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Abstract 1

The LSAM Proxy is a multicast distributed web cache that
provides automated multicast push of web pages, based on
self-configuring interest groups. The proxy is designed to
reduce network and server load, and to provide increased
client performance for associated groups of web pages,
called ‘affinity groups.’ These affinity groups track the
shifting popularity of web sites, such as for the Superbowl,
the Olympics, and the Academy Awards. The LSAM
proxy’s multicast hierarchy is self-configuring, such that
these popular affinity groups are automatically cached at
natural network aggregation points. This document
describes the LSAM proxy system architecture and the
properties of a prototype implementation.

1: Introduction

The LSAM Proxy Cache (LPC) is web proxy cache
designed to support multicast web push of groups of
related web pages. LPC reduces the response time of dis-
tributed clients that access related web pages. It uses mul-
ticast to distributed these related page sets to a group of
caches, reducing both server and network load.

Caching is the most common form of web performance
enhancement; these caches are typically deployed at the
client and at intermediate shared proxies. Client caches
often achieve limited benefit, because the users tend to
browse new information. New pages are never in client
caches.

Shared proxy caches allow new information to be
cached for first-time clients, because they aggregate
requests. A small set of clients can fill the cache with new

information, and the rest of the clients benefit. Howev
shared proxy caches work only where requests can
aggregated, e.g., near the border router of a domain.

There are several examples of groups of related w
pages that become popular over time, such as those o
Superbowl, the Olympic games, and the Academ
Awards. The content of these pages often shifts over tim
as new events occur in the Olympics, or during the fo
ball playoffs. Even though these page groups become p
ular, there is no one place a proxy can be placed to avo
hot-spot at the server. We call these ‘affinity groups’.

As a specific example, the winter Olympics web pag
are an affinity group, whose content evolves as the gam
proceed. Pages for events, such as ice skating, ski ju
ing, and bobsled, become popular as each event occ
and as new pages appear with the results of the comp
tion. In current web cache systems, such pages alw
generate hot-spots. They are globally interesting, so e
shared proxy caches do not alleviate the implosion 
requests. The pages are also part of popular groups, bu
page popularity is not known in advance, so client su
scriptions would not exist, defeating page-’cast’ system

In LSAM, proxies tune to the server’s Olympic chann
if their downstream clients are sufficiently interested in t
general topic. When a new page appears, e.g., for down
skiing, its results are multicast to the entire set the fi
time it is requested by any client. A client near any 
these proxies can retrieve the page from the proxy cac
benefiting as there were one global shared proxy for 
pages in the affinity group. Subscription happens autom
ically, as clients join channels that correlate to rece
requests, and servers create channels that correlat
groups of popular pages.

LSAM is developing a multicast distributed virtua
cache, to provide the benefits of a centralized shared pr
cache, where no central proxy could suffice, i.e., for the
affinity groups. It uses multicast to allow a set of prox
caches to emulate a single, central shared proxy cache

LPC tracks popular groups of web pages, and mu
casts them to caches at natural network aggregation po

1.  This work is supported by the Defense Advanced Research Projects 
Agency through FBI contract #J-FBI-95-185 entitled “Large-Scale 
Active Middleware”. The views and conclusions contained in this docu-
ment are those of the authors and should not be interpreted as necessarily 
representing the official policies, either expressed or implied, of the 
Department of the Army, the Defense Advanced Research Projects 
Agency, or the U.S. Government. 
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The clients can access web pages locally, even when no
nearby client requests a popular page, because the caching
system as a whole decides what is popular.

LSAM’s technique for addressing these issues is called
Active Middleware. Middleware is a set of services that
require distributed, on-going process, and combine OS and
networking capabilities, but cannot be effectively imple-
mented in either the OS or the network. LSAM’s middle-
ware is active, providing self-organization and
programmability at the information access level akin to
Active Networking at the packet level.

The remainder of this document describes the LSAM
proxy architecture and its properties. The feature of self-
organization is discussed, as are implementation issues,
such as prioritization, channel management, routing, and
mobility. Finally, techniques for detecting and reacting to
hot-spots are presented, and prior and related work com-
pared.

