin to 
multiprocessing. This allows concurrent network 
experiments to share core infrastructure, as the 6-Bone 
and M-Bone currently do. Finally, overlays provide 
abstraction of topology, allowing experiments with 
routing protocols on rings, where, e.g., the physical 
topology is a star, a ring, or of arbitrary design. This 
allows the network topology to reflect forwarding 

decisions, as is done with peer-to-peer architectures, e.g., 
based on hypercubes or Plaxton trees [16]. 

 

 
Figure 1 Multiple virtual Internets 

The X-Bone applies a general architecture for network 
virtualization to the Internet [20][22]. This architecture 
supports concurrence, recursion and revisitation. 
Concurrence allows deployment of multiple, parallel 
concurrent overlays. Recursion enables deployment of 
overlays inside other overlays. Revisitation enables reuse 
of the same node in a single overlay more than once. The 
core set of capabilities has been implemented as a 
software system that allows programmatic deployment of 
overlays through an XML interface; a web interface for 
user-directed deployment is also available.  

The X-Bone code has been available since 2000 as 
both a FreeBSD port and a Linux RPM. It has been used 
in numerous individual deployments to support overlay 
and application experiments and the development of 
advanced virtual networking architectures. Although the 
X-Bone architecture already supports global resource 
discovery, each of these installations has operated largely 
independently. This remains a key feature of the X-Bone 
system – each installation may remain completely 
decentralized in both management and operation. No 
global coordination is required. 

An X-Bone overlay contains both named and unnamed 
resources. The current X-Bone uses an expanding ring 
multicast search to discover unnamed resources. Named 
resources must be specified by IP address or DNS name. 
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Although this simple mechanism is sufficient for local 
testbeds or pre-coordinated global experiments, it does 
not easily support a global testbed. On a global scale, it is 
inefficient to locate resources using multicast alone. The 
existing implementation hence did not support the needs 
of a global community of X-Bone users that share their 
resources to create large-scale, distributed testbeds 
spanning numerous administrative domains. 

The Global X-Bone, which we call GX-Bone, is an 
effort to support this worldwide X-Bone user community 
in resource discovery and sharing. It augments the current 
X-Bone software with a centralized registry, where 
members publish information about resources they are 
willing to share. Access control is an integral part of this 
registry; members may indicate lists of users with whom 
they wish to share each resource. 

The remainder of this document presents a brief 
overview of the Virtual Internet architecture that is the 
basis of the X-Bone, and the X-Bone system itself. It then 
describes the extensions that form the Global X-Bone, 
and the advanced networking capabilities that are being 
added to X-Bone nodes to address deficiencies of other 
current overlay systems. 

2. A Virtual Internet 

A Virtual Internet (VI) is a virtual version of the 
Internet. Just as the Internet is a graph of hosts and routers 
connected through links, in a Virtual Internet, virtual 
hosts and routers are connected by IP-encapsulation 
tunneled links over the existing Internet. 

A VI generalizes the tunneled backbones that helped 
deploy multicast (M-Bone), IPv6 (6-Bone), and Active 
Networks (A-Bone.) These testbeds supported wide-scale 
networking research by enabling the testing and 
incremental deployment of new protocols on existing 
infrastructure [1][4][9]. Unlike those interim solutions, 
VIs support persistent partial deployments of new 
capabilities. 

The VI Architecture (VIA) extends the Internet model 
composed of data sources and sinks (hosts), data transits 
(routers or gateways), and links between them [22]. The 
VI virtualizes each of those components, resulting in 
virtual hosts (VHs), virtual routers (VRs), and virtual 
links. The latter are typically encapsulation tunnels. The 
VI architecture has three basic tenets: 

 
TENET 1. Internet-like: VIs are composed of VRs 
and VHs connected by encapsulated tunnel links, 
emulating the Internet 

 
TENET 2. All-Virtual: VIs are completely virtual, 
decoupled from their base network 

 

TENET 3. Recursion-as-router: A VI recurses when 
some of its VRs are VI networks (the inner VI is 
modeled as a VR) 
 
A number of corollaries follow from these tenets: 
 
Corollary 1-A: Virtual hosts increase or decrease the 
number of headers on a packet 

