The LSAM Proxy Cache - a Multicast Distributed Virtual Cache
Joe Touch

USC / Information Sciences Institute
touch@isi.edu

Abstract ! information, and the rest of the clients benefit. However,
The LSAM Proxy is a multicast distributed web cache that shared proxy caches work only where requests can be
provides automated multicast push of web pages, based oggregated, e.g., near the border router of a domain.
self-configuring interest groups. The proxy is designed to There are several examples of groups of related web
reduce network and server load, and to provide increased pages that become popular over time, such as those of the
client performance for associated groups of web pages,Superbowl, the Olympic games, and the Academy
called ‘affinity groups.” These affinity groups track the Awards. The content of these pages often shifts over time,
shifting popularity of web sites, such as for the Superbowl, as new events occur in the Olympics, or during the foot-
the Olympics, and the Academy Awards. The LSAM ball playoffs. Even though these page groups become pop-
proxy’s multicast hierarchy is self-configuring, such that ular, there is no one place a proxy can be placed to avoid a
these popular affinity groups are automatically cached at hot-spot at the server. We call these ‘affinity groups’.
natural network aggregation points. This document As a specific example, the winter Olympics web pages
describes the LSAM proxy system architecture and theare an affinity group, whose content evolves as the games
properties of a prototype implementation. proceed. Pages for events, such as ice skating, ski jump-
ing, and bobsled, become popular as each event occurs,
and as new pages appear with the results of the competi-
tion. In current web cache systems, such pages always
. generate hot-spots. They are globally interesting, so even
The LSAM Proxy Cache (LPC) is web proxy cache shared proxy caches do not alleviate the implosion of

designed to support multicast web push of groups of requests. The pages are also part of popular groups, but the

related web pages. LPC reduces the response time of disf)age popularity is not known in advance, so client sub-

tributed clients that access related web pages. It uses mul:

. - Fcriptions would not exist, defeating page-'cast’ systems.
ticast to distributed these related page sets to a group o In LSAM, proxies tune to the server's Olympic channel
caches, reducing both server and network load. '

LT if their downstream clients are sufficiently interested in the
Caching is the most common form of web performance

eneral topic. When a new page appears, e.g., for downhill
enhancement; these caches are typically deployed at th P hage app g

lient and at int diate shared . Client h kiing, its results are multicast to the entire set the first
client and at intermediate shared proxies. Lient Caches; ., it js requested by any client. A client near any of

often ach|ev§ I|m|ted. benefit, because the users ten_d tothese proxies can retrieve the page from the proxy cache,
browse new information. New pages are never in client benefiting as there were one global shared proxy for all
caches. . . pages in the affinity group. Subscription happens automat-

Shared proxy caches allow new information to be ically, as clients join channels that correlate to recent

cached for f|rst|;t|me fCI'I? nts, bec?ﬁ sre] the);] agg:]egate requests, and servers create channels that correlate to
requests. A small set of clients can fill the cache with new groups of popular pages.

LSAM is developing a multicast distributed virtual

1. This work is supported by the Defense Advanced Research Projects cache, to provide the benefits of a Central_'zed_Shared proxy
Agency through FBI contract #J-FBI-95-185 entitled “Large-Scale cache, where no central proxy could suffice, i.e., for these
Active Middleware”. The views and conclusions contained in this docu- ~ affinity groups. It uses multicast to allow a set of proxy
ment are those of the authors and should not be interpreted as necessarilyaches to emulate a single, central shared proxy cache.
representing the official policies, either expressed or implied, of the LPC tracks popular groups of web pages, and multi-

Department of the Army, the Defense Advanced Research Projects h h | K . .
Agency, or the U.S. Government. casts them to caches at natural network aggregation points.