2: The LSAM Proxy Architecture

The LSAM proxy is a web proxy cache deployed at
various places in a network, with two distinct variations - a
server proxy (called a pump), and the distributed set of cli-
ent proxies (called a filter). The pump, multicasts web
pages to the filters, based on affinity groups (Figure 1).
The filters together act as a single virtual proxy cache,
where the request of any one client benefits the others.

FIGURE 1. LSAM proxy components

The pump monitors web accesses at a server, and cre-
ates multicast channels for affinity groups. Requests for
web pages in the affinity group are reliably multicast to
the associated multicast channel, using AFDP [5]. The
pump creates and destroys multicast channels as different

affinity groups become more or less popular; these gro
are announced on a single, global multicast channel, si
lar to the teleconference announcement channel in thesd
teleconference management tool [12] (Figure 2).

The filter caches web pages for downstream acce
nearer the client. It monitors the announcement chan
and looks for ‘interesting’ affinity group channels, i.e
correlated to recent incoming requests. The filter’s cac
is partitioned, allowing it to join multiple channels an
accept multicast downloads without inter-channel cac
interference. The cache leaves a channel whose cont
are no longer correlated to the cache’s ongoing request

FIGURE 2. Multicast channels in the LSAM system

In the LSAM proxy, individual requests trigger multi
cast responses, when the pages are members of curr
active affinity groups. A request is checked at intermedia
proxies, and forwarded through to the server, as in conv
tional proxy cache hierarchies (Figure 3, left). Th
response is multicast to filters in the group by the pum
and unicast from the final proxy back to the originatin
client (Figure 3, right).

FIGURE 3. First request of affinity group page
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Subsequent requests for these popular pages are han-
dled locally, from the filters nearer the clients (Figure 4).
These clients receive pages with in-cache response times,
even for pages which they have not requested before.
Because of the initial multicast push, network resources
and server load are reduced for these generally popular
pages.

FIGURE 4. Subsequent requests of page

This architecture reduces server load in most cases, and
never increases server load. The initial request generates a
response in a conventional web cache; LSAM multicasts
this response in some cases, for popular pages. Local
responses reduce server load; even if no filter hits occur,
the initial response would have to occur in either system.

LSAM tries to decrease network load in most cases.
The multicast push uses more network bandwidth than the
conventional unicast response would; if the page is never
hit in local filters, that bandwidth is wasted. The multicast
occurs only if pages are popular and only to places inter-
ested in a particular group. Pumps push only pages in pop-
ular affinity groups, as seen from the server’s perspective.
The multicast tree is limited to filters tuned to popular
groups from the client’s perspective. LSAM is designed to
be efficient, because it pushes only when there appears to
be utility.

3: Self-organization

The LSAM proxy cache system is self-organizing. Fil-
ters join the multicast channels at natural network aggre-
gation points, reducing unnecessary replication while also
reducing client retrieval costs.

The filters, like conventional proxy caches, are config-
ured to forward unserviced requests up a hierarchy,
towards each subnets’ egress (towards the ‘default route’).
Traffic, on its way up this hierarchy, causes filters on the
way to consider joining related multicast channels. At
places where the traffic is sufficiently dense (thick lines in
Figure 5), filters join the channel. This causes a proxy, and
all its upstream parents, to join the channel (filled circles
in Figure 5). Note that in this case, the traffic from clients

A and B are separately insufficient; only where they jo
do proxies (and their parents) join.

FIGURE 5. Upstream filters join if traffic is dense

All filters that have joined the group receive multica
pushes from the server. Client requests within that w
page group will be serviced by the first shared proxy th
share, and requests will no longer be forwarded up the 
(dashed upstream path in Figure 6). As a result, filt
upstream of the first shared proxy will leave the multica
group (shaded circles in Figure 6). As a result, filters 
natural network aggregation points tend to join the mu
cast tree, at the place where sharing is sufficient to jus
shared caching.

FIGURE 6. Further upstream filters leave

This self-organization limits the number of filters tha
join a channel, to only the filter closest to the clients th
shares traffic. Pushing data closer to the clients impro
performance. However, if more filters closer to the clie
were in the group, the pushed data would be replicated
filters with even light traffic, consuming bandwidth an
cache space needlessly. The LSAM proxy can be para
terized to balance these two competing incentives, 
adjusting its threshold for ‘light’ vs. ‘heavy’ traffic.
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4: Implementation Issues

The LSAM proxy cache is implemented as an extension
of the Apache proxy cache [1]. There are implementation
issues in providing multicast proxy caching in the Apache
context. There are also development issues that include
multicast channel management, intelligent request routing,
object scheduling, dynamic caching algorithms, and sup-
port for mobility.