 
Corollary 1-B: Virtual routers do not change the 
number of headers on a packet 
 
Corollary 2-A: VIs support concurrence 
 
Corollary 2-B: VIs support revisitation 

 
These tenets and corollaries are the basis of VIA. They 

evolved out of analogies between the VIA and 
multiprocessing and virtual memory (VM). Like both 
multiprocessing and VM, VIA allows multiple parties 
concurrent shared, protected use of a single resource in 
virtual ways. Like VM, VIA can use a small number of 
physical resources (memory page frames, network 
interfaces, respectively) to emulate a larger number 
(memory pages, virtual interfaces) by revisitation 
(swapping, known as revisitation in VIA). All can be 
layered recursively, and all provide a simpler, uniform 
abstract programming interface. 

3. The X-Bone 

The X-Bone is a system for the dynamic deployment 
and management of Internet overlay networks 
[17][20][27]. Overlay networks are used to deploy 
infrastructure on top of existing networks, to isolate tests 
of new protocols, partition capacity, or present an 
environment with a simplified topology. Current overlay 
systems include commercial virtual private networks 
(VPNs), and IP tunneled networks (M-Bone, 6-Bone) 
[1][9]. The X-Bone system provides a high-level interface 
where users or applications request DWIM (do what I 
mean) deployment, e.g.: create an overlay of 6 routers in 
a ring, each with 2 hosts. The X-Bone automatically 
discovers available components, configures, and monitors 
them.  

The X-Bone system allows different applications on 
the same end host or router to be associated with different 
overlay networks. For example, a single generic network 
mapping utility on one host might have different views of 
the network depending on whether it was attached to the 
base network or one of the overlays (Figure 2). 



 
Figure 2 User’s view of overlays 

Some overlay systems require OS and/or application 
modifications, restrict the number of overlays a router or 
host can participate in, or require manual component 
configuration. The X-Bone requires no specific OS or 
application modifications and only basic IP in IP 
encapsulation, and uses existing implementations of IP 
services such as dynamic routing, name service, and other 
infrastructure. Finally, the X-Bone virtualizes the current 
Internet architecture to support overlays, and supports 
stacking (recursion) of overlays for fault tolerance and 
capacity sub-provisioning for experiments.  

Within each overlay, the X-Bone provides a 
completely standard networking interface that includes, 
for example, network interfaces, routing tables, and 
firewalls. Applications continue to interact with the 
virtualized versions of these mechanisms that are part of 
the overlay abstraction just as they interact with the 
regular, physical interfaces. This capability enables 
experimentation with advanced networking applications 
within a global, virtual network. Furthermore, the X-Bone 
supports experimentation with kernel-level networking 
modifications.  

The X-Bone uses a two-layer tunnel mechanism, rather 
than the single layer used in conventional overlays. It is 
this two-layer scheme which supports stacked overlays, as 
well as permitting use of unmodified applications and 
network services inside a deployed overlay. It also 
permits network resources (hosts, routers) to participate 
multiple times in a single overlay, and is the only known 
overlay system that integrates both IPsec support and 
dynamic routing [18]. 

3.1. X-Bone Review 

The X-Bone is a distributed system composed of 
Resource Daemons (RDs) and Overlay Managers (OMs), 
with a graphical user interface (GUI) and a more direct 
API. These components are shown in Figure 3. The 
functions of the RD and OM have been incorporated into 
a single daemon, but operationally they can be discussed 
as distinct units. 
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Figure 3 X-Bone architectural components 

OMs deploy overlays; a user creates an overlay by 
sending a request to an OM, either via a web-based GUI 
(Figure 4) or by sending an XML message directly to the 
OM API. Each overlay is coordinated by a single OM. 
Large overlays can be created by divide-and-conquer, 
where a single OM will fork sub-overlay requests to other 
OMs. Fault tolerance can be achieved by replicating state 
in multiple backup OMs. Both of these latter capabilities 
(recursion, fault tolerance) are supported in the X-Bone 
architecture, though not yet implemented in current 
releases. 