1: Introduction

The clients can access web pages locally, even when naffinity groups become more or less popular; these groups
nearby client requests a popular page, because the cachingre announced on a single, global multicast channel, simi-
system as a whole decides what is popular. lar to the teleconference announcement channel isdhe
LSAM's technique for addressing these issues is calledteleconference management tool [12] (Figure 2).
Active Middleware. Middleware is a set of services that The filter caches web pages for downstream access,
require distributed, on-going process, and combine OS andnearer the client. It monitors the announcement channel
networking capabilities, but cannot be effectively imple- and looks for ‘interesting’ affinity group channels, i.e.,
mented in either the OS or the network. LSAM’s middle- correlated to recent incoming requests. The filter's cache
ware is active, providing self-organization and is partitioned, allowing it to join multiple channels and
programmability at the information access level akin to accept multicast downloads without inter-channel cache
Active Networking at the packet level. interference. The cache leaves a channel whose contents
The remainder of this document describes the LSAM are no longer correlated to the cache’s ongoing requests.
proxy architecture and its properties. The feature of self-
organization is discussed, as are implementation issues,
such as prioritization, channel management, routing, and
mobility. Finally, techniques for detecting and reacting to
hot-spots are presented, and prior and related work com-
pared.

Announcement channel

Track channel
Baseball channel

2: The LSAM Proxy Architecture

The LSAM proxy is a web proxy cache deployed at
various places in a network, with two distinct variations - a
server proxy (called a pump), and the distributed set of cli-
ent proxies (called a filter). The pump, multicasts web
pages to the filters, based on affinity groups (Figure 1).
The filters together act as a single virtual proxy cache,
where the request of any one client benefits the others.

Partitioned cache

FIGURE 2. Multicast channels in the LSAM system

Server In the LSAM proxy, individual requests trigger multi-
cast responses, when the pages are members of currently
active affinity groups. A request is checked at intermediate
proxies, and forwarded through to the server, as in conven-
tional proxy cache hierarchies (Figure 3, left). The
response is multicast to filters in the group by the pump,
and unicast from the final proxy back to the originating
client (Figure 3, right).

Virtual Cache

@CIient o

S T
g 5 &

Yo g

g 5 &

Request Response

FIGURE 1. LSAM proxy components

The pump monitors web accesses at a server, and cre-
ates multicast channels for affinity groups. Requests for ~ FIGURE 3. First request of affinity group page
web pages in the affinity group are reliably multicast to
the associated multicast channel, using AFDP [5]. The
pump creates and destroys multicast channels as different

Subsequent requests for these popular pages are harA and B are separately insufficient; only where they join
dled locally, from the filters nearer the clients (Figure 4). do proxies (and their parents) join.
These clients receive pages with in-cache response times, o
even for pages which they have not requested before. egress joining filter @
Because of the initial multicast push, network resources idle filter (3

dense req. 100 ghm
and server load are reduced for these generally popular medium req. load—

pages. light req. load __

g
O

|
_ I~

gl E \E client A client B client C

Local Response

~
~

FIGURE 5. Upstream filters join if traffic is dense

All filters that have joined the group receive multicast
pushes from the server. Client requests within that web
page group will be serviced by the first shared proxy they

This architecture reduces server load in most cases, anéhare, and requests will no longer be forwarded up the tree
never increases server load. The initial request generates gdashed upstream path in Figure 6). As a result, filters
response in a conventional web cache; LSAM multicasts ypstream of the first shared proxy will leave the multicast
this response in some cases, for popular pages. Localroup (shaded circles in Figure 6). As a result, filters at
responses reduce server load; even if no filter hits occur,natural network aggregation points tend to join the multi-

the initial response would have to occur in either system. cast tree, at the p|ace where Sharing is sufficient to justify
LSAM tries to decrease network load in most cases. shared caching.

The multicast push uses more network bandwidth than the

conventional unicast response would; if the page is never egress leaving filter @
hit in local filters, that bandwidth is wasted. The multicast

occurs only if pages are popular and only to places inter-

ested in a particular group. Pumps push only pages in pop-

ular affinity groups, as seen from the server’s perspective.

The multicast tree is limited to filters tuned to popular .

groups from the client’s perspective. LSAM is designed to

be efficient, because it pushes only when there appears to

be utility.