The pump/filter implementation takes advantage of
Apache’s use of the local file system as a cache. Requests
are processed according to conventional proxy rules; first
a the local cache is checked, and if the URL is not found,
the request is forwarded up the proxy hierarchy (steps 1-3
in Figure 7). The pump retrieves the file from the server
(step 4), and multicasts it out to the channel (step 5).
LSAM uses AFDP to push the file reliably over the multi-
cast channel, directly into the file system of the filter [5].
A redirect response is returned to the filter (step 6), and the
file is found in the local file system (steps 7-8).

FIGURE 7. Walk-through of a multicast push

As a result of these steps, web pages that are members
of the affinity group are multicast to the filters. There are
additional rules governing when responses are unicast or
multicast (or both, in some cases), taking into account:

•whether a page is in an active affinity group

•downstream filters joined to a page’s affinity channel

•whether the page has been pushed to that channel

For example, a request might arrive from a path with no
joined filters, for a page in an affinity group that has not

been recently sent. In that case, the pump would genera
unicast response back to the source of the request, as
as a multicast to the channel.

Multicast channel management is the pump algorith
for creating channels based on affinity groups, and the 
ter joining channels related to its requests. This chan
management determines what channels are active a
pump, and what channels each filter joins or leaves. It a
includes the management of the announcement chan
where pumps advertise active channels, the parameter
these channels (TTL), and the coordination of address 
port space use with other multicast mechanisms.

Intelligent request routing automatically configures th
conventional proxy hierarchy, so that the unicast hierarc
can be used to self-organize multicast joins. Filters 
labelled as being at a client, at an egress, or in the mid
the hierarchy is configured so unicast requests tend to
from clients towards egresses. This auto-configurati
system can also be also used for other proxies, such
Squid, generic Apache, or client browsers. 

IRR also handles request cut-through. LSAM relies 
a deep proxy tree to find appropriate locations to sh
caches. One result of deep proxy chains is poor respo
for missed data, because requests do not cut-through
chain; the check-and-forward style cache checking at e
level imposes unacceptable delays for more than 2-3 le
[15]. The solution is to allow requests to split at the fir
proxy, into a foreground request that walks the chain, a
a background request that cuts-through to the root se
(Figure 8).

FIGURE 8. Check-and-forward vs. cut-through

Object scheduling supports the variety of request prio
ties inherent in the LSAM system. As in the implement
tion example above, it is possible that some multica
responses are only anticipatory; the unicast response 
dles the direct request, and the multicast is in anticipat
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of future use by filters joined to the channel. In this case,
the multicast response can (and should) be handled with
lower priority than the unicast response. In addition, cut-
through support requires background processing for the
cut-through request; otherwise, the cut-through defeats the
traffic reduction gains that caching provides.

There are two other effects of LSAM’s pervasive use of
caching. First, cache replacement algorithms need to be
tuned to match the different characteristics of client,
shared proxy, and server caching. The LSAM proxy sup-
ports dynamic reconfiguration of the replacement algo-
rithm, sensitive to the proxy’s configuration and
placement. Also, user mobility defeats caching; the LSAM
proxy includes mechanisms to move cache state to follow
the client. This allows the user’s home cache (or its
upstream filters) to join channels based on earlier behav-
ior, so the multicast push follows the user’s movement.

5: Finding a affinity group

A key aspect to the LSAM proxy cache is its focus on
affinity groups. An affinity group is a set of related web
pages, where retrievals are cross-correlated. These groups
determine what channels a pump creates (or deletes), and
what channels a filter joins (or leaves). These groups can
be determined by a number of factors:

•a-posteri analysis of correlated retrievals

•syntactic analysis of embedded HREFs

•analysis of semantic groups

LSAM chose semantic analysis for its demonstration
implementation, specifically a syntactic approximation of
semantics, based on URL prefixes. Related web page
groups tend to be clustered in directories; LSAM currently
uses that directory structure, as visible in the URL, to
determine affinity groups. Other types of groupings are
supported via channel management hooks.