 

 
Figure 4 X-Bone graphical user interface  
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An OM creates an overlay in phases, using various 
mechanisms to locate the specific resources required for 
its construction. These discovery mechanisms include the 
existing multicast ring-search (shown in Figure 5), or the 
new registry that is part of GX-Bone. The overlay request 
is translated to an invitation, and the invitation is 
transmitted using UDP. An invitation indicates a set of 
simple conditions, e.g., a specific set of host operating 
systems, bandwidth requirements, etc. Invitations 
currently fit in a single UDP packet; where they do not, 
IP’s automatic fragmentation and reassembly is utilized.  

RDs are daemons that configure and monitor the 
resources of routers and hosts. RDs listen for UDP 
invitations, and respond when their capabilities, available 
resources and permissions match. The RDs respond with 
UDP messages, indicating their willingness to participate 
in an overlay, and their capabilities (protocol version, OS 
type, etc.). The OM arbitrarily selects a suitable subset 
from among the responding RDs and opens TCP/SSL 
connections to each chosen RD. The OM determines 
configuration information, such as tunnel endpoint 
addresses and routing table entries, and sends specific 
configuration information to each RD. Subsequent 
overlay actions initiated by the OM include keep-alive 
pings, liveliness and status requests, and modifying or 
dismantling configurations.  

TCP/SSL secures the reliable configuration channel 
only. The X-Bone supports S/MIME authentication to 
secure invitations; responses need not be secured, because 
they will be validated by subsequent TCP/SSL 
connections to the invited nodes, which will confirm their 
availability at that time anyway. 
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Figure 5 Responding to invites, selecting, and 

configuring the overlay 

3.2. Distributed System Implementation 

The X-Bone is a distributed system, where each 
overlay is coordinated by one OM, and each OM instructs 
RDs and possibly other OMs how to deploy and 
coordinate an overlay. A single overlay may be replicated 
at one or more other additional OMs, but at any given 
time, exactly one OM is managing each given overlay. A 
single OM usually manages many overlays.  

Users decide which OM manages a given overlay 
when the overlay is deployed, by which OM receives the 
initial request. Delegated sub-overlays are each managed 

at exactly one other OM, and these sub-OMs report back 
to the primary OM. RDs execute all local commands. 

The X-Bone is implemented in Perl, where the RDs 
run as root on local resources (hosts, routers) or on 
buddy-hosts from which they issue privileged 
configuration commands (e.g., for Cisco routers). 

3.3. GUI/API for Configuration Control 

The X-Bone includes two separate APIs, XB_API for 
overlay configuration requests and replies (TCP reserved 
port 2165), and XB_CTL for issuing the generic resource 
configuration commands (UDP and TCP reserved 
privileged port 265). XB_API uses XML for a web-based 
front-end, to enable human-readable overlay requests. 
This control interface includes support for user-specified 
netlists, i.e., network connectivity lists, to indicate 
specific topologies. It also supports a small set of 
preprogrammed topologies: star, ring, and line. 

XB_CTL issues standardized configuration requests, 
which are translated by the RD into local versions, e.g., 
specific to the operating system and other node properties. 

3.4. System for Application Deployment 

The X-Bone includes a system for scripted application 
deployment (Figure 6) [24][25]. A single script is 
submitted during a request to deploy an overlay, with 
parameters instantiated on a per-overlay and per-node 
basis. The scripts accept a set of generic commands 
(config, start, stop, status) issued by the OM. These 
scripts have been used to deploy a set of web (squid 
proxy) caches, a set of FreeBSD jails, and to configure 
kernel modules for fault-tolerant layered overlays 
(DynaBone) [11][19]. The script deployment system is 
designed to deploy application-layer code, in the context 
of the addresses and DNS names of a particular overlay, 
on each node of an overlay in a coordinated fashion, as 
part of the automatic deployment system. 
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Figure 6 Application deployment system 



3.5. Safety & Security 

The X-Bone design and implementation focus on 
security. The RDs need to run as root to configure 
interfaces, setup tunnels, and install IPsec keys; as such, 
they present a substantial potential security challenge. 
Further, distributed overlay deployment relies on 
selecting a number of nodes based on their capabilities; 
knowing these capabilities can also present a security 
hole. Finally, application deployment needs to be 
carefully controlled. 