FIGURE 4. Subsequent requests of page

3 Self_orgamzatlon client A client B client C

The LSAM proxy cache system is self-organizing. Fil-
ters join the multicast channels at natural network aggre-
gation points, reducing unnecessary replication while also
reducing client retrieval costs. This self-organization limits the number of filters that

The filters, like conventional proxy caches, are Conﬁg_ join a channel, to onIy the filter closest to the clients that
ured to forward unserviced requests up a hierarchy, shares traffic. Pushing data closer to the clients improves
towards each subnets’ egress (towards the ‘default route’) performance. However, if more filters closer to the client
Traffic, on its way up this hierarchy, causes filters on the Were in the group, the pushed data would be replicated at
way to consider joining related multicast channels. At filters with even light traffic, consuming bandwidth and
places where the traffic is sufficiently dense (thick lines in cache space needlessly. The LSAM proxy can be parame-
Figure 5), filters join the channel. This causes a proxy, andterized to balance these two competing incentives, by
all its upstream parents, to join the channel (filled circles adjusting its threshold for ‘light’ vs. ‘heavy’ traffic.
in Figure 5). Note that in this case, the traffic from clients

FIGURE 6. Further upstream filters leave

4: Implementation Issues been recently sent. In that case, the pump would generate a
unicast response back to the source of the request, as well
The LSAM proxy cache is implemented as an extension as a multicast to the channel.
of the Apache proxy cache [1]. There are implementation Multicast channel management is the pump algorithm
issues in providing multicast proxy caching in the Apache for creating channels based on affinity groups, and the fil-
context. There are also development issues that includder joining channels related to its requests. This channel
multicast channel management, intelligent request routing, management determines what channels are active at a
object scheduling, dynamic caching algorithms, and sup- pump, and what channels each filter joins or leaves. It also
port for mobility. includes the management of the announcement channel,
The pumpf/filter implementation takes advantage of where pumps advertise active channels, the parameters of
Apache’s use of the local file system as a cache. Requestthese channels (TTL), and the coordination of address and
are processed according to conventional proxy rules; first port space use with other multicast mechanisms.
a the local cache is checked, and if the URL is not found, Intelligent request routing automatically configures the
the request is forwarded up the proxy hierarchy (steps 1-3conventional proxy hierarchy, so that the unicast hierarchy
in Figure 7). The pump retrieves the file from the server can be used to self-organize multicast joins. Filters are
(step 4), and multicasts it out to the channel (step 5).labelled as being at a client, at an egress, or in the middle;
LSAM uses AFDP to push the file reliably over the multi- the hierarchy is configured so unicast requests tend to go
cast channel, directly into the file system of the filter [5]. from clients towards egresses. This auto-configuration
A redirect response is returned to the filter (step 6), and thesystem can also be also used for other proxies, such as
file is found in the local file system (steps 7-8). Squid, generic Apache, or client browsers.
IRR also handles request cut-through. LSAM relies on
a deep proxy tree to find appropriate locations to share

. caches. One result of deep proxy chains is poor response
Server f||ei for missed data, because requests do not cut-through the
4. Get file chain; the check-and-forward style cache checking at each

6. redirect

0 GET x' level imposes unacceptable delays for more than 2-3 levels

[15]. The solution is to allow requests to split at the first
proxy, into a foreground request that walks the chain, and
a background request that cuts-through to the root server
(Figure 8).

Web Server

la. parallel root check
(preempt on cache hit)

Other Mcast

Clients O

2.xin cache?

7.GET x’ 3. Forward on miss

MCast group member 2. Check siblings
FIGURE 7. Walk-through of a multicast push 1. Check cache 1. Check cache
As a result of these steps, web pages that are members Proxy Cache Cut-through

of the affinity group are multicast to the filters. There are (Sauid ICP w/step 2)
additional rules governing when responses are unicast or
multicast (or both, in some cases), taking into account:

swhether a page is in an active affinity group
-downstream filters joined to a page’s affinity channel . O.bJeCt schgduhng supports the vane_ty of rgquest priort-
ties inherent in the LSAM system. As in the implementa-
-whether the page has been pushed to that channel {jon example above, it is possible that some multicast
For example, a request might arrive from a path with no responses are only anticipatory; the unicast response han-
joined filters, for a page in an affinity group that has not dles the direct request, and the multicast is in anticipation

FIGURE 8. Check-and-forward vs. cut-through

of future use by filters joined to the channel. In this case, 6: Prior and related work

the multicast response can (and should) be handled with

lower priority than the unicast response. In addition, cut- There is a wide variety of both research and commer-
through support requires background processing for thecial development of web cache systems. The LSAM
cut-through request; otherwise, the cut-through defeats theproxy’s main distinction is its use of multicast push to

traffic reduction gains that caching provides. reduce the first-hit cost of retrieval throughout the system.

