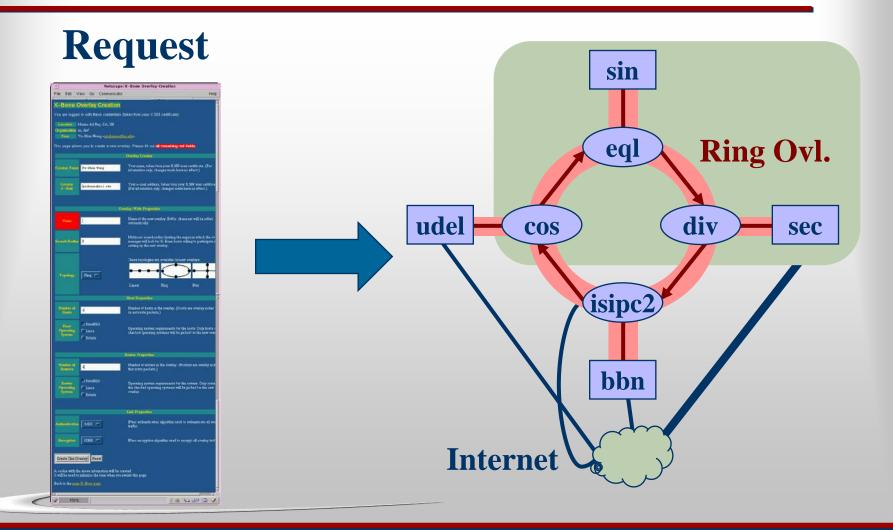

Joe Touch Postel Center Director, USC/ISI Research Assoc. Prof., USC CS & EE/Systems

2/7/2011 3:40 PM

X-Bone Overlay System

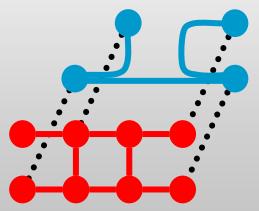
Copyright 2008, USC/ISI. All rights reserved.


Timeline

- 1997 first whitepaper
- 1998-2001 X-Bone (DARPA)
 - IP overlays with revisitation, recursion (LISP)
 - 2000 running code (FreeBSD, Linux)
 - 2000 application deployment
 - 2001 TetherNet "NAT-buster" to support demos
- 2001-2004 DynaBone (DARPA)
 - 800-way spread-spectrum parallel overlays
 - 15-level deep overlays

- 2001-2003 NetFS (NSF)
 - File system configuration of network properties
- 2002-2005 X-Tend (NSF)
 - X-Bone for testbed uses
- 2003-2005 DataRouter (int.)
 - Support for overlay P2P forwarding
- 2005-2006 Agile Tunnels (NSA)
 - Partial overlays for DDOS safety
- 2006-2009 RNA (NSF)
 - Extending X-Bone Choices model to general protocol stack architecture

Creating a Ring



Copyright 2008, USC/ISI. All rights reserved.

VI – definition

- Virtual Internet is network composed of:
 - Virt. hosts, virt. routers, virt. links (tunnels),
 i.e., an end-to-end system
 - provides at least the same services as IA
 - in a virtual context
- First-principles extension
 - More than a patch
 - More than interim

VIA Principles

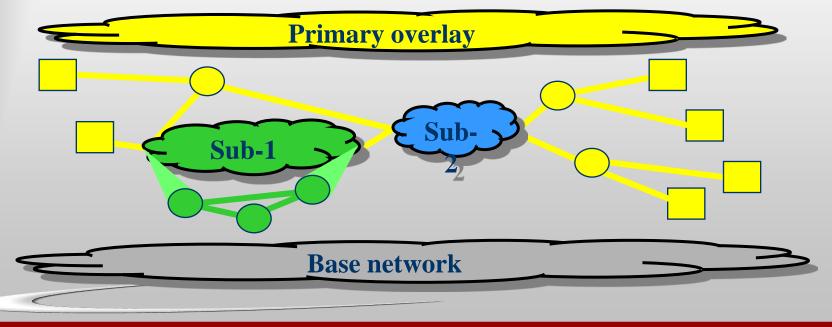
- TENET 1. Internet-like
 - VIs = VRs + VHs + tunnels
 - Tunnels are links; separate net addresses
 - Emulating the Internet
- TENET 2. All-Virtual
 - decoupled from their base network
- TENET 3. Recursion-as-router
 - some of VRs are VI networks

1

Extra constraints

- Internet-based
 - Routing (link up) vs. provisioning (link add)
 - ... one header to bind them all...

(use IP, provide IP [recursion)


- Complete E2E system
 - All VNs are E2E
- VN "Turing Test"
 - A net can't tell it's virtual
- Use existing protocols, OSs, apps.

Recursion-as-Router

Sub-overlays look like routers

- L3 version of *rbridges (IETF TRILL WG)*
- Similar to LISP/NERD/etc.