The X-Bone uses an X.509 certificate hierarchy 
together with TCP/SSL to authenticate and encrypt all 
communication [10]. Each RD has its own access control 
list (ACL), which provides limits for each resource based 
on user’s names (via patterns). Such resources include 
number of overlays, number of tunnels, queue limits, 
bandwidth limits, etc.  Further, there are global resource 
limits for each node, as well as hard-coded constraints, 
which limit overlays to using RFC1918 address space, 
e.g. 

The X-Bone sends S/MIME authenticated UDP 
invitations, and each node decides whether it has the 
resources indicated, as well as whether the user named in 
the request should be allocated those resources. Nodes 
respond to invitations only when they want to participate 
in the indicated overlay; otherwise, they can remain silent 
and anonymous. Some of this model needs to be relaxed 
in the GX-Bone, because it is not globally feasible to send 
invitations everywhere. 

All commands issued by the OM are authenticated 
based on the signed key of the OM, and recorded in the 
RD. Each RD has its own rollback and recovery 
mechanism, which allows RDs to re-install state on 
reboot, but also dismantles overlay configuration unless a 
heartbeat is received from the appropriate OM that 
created the corresponding overlay. 

Application deployment is controlled by limiting 
which functions are run as root. Although the RD uses 
root privileges for most configuration operations, 
application scripts are run as nobody, or as some 
preconfigured username. It is further possible to limit 
which scripts can be run on which nodes in the ACL, as 
well as to limit scripts to a predefined, preconfigured, 
signed set of defaults. Further compartmentalization of 
access is provided by NetFS [23]. 

4. A Global X-Bone Testbed 

As noted before, the X-Bone to date has been deployed 
as stand-alone software, to avoid the need for any 
centralized coordination. The X-Bone has already been 
deployed in a number of stand-alone testbeds. The first 
was a combined USC/ISI-UCL (Univ. College London) 
testbed in 2000, which was used for Active Nets demos 

involving nodes in Marina del Rey, CA and London, U.K. 
Other X-Bone systems were deployed in Ottowa, Canada, 
Univ. Catalonia, Spain, and Univ. Kentucky. Note that we 
do not have a list of all sites where the X-Bone has been 
deployed because the system does not require any central 
coordination. Although this allows testbeds to be 
autonomous and not rely on ongoing USC/ISI support, it 
also fails to leverage shared resources when such sharing 
is desired. 

As a result of our experience with independent 
deployments of the X-Bone, we are now preparing a 
global X-Bone deployment based on modified software. 
The new GX-Bone release includes an option, defaulted 
to “off”, to join the global X-Bone testbed. Joining this 
infrastructure involves several steps, each discussed in 
detail below: 

 
• advertising a node in the GX-Bone registry 
• incorporating a filtered copy of the GX-Bone 

ACL 
• incorporating a filtered copy of the GX-Bone 

certificate authority list 
 

The basic purpose of these three components is, 
respectively, to assist with global resource discovery, to 
enable global use of shared resources by a known set of 
users, and to support distributed authentication at low 
cost.  

There are other capabilities, developed in conjunction 
with the X-Bone to support overlay research, which are 
expected to be part of the GX-Bone. These include 
NetFS, a system for partitioning root permission 
requirements, and DataRouter, a string-rewriting routing 
system which supports application forwarding at the 
network layer. 

4.1. The GX-Bone Registry 

In order to find nodes that may be anywhere on the 
globe, an OM needs to direct its invitations more 
intelligently than by multicast advertisement. Although 
multicast can be used, it is inefficient when most of the 
nodes lack the capabilities or locations desired. The 
simplest alternative is to have individual nodes register 
with a central database, indicating their willingness to 
participate in the GX-Bone. This registration may include 
any of a node’s properties, but should include enough 
information to limit the number of global invitations the 
node would receive. 

Once registered, there are a number of alternatives that 
can be employed to assist OMs in locating desired 
shareable resources. The simplest is to have the OM 
download the database periodically, or have it pushed 
when sufficient changes accumulate, and have each OM 
scan its local copy when searching for resources. Note 



that it is not necessary that the database be up-to-date, 
because OMs still send invitations to RDs, which are need 
to confirm their willingness to participate anyway. At 
worst, errors in the database will result in wasted 
invitations sent or available resources not found. 