There are two other effects of LSAM'’s pervasive use of LSAM is based on source preloading of a receiver
caching. First, cache replacement algorithms need to becache, a multicast version of an earlier unicast scheme
tuned to match the different characteristics of client, [13]. It anticipates requests of individual clients by multi-
shared proxy, and server caching. The LSAM proxy sup- casting pages to the channel. Client-side prefetching, using
ports dynamic reconfiguration of the replacement algo- server-provided hints, has also been examined in the uni-
rithm, sensitive to the proxy’s configuration and cast domain in the Boston Univ. Oceans group [2]. Other
placement. Also, user mobility defeats caching; the LSAM hints have also been used to direct unicast push, such as
proxy includes mechanisms to move cache state to follow geographical hints [7].
the client. This allows the user's home cache (or its Other hierarchical cache systems have been developed,
upstream filters) to join channels based on earlier behav-including Harvest [4], and its follow-on Squid [15]. Har-
ior, so the multicast push follows the user's movement. vest uses a directory to locate entries in a distributed hier-

archy. Squid uses multicast to find cache entries in
5: Finding a affinity group hierarchical clusters of caches, sending messages via the
ICP protocol.

A key aspect to the LSAM proxy cache is its focus on ~ Many other web cache systems use multicast to distrib-
affinity groups. An affinity group is a set of related web uted pages, supporting explicit subscriptions in NCSA'’s
pages, where retrievals are cross-correlated. These groupg/ebcast [10], and diffusion-based push to move pages
determine what channels a pump creates (or deletes), andloser to their locus of interest in LBNL/UCLA’s Adap-
what channels a filter joins (or leaves). These groups cantive Web Caching [16]. Unicast diffusion push was exam-

be determined by a number of factors: ined in another tack of the Oceans group [8].
~a-posteri analysis of correlated retrievals Other large distributed cache systems have been devel-
-syntactic analysis of embedded HREFs oped; AT&T's Crisp uses a central server to distribute

requests to a set of local caches, and both Georgia Tech’s

-analysis of semantic groups
CANES [3] and UCL'’s Cachemesh [14] route requests on

LSAM chose semantic analysis for its demonstration

. ; o . N their way to the cache.
implementation, specifically a syntactic approximation of Georaia Tech’s CANES also targets one of LSAM's
semantics, based on URL prefixes. Related web page 9 9

groups tend to be clustered in directories; LSAM currently gogls, to provide caching at optimal network aggregat!on
. . . points. CANES deploys caches at routers using Active
uses that directory structure, as visible in the URL, to ’ . .
. - . Networks technology; LSAM relies on multicast to
determine affinity groups. Other types of groupings are . - 4 : o
. achieve similar benefits using only application-layer code.
supported via channel management hooks. .
. : . CANES also usesiodulo cachindgo cache pages at every
The current algorithm uses successive refinement. A

. e Nth proxy on the unicast return path; LSAM uses

server assumes all its pages are members of its / (rOOt)announcements and affinity group channels to similarly
affinity group. Subdirectories are valid groups only if they limit caching to a subset of proxies
represent significant fractions of their parent group, e.g., '
25%. This permits specific groups to be formed, such as '/
Isam/proxy/sources/’, concurrent with less specific groups,
such as ‘/rfc/’. In the current implementation, we assume
affinity groups are subsets of a single server.

The LSAM project is currently developing three algo-
rithms for syntactic approximation of semantic affinity
groups: on-line algorithms for the pump and filter, and an
off-line algorithm for performance analysis. The latter,
used to analyze regional Squid caches [11], will help
determine the current potential for performance enhance-
ment by LSAM. It is also possible that LSAM will enable
new styles of web access that favors such groups; such lo
analysis will help identify such traffic shifts.

7: Current status

The LSAM proxy cache is implemented as a modified
version of the Apache proxy cache [1], with additional
control scripts and daemons written in Perl. It can be
instantiated as a pump or as a filter via command-line
arguments, and currently runs on FreeBSD 2.2.5.

The current implementation supports multicast push for
a single, static (preconfigured) channel. It also supports
dynamic auto-configuration of the unicast proxy hierar-
chy, which can be exported to other proxy caches and cli-
%nts. Six different cache replacement algorithms have

been implemented, selected in the configuration file at
proxy boot time. Several different object scheduling

mechanisms have also been implemented, and compare
in network-limited and processor-limited environments.