Software Features

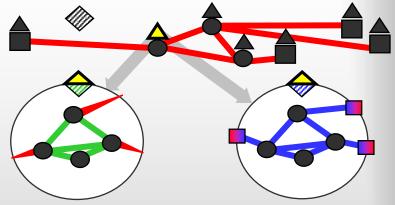
- Running code since 2000
 - FreeBSD port, Linux RPM, Cisco via buddy host
- Secure
 - TLS control plane, IPsec data plane
 - "Red teamed" software
- IPv4, IPv6 (both with IPsec)
 - Integrated with DNS updates, dynamic routing
- Per socket association to overlays
 - Allows process to bind to multiple overlays
- Application deployment
 - slice configuration, control distributed services
- Supports recursion, revisitation

Potential Uses

- Test new protocols
 - Test denial-of-service solutions
- Deploy new services incrementally
 - Dynamic routing, proxylets, security
- Increase lab & testbed utility
 - Overlapping nets, add delay & loss
- Scale to very many nodes
 - Simplify view of topology
- Support fault tolerance
 - Added level of recovery

What We Don't Do...

Optimize the overlay topology


- we use a plug-in module (AI folk can provide)
- it requires network status (not quite mature)
- fault tolerance only via ground truth (future work)
- X-Bone is capability more than performance (now)

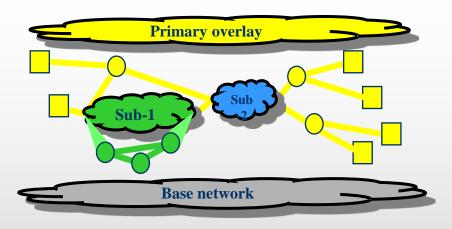
Non-IP overlays

- Single, common interoperation layer
- IP recurses / stacks nicely
- "The lowest level at which experimentation is permitted is also the highest level at which experimentation occurs." – J.Touch, 1996

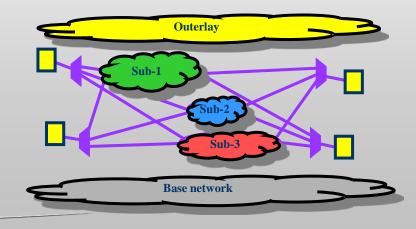
- Recursion
 - Control (like BGP AS's)
 - Network (like LISP/NERD)
 - BARP (label distrib)

Revisitation

Control / deployment


Network

- Integration of resolution, choices
 - Shims and glue layers as fundamental
- Service for deploying & managing VIs
 - Language for describing VIs



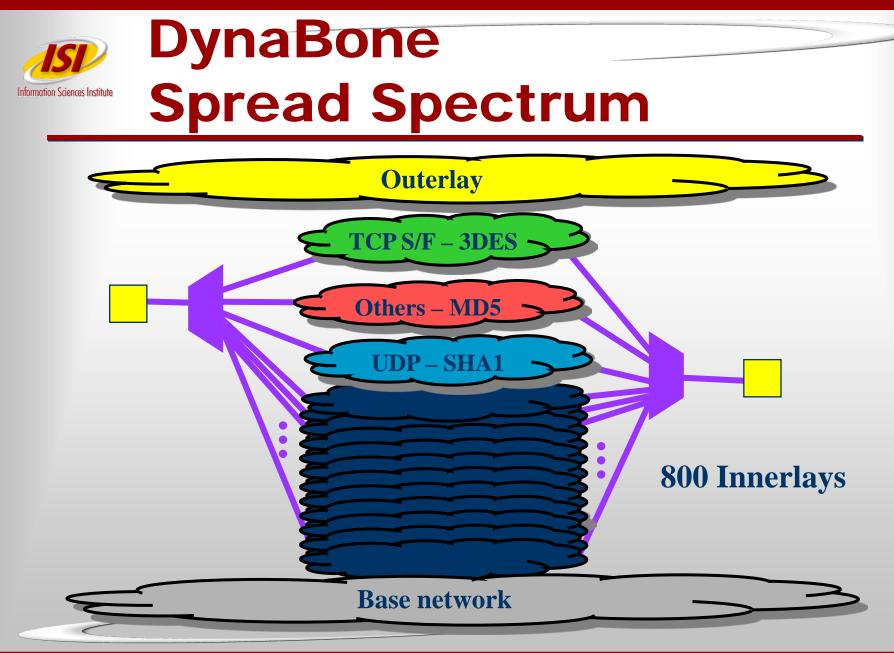
More VI Features...