Distributing a copy of the registry has other 
implications, however. One of the reasons the X-Bone 
used an “invite-reply” protocol is to keep the resources of 
the local nodes private. Nodes respond only when they 
have the desired resources which can be allocated for the 
indicated user. Nodes that want to remain truly private 
need never make their presence known except to a limited 
set of parties. The central registry violates this principle, 
because it may contain sensitive information, such as a 
node’s OS, patches, etc. 

There are two ways to combat this privacy issue. First, 
information in the registry need not be complete; the less 
specific a node’s description, the more likely it will 
receive invitations from other GX-Bone OMs. Those 
invitations are not likely to be a source of denial-of-
service themselves, and so can simply be ignored if 
desired. Second, the registry need not be downloaded to 
the OMs; instead, invitations can be forwarded to the 
registry as part of a ‘scan’ process. The registry can 
respond with a list of potential invitees based not only on 
the invitation parameters (OS=Linux, Testbed=CAIRN, 
etc.), but also based on the context of the issuing OM. 
This variant allows individual nodes to place some of 
their configuration information in the trust of the central 
registry. 

As with any resource location system, the GX-Bone 
registry has issues with scalability and performance. Like 
any database, it can be implemented in a hierarchical 
fashion with delegation along any parameter desired, e.g., 
by geographic region, by DNS suffix, by IP prefix, by 
propagation latency, or by capability (e.g., IPsec, IPv6, 
etc.). For the purposes of a global network testbed, a 
single central database suffices for overlay deployment 
timescales (seconds) and for the numbers of nodes 
expected in the near term (tens of thousands). 

4.2. The GX-Bone ACL 

The use of a global registry enables resource 
discovery, but is insufficient to enable users to utilize 
nodes that were unaware of their need. In addition, there 
needs to be a global ACL, to indicate what kind of 
resources are to be shared to the general public or subsets 
thereof. The current X-Bone ACL can already express 
this sort of default, in the degenerate case, e.g., where 
name=“.*”; this is sufficient to allow users who are not 
otherwise listed to have resource permissions indicated. 

In a global testbed, however, a single, global default is 
not always the best. It is safer for users to advertise their 
general needs, e.g., 5 virtual interfaces per node, 2 
overlays per node, etc., in advance. These general 

resource requests are listed in the GX-Bone ACL. 
Individual nodes can import any subset of entries in the 
GX-Bone ACL, e.g., via filters (import any where 
interfaces<5 and where name ends in “.edu”). Users 
managing nodes can review these requests, and enable or 
deny individual entries in their own ACL as desired. 

4.3. The GX-Bone CA list 

The X-Bone relies heavily on the X.509 certificate 
system, which presumes that identity is established based 
on certificate authorities (CAs) known a-priori. This is 
similar to web browsers, which have the CA certs of a 
known subset of commercial CAs loaded at compile-time. 
Browsers allow override of this list of CAs by two 
mechanisms: manual loading of new CA certs, and 
manual approval of certificates signed by unknown CAs 
(typically asking, “This certificate is signed by an 
unknown CA; would you like to enable it a)for this 
connection, b) for this browser session, or c) forever?”) 

Because the X-Bone RDs are completely automatic, 
and because the OM may be interacting with a program 
rather than by a browser GUI, such manual confirmation 
is not appropriate. Instead, the list of CA certs which are 
used by nodes joining the GX-Bone is listed in a central 
database, which OMs and RDs can load (or load subsets 
of) as desired. 

One alternative would be to preload a set of fixed CAs, 
as done with current web browsers, and assume that most 
X-Bone deployments have X.509 certificates signed by 
these known CAs. Unfortunately, X.509 certificates from 
these commercial CAs are often prohibitively expensive 
for research testbed use. 

5. Augmented Kernel Options 

The X-Bone makes no specific requirements about the 
kernel on which it is deployed; provided the control 
software (PERL code) has been ported, any operating 
system will suffice. There are porting requirements, e.g., 
to support multilayer tunnels, to support IPsec transport 
mode on virtual interfaces, etc.; these generic capabilities 
are already provided in current versions of FreeBSD and 
Linux. The X-Bone allows nodes to be deployed on 
customized kernels with modified networking stacks as 
well.  