The current algorithm uses successive refinement. A
server assumes all its pages are members of its ‘/’ (root)
affinity group. Subdirectories are valid groups only if they
represent significant fractions of their parent group, e.g.,
25%. This permits specific groups to be formed, such as ‘/
lsam/proxy/sources/’, concurrent with less specific groups,
such as ‘/rfc/’. In the current implementation, we assume
affinity groups are subsets of a single server.

The LSAM project is currently developing three algo-
rithms for syntactic approximation of semantic affinity
groups: on-line algorithms for the pump and filter, and an
off-line algorithm for performance analysis. The latter,
used to analyze regional Squid caches [11], will help
determine the current potential for performance enhance-
ment by LSAM. It is also possible that LSAM will enable
new styles of web access that favors such groups; such log
analysis will help identify such traffic shifts.

6: Prior and related work

There is a wide variety of both research and comm
cial development of web cache systems. The LSA
proxy’s main distinction is its use of multicast push 
reduce the first-hit cost of retrieval throughout the syste

LSAM is based on source preloading of a receiv
cache, a multicast version of an earlier unicast sche
[13]. It anticipates requests of individual clients by mult
casting pages to the channel. Client-side prefetching, us
server-provided hints, has also been examined in the u
cast domain in the Boston Univ. Oceans group [2]. Oth
hints have also been used to direct unicast push, suc
geographical hints [7].

Other hierarchical cache systems have been develo
including Harvest [4], and its follow-on Squid [15]. Har
vest uses a directory to locate entries in a distributed h
archy. Squid uses multicast to find cache entries 
hierarchical clusters of caches, sending messages via
ICP protocol.

Many other web cache systems use multicast to dist
uted pages, supporting explicit subscriptions in NCSA
Webcast [10], and diffusion-based push to move pag
closer to their locus of interest in LBNL/UCLA’s Adap
tive Web Caching [16]. Unicast diffusion push was exam
ined in another tack of the Oceans group [8].

Other large distributed cache systems have been de
oped; AT&T’s Crisp uses a central server to distribu
requests to a set of local caches, and both Georgia Te
CANES [3] and UCL’s Cachemesh [14] route requests 
their way to the cache.

Georgia Tech’s CANES also targets one of LSAM
goals, to provide caching at optimal network aggregati
points. CANES deploys caches at routers using Act
Networks technology; LSAM relies on multicast t
achieve similar benefits using only application-layer cod
CANES also uses modulo caching to cache pages at ever
Nth proxy on the unicast return path; LSAM use
announcements and affinity group channels to simila
limit caching to a subset of proxies.

7: Current status

The LSAM proxy cache is implemented as a modifie
version of the Apache proxy cache [1], with addition
control scripts and daemons written in Perl. It can 
instantiated as a pump or as a filter via command-li
arguments, and currently runs on FreeBSD 2.2.5.

The current implementation supports multicast push 
a single, static (preconfigured) channel. It also suppo
dynamic auto-configuration of the unicast proxy hiera
chy, which can be exported to other proxy caches and 
ents. Six different cache replacement algorithms ha
5
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been implemented, selected in the configuration file at
proxy boot time. Several different object scheduling
mechanisms have also been implemented, and compared
in network-limited and processor-limited environments.
This release, v0.7, is currently available on the LSAM web
pages [9]; additional releases are planned on 3-month
intervals.

The current system has been demonstrated in a lab,
using artificial bandwidth limiters and delay inducers. A
demonstration is also available, implemented in the ns net-
work simulation tool. In both cases, client access is equiv-
alent to a local cache hit, even for pages not yet accessed. 

8: Summary

The LSAM proxy cache (LPC) provides a distributed
cache system that uses multicast for automated push of
popular web pages. LPC uses proxy caches that are
deployed as a server pump and a distributed filter hierar-
chy. These components automatically track the popularity
of web page groups, and also automatically manage server
push and client subscription. The system caches pages at
natural network aggregation points, providing the benefits
of a single, central shared proxy cache, even where no
such central proxy could exist. The system has an initial
prototype implementation, and it is evolving to mitigate
the effects of a deep proxy hierarchy, needed for the multi-
cast self-organization. LPC reduces overall server and net-
work load, and increases access performance, even for the
first access of a page by a client. 
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