Compose:DTN, Plutarch

- Alternate:
 - Control Plane,
 FEC, Boosters,
 - Dynabone

6

- Rents a block of addresses
 - Auto-configures secure tunnel
- Undoes effect of NAT/NAPT

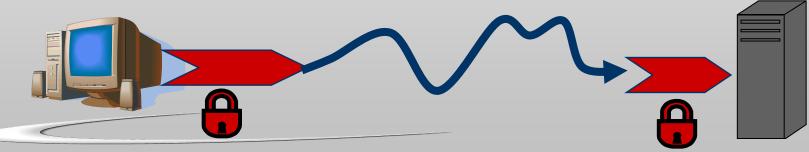

nier

MAAN

Also effect of net non-neutrality

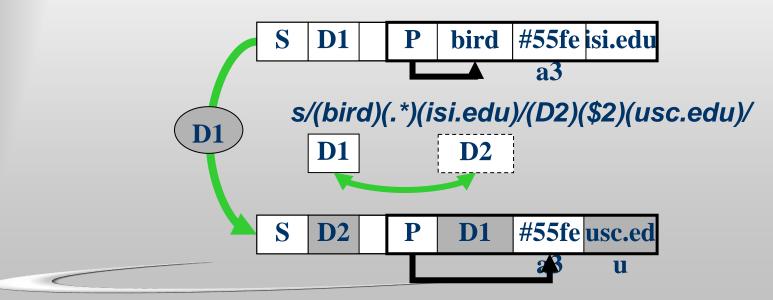
University of Southern California

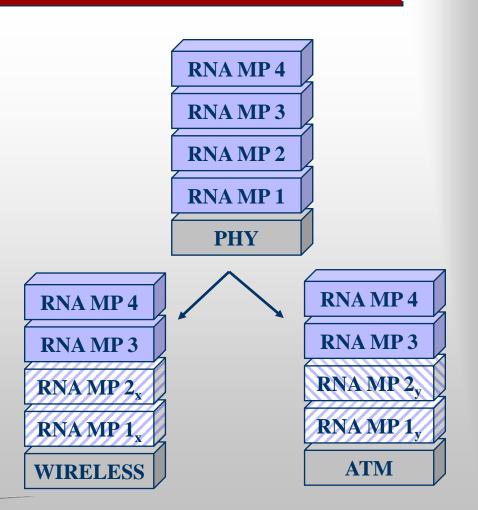
2/7/2011 3:40 PM


Copyright 2008, USC/ISI. All rights reserved.

Agile Tunnel Protocol (ATP)

- Client
 - -> tunnel head @client
 -> roaming tunnel tail
 -> server (hidden)


- Works like an inverse tunnel:


- P2P re-implements network arch.
- Need app.-layer forwarding at net layer
- Add string-based forwarding

Recursive Net Arch

- Layering as more than software engr.
 - Layers defined by scope, context
- Create a one layer 'stem cell' protocol
 - Integrate resolution, "choices" from X-Bone
 - Template of basic functions, ala J. Day

VI Observations

- Virtualization *changes* the architecture
 - Hosts are really processes, everything else is really a router or system
 - Devices aren't localized
 - Subnet as a router
 - NAT as a host front-end
 - Link and net layers are tightly coupled
- Core concepts from previous glue/shims
 - A single model yields layering, forwarding, routing, and dynamic composition

Current Efforts

IRTF NetVirt BOF / NVRG mailing list

Met in Phila. March 2008

A- 'next gen' testbeds / GENI, 4WARD, AKARI, ...

B- 'next generation' research / FIND, FIRE, ...

C- virt extensions / PPVPN, L*VPN, X-Bone, LISP/NERD, PWE

Future Internet meetings

- ICCCN 2008 "FIAPP" (future Internet arch and protocols)
- CoNext 2008 "ReArch" (re-architecting the Internet)
- ICCCN 2009 "NAP" (net arch & protocols)

US-EU Collaboration

- UPC / O. Ardaiz Villanueva (Spain)
 - Visiting researcher, overlay service deployment
- UCL MICE / Peter Kirstein (UK)
 - X-Bone collab. within DARPA Active Nets
 - Deploy a MICE teleconferencing overlay
- EU 4-WARD / Martina Zitterbart (Germany)
 - RNA collaboration with Univ. Karlsruhe, NC State NetSilo / Rouskas
 - Unifying approaches to protocol layering

US-Japan Collaboration

- WIDE / Jun-ichiro (Itojun) Hagano
 - X-Bone, FreeBSD virtualization support
- WIDE / Hideaki Imaizumi
 - Dynabone, Visiting researcher, IPv6 transition mech.
- WIDE / Shigeya Suzuki
 - X-Tend, Visiting researcher, RF tags
- NEC / Norihito Fujita
 - X-Tend, Visting researcher, P2P network overlays

Project Issues

- Coordinating projects
 - Separate preconditions
 - Separate goals (esp. funded independently)
 - Separate funding trajectories
 - *very* hard to coordinate a-priori
- Support for travel
 - Meetings are more international anyway
 - Direct support for guest presentations

People Issues

- In-person visits
 - Visiting researchers
 - Guest presentations
- Regular meetings
 - "T-Troup" participation, group talks & paper reviews
 - External review collaboration
- Social support
 - Lunches, coffees, Friday bagels
 - Off-time "WoW"s, holidays, sharing local favorites

Things that help...

- Support / piggyback on other meetings
 - Sigcomm 2007, Kyoto (Jun Murai/Keio Univ., chair)
 - CoNext Rearch 2008, Madrid
- Skype + Powerpoint
 - Cheaper than telephone
 - Easier than teleconferencing
- Be conscious of language issues
 - Alternate descriptions
 - Simpler description/words...
 - without simplifying the ideas