There are two modifications developed at USC/ISI in 
conjunction with the X-Bone system which may be 
deployed at GX-Bone nodes, to further enable advanced 
distributed network testbed capabilities. DataRouter 
supports packet routing based on string matching and 
rewriting, and is used to support application-layer 
forwarding in a network-layer overlay. NetFS supports 
partitioned permissions to limit root access within each 
overlay. 



Neither of these kernel modifications is required for a 
node to join the GX-Bone, but each will be indicated in 
the registry. These thus represent new capabilities which 
we hope will further support virtual network research. 

5.1. DataRouter 

The X-Bone was intended to support application-
specific overlays, where the topology of an overlay would 
be uniquely matched to a particular application’s 
requirements. The goal was to have a single, network-
layer system which could leverage existing protocols 
while supporting per-application topologies. This avoids 
having each application determine how best to deploy its 
own overlay. 

Peer-to-peer networks have become the 
counterexample to this goal. They implement application-
specific overlays to forward requests at the application-
layer, based on application-layer information. They 
cannot use typical network-layer overlays, because they 
require application control over forwarding rules, and 
require that the forwarding mechanism examine 
application data. 

DataRouter augments existing IP loose source routing 
(LSR) with string-based routes [21]. Individual next-hops 
are still indicated, as with LSR, by IP addresses, but 
subsequent hops are indicated by strings in the LSR field 
(Figure 7). When reaching a DataRouter LSR router, the 
string is matched against a list of patterns, and the 
matching rewriting rule applied. The rule also indicates 
the next-hop IP address, as with a conventional routing 
table entry. 

 
Figure 7 DataRouter LSR as string rewriting 

DataRouter has already been applied to moving Chord 
peer-to-peer forwarding to the network layer, with a 30x 
increase in performance [16]. As importantly, 
DataRouter-Chord applications need not implement a new 
reliable transport protocol on top of the application layer; 
it can reuse TCP/IP, achieving not only higher 
performance, but also congestion control compatibility. 

5.2. NetFS 

NetFS enables applications inside an individual 
overlay to retain control over the configuration of a subset 

of interfaces, without running the application as root. It 
maps local network resources – interfaces, tunnels, 
routing tables, IPsec databases, etc., to a virtual file 
system much like /proc maps processes to virtual files 
(Figure 8).  
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Figure 8 NetFS maps network configuration to a 

virtual file system 

There are two advantages to such a mapping. First, 
root permissions can be partitioned, where applications 
deployed on one overlay can configure some network 
parameters but not others. Second, use of NetFS by 
applications simplifies portability; given multiple systems 
that support NetFS, a single application can manage 
network configuration on all systems. 

6. Prior and Related Work 

The X-Bone was developed to automate the effort of 
tunnel-based testbeds of the 1990s, notably the M-Bone 
and 6-Bone (the “X” in X-Bone is intended to denote a 
variable). It provides a more detailed architectural 
virtualization of the Internet, inspired by VPNs. It is 
designed to provide high-performance, shared network 
resources for application-specific use, rather than 
requiring recapitulation of effort as with peer networks. 
The GX-Bone variant is designed to provide a persistent 
network research infrastructure in the spirit of DartNet 
and CAIRN, but using primarily overlays rather than 
dedicated links. GX-Bone is a network version of 
distributed, global application testbeds such as the Grid 
and PlanetLab. 

The X-Bone itself is inspired by the way in which 
testbeds evolved in the early 1990s, from dedicated 
routers and links in DartNet and CAIRN to tunnel-based 
overlays in the M-Bone, 6-Bone, and A-Bone 
[1][4][5][9]. Similar systems were envisioned earlier, 
notably MorphNet and SupraNet, in particular which 
described overlays at multiple layers in the protocol stack, 
or which explored recursion [2][6][7]. The X-Bone is the 
first deployment system to bring these architectural 
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components together in a single, proof-of-concept 
implementation.  

The X-Bone’s network-layer overlays complement 
link-layer testbeds, such as Emulab, and application-layer 
testbeds such as PlanetLab [13][26]. Both of these 
systems are persistent testbeds of shared components, 
PlanetLab being the larger-scale example. GX-Bone 
builds on PlanetLab’s set of global resources by 
deploying network overlays, as well as by providing 
coordinated deployment of applications by the X-Bone’s 
automated script capability.  

GX-Bone is a global testbed that can deploy overlays 
on-demand. Other overlay testbeds have been deployed, 
notably the M-Bone and 6-Bone, as well as testbeds for 
specific research projects, notably the RON testbed [3]. 
RON represents a single, static set of overlay tunnels, in 
effect being an instance of a single GX-Bone overlay. 
Other overlay experiments, such as Detour, and VANs 
(virtual active networks), were deployed using tunnels, 
but did not have a persistent infrastructure beyond the 
individual experiment [12][15]. 

7. Benefits 

The GX-Bone provides a new infrastructure for 
network research. It provides a simple, user-level 
interface to dynamic overlay deployment. It supports 
concurrent overlays with automated resource 
management, avoiding the need for 1960’s-style pegboard 
reservation schedules. It supports very high performance 
research, and allows the reuse of existing application, 
transport, and network layer protocols, as well as existing 
applications. It also allows experiments based on the 
existing knowledge base of kernel-level modifications, 
allowing custom kernels to participate in a global, shared 
infrastructure. 

7.1. Ease of use 

The X-Bone provides a web-based, do-what-I-mean 
GUI for overlay deployment. Resources are used as 
available, where nodes support concurrent overlays where 
possible, and avoid them (via resource counts, e.g., 
num_overlays=1) where necessary. There is no need for a 
1960’s style pegboard reservation system, no need to 
reserve resources in advance. The X-Bone brings overlay 
deployment and use into the realm of multitasking, a kind 
of network multitasking operating system. 

This contrasts to previous network testbeds, such as 
DartNet and CAIRN, where resources were reserved by 
calendar system [5]. It also contrasts to PlanetLab, where 
‘slices’ – sets of vservers deployed on a set of nodes – are 
deployed a-priori and left in place [13]. Further, due to 
how vservers operate, it is not possible to configure the 
network interface of a vserver from within that vserver, 

and PlanetLab configures the vservers but does not create 
tunnels between them. The X-Bone has already 
demonstrated ‘slice’ deployment using our application 
deployment system, where a simple script –written in a 
few hours – was used to deploy a set of vservers 
connected by a set of IPsec-encrypted tunnels. 

Further, the X-Bone, and GX-Bone as a result, can 
deploy overlays emulating different network 
characteristics, using dummynet [14]. A deployed overlay 
can be configured with additional link latency, link 
bandwidth limits, link queue limits, or emulated link 
losses. Dummynet is only one example; any system that 
can be configured from the command line can configured 
by the X-Bone’s application deployment system or 
incorporated into the core system’s configuration 
instructions (X-Bone runs as source), as desired.  

7.2. Performance 

The X-Bone has achieved performance of 
gigabits/second and hundreds of thousands of packets/sec 
on commodity PC platforms [19]. It forwards packets in 
the existing kernel code, at existing kernel rates. The X-
Bone’s RD code configures the host or router, but 
otherwise packets are processed by the conventional, 
optimized code. The X-Bone software has been 
demonstrated to support hundreds of concurrent overlays 
on a single, conventional PC, and recursive overlays up to 
16 levels deep. 

X-Bone packets are forwarded at IP forwarding rates at 
intermediate nodes. At overlay routers, there are 
additional encapsulation and decapsulation steps, as well 
as additional forwarding steps. With modern processors, 
the encapsulation and decapsulation steps are negligible, 
and the forwarding rate is limited only by the additional 
pass through the kernel that two-layer encapsulation 
requires. As a result, a single-level overlay (not recursive) 
forwards at roughly half the conventional IP forwarding 
rate.  

This contrasts to the performance of peer-to-peer 
systems, which typically ‘forward’ messages at 1/30 the 
rate of IP forwarding (5,000 pkts/sec, vs. 150,000 pkts/sec 
for an overlay, vs. 300,000 pkts/sec. base IP forwarding 
on a 2.4Ghz Xeon PC). 

7.3. Reuse of net and transport protocols 

The X-Bone enables network level research without 
the need for applications to reinvent transport and other 
protocols. DataRouter extends conventional IP forwarding 
with string matching and rewriting loose source routing, 
allowing an overlay to support peer-to-peer forwarding 
with network layer performance. Messages need not be 
terminated at each hop, e.g., using hop-by-hop (HBH) 
RPCs, as is done in Chord; such HBH behavior at the 



application layer requires additional application 
mechanisms to provide transport protocol properties, such 
as reliable, in-order delivery [16]. 

Further, network layer overlays can reuse existing 
network and transport protocol mechanisms, such as 
dynamic routing dynamic routing, congestion control, and 
windowing. This avoids the need for applications to 
reinvent – or rediscover – solutions to these well-known 
problems. 

By using network solutions to these issues, the X-Bone 
allows existing applications to operate over deployed 
overlays. Existing implementations of FTP, ping, 
traceroute, web servers, mail servers, etc. all operate over 
X-Bone overlays. This leverages the installed base, and 
avoids additional effort and errors of recapitulation. 

7.4. Allows custom kernels to participate 

The X-Bone’s design relies on conventional IP packet 
forwarding, with common extensions for IP 
encapsulation, where the entire X-Bone system is 
deployed at the application layer. RDs and OMs configure 
network interfaces, tunnels, and routing table entries; 
packets continue to be forwarded by existing kernel 
mechanisms. DataRouter is a good example of how 
conventional kernel-based network protocol experiments 
can be incorporated into an X-Bone overlay; the X-Bone 
system is deployed on a DataRouter kernel [21]. Similar 
modifications can be deployed anywhere in the GX-Bone, 
flagged by labels which can be used by experimenters to 
find appropriate nodes anywhere in the world (e.g., find 
“DataRouter” nodes). 

8. Future Work 

The GX-Bone, like the X-Bone on which it is based, 
represents an ongoing effort at USC/ISI to develop and 
explore the Virtual Internet Architecture. In addition to 
the ongoing development of the GX-Bone system, 
including its registries and discovery system, we are 
working to enable more complex, layered deployment of 
large-scale overlays. Two specific avenues of future work 
involve support for partitioned resources and support for 
inter-overlay gateways. 

8.1. Partitioned resources 

The X-Bone currently deploys network-layer overlays, 
assuming individual nodes can participate in multiple 
overlays without mutual interference at the network layer. 
NetFS is designed to avoid the interference of root 
permissions among these overlays, but there are other 
ways in which overlays compete at shared resources. In 
particular, it can be challenging to limit computational 
resources, disk volumes, etc. across overlay instances, as 

current hosts and routers do not expect to virtualize their 
resources. 

Jail partitions some of these resources, notably disk 
volume access, and provides localized root permissions 
for some purposes. Unfortunately, jail and its variants 
(vservers, VMware, etc.) do not fully support our Virtual 
Internet Architecture’s notion of network reentrancy, 
where wildcards like INADDR_ANY map only within 
each partition. These systems also do not support sets of 
associated interfaces within a jail, partitioned from other 
sets in other jails.  

Clonable stacks are a step in the right direction [28]. 
Although intended to support alternate network stacks, 
e.g., TCP-Reno and TCP-Tahoe, it can be used to support 
the associations required for network reentrancy. In 
particular, interfaces within a single overlay at virtual 
router instance are associated with a weak-host model, 
and interfaces between such interfaces are associated by 
the strong-host model. 

Clonable stacks also offer new opportunities to limit 
the amount of CPU load allocated to each stack, thus 
limiting the computational resource interference of 
multiple virtual hosts or virtual routers instantiated on a 
single node. There remains substantial work to explore 
and validate this capability, and to port it to other systems. 

8.2. Inter-overlay Gateways 

The current X-Bone deployment system assumes that 
individual overlays are strongly partitioned, avoiding 
inter-overlay interaction. This prohibits inter-overlay 
gateways, such as would be used to splice together 
disparate services running on individual overlays. It is not 
yet clear what best architectural extension would support 
this capability, because we prefer the Internet model 
(common communication framework) to that of 
concatenating disparate network layers. One possible 
option is to explore recursion for this capability, where 
each recursive component represents a unique network 
architecture, and the overarching “outerlay” (to borrow 
terminology from DynaBone) supports the gatewaying 
capability [19].  
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