This release, v0.7, is currently available on the LSAM web
pages [9]; additional releases are planned on 3-month
intervals.

The current system has been demonstrated in a lab
using artificial bandwidth limiters and delay inducers. A
demonstration is also available, implemented imtheet-
work simulation tool. In both cases, client access is equiv-

alent to a local cache hit, even for pages not yet accessed.

8: Summary

The LSAM proxy cache (LPC) provides a distributed
cache system that uses multicast for automated push o
popular web pages. LPC uses proxy caches that ar
deployed as a server pump and a distributed filter hierar
chy. These components automatically track the popularity

ol

tion protocol,” Usenix '96 Proceedings.
http://www.ecf.utoronto.ca/afdp/

?6] S. Gadde, M. Rabinovich, J. Chase, “Reduce, Reuse, Recy-
cle: An Approach to Building Large Internet Caches,”
Workshop on Hot Topics in Operating Systems (HotOS)
(May 1997),
http://www.research.att.com/~misha/crisp/distrProxy/
hotos.ps

[7] J. Gwertzman, M. Seltzer, “The Case for Geographical
Push-Caching,” Proc. Fifth Annual Workshop on Hot Oper-
ating Systems, Orcas Island, WA (May 1995),
http://www.eecs.harvard.edu/~vino/web/hotos.ps

[8] A.Heddaya, S. Mirdad, D. Yates, “Diffusion Based Caching
along Routing Paths,” Proceedings of the 2nd NLANR Web
Cache Workshop, Boulder, Colorado (June 9-10, 1997),
http://www.cs.bu.edu/faculty/heddaya/Papers-NonTR/

f webcache-wkp.ps.Z

LSAM proxy release, v0.7, March 1998

http://www.isi.edu/lsam/proxy/

of web page groups, and also automatically manage servef10] NCSA, Overview of Webcast,

push and client subscription. The system caches pages at

natural network aggregation points, providing the benefits

http://wwwdoctest.ncsa.uiuc.edu/SDG/Software/XMo-
saic/CCl/webcast-doc.html

of a single, central shared proxy cache, even where NO[11] NLANR global internet cache web pages

such central proxy could exist. The system has an initial
prototype implementation, and it is evolving to mitigate
the effects of a deep proxy hierarchy, needed for the multi-

cast self-organization. LPC reduces overall server and net-

work load, and increases access performance, even for th
first access of a page by a client.

9: References
[1] Apache HTTP Server Project,
http://www.apache.or

[2] A. Bestavros, “Speculative Data Dissemination and Service
to Reduce Server Load, Network Traffic, and Service
Time,” Proc. International Conference on Data Engineering,
New Orleans, LA (March 1996),
http://cs-www.bu.edu/faculty/best/res/papers/icde96.ps

[3] S. Bhattacharjee, K. Calvert, E. Zegura, “Self-Organizing
Wide-Area Network Caches,” Proc. Infocom 1998, IEEE,
San Francisco, CA (March 28 - April 2, 1998),
http://www.cc.gatech.edu/fac/Ellen.Zegura/papers/qgit-
cc-97-31.ps.gz

[4] A. Chankunthod, P. Danzig, C. Neerdaels, M. Schwartz, K.
Worrell, “A Hierarchical Internet Object Cache,” Proceed-
ings of USENIX 1996, San Diego, CA (January 22-26,
1996),

http://catarina.usc.edu/danzig/cache.ps

[5] J. Cooperstock,., S. Kotsopoulos, “Why use a fishing line
when you have a net? an Adaptive Multicast data Distribu-

http://ircache.nlanr.net

[12] sdtool
ftp://ftp.cs.Ibl.gov/

?13] J. Touch, “Defining "High Speed' Protocols: Five Chal-
lenges & an Example That Survives the Challenges,” IEEE
JSAC., special issue on Applications Enabling Gigabit Net-
works, Vol. 13, No. 5, June 1995, pp. 828-835.
http://www.isi.edu/~touch/pubs/jsac95.htmi

[14] Z. Wang, “Cachemesh: A Distributed Cache System for the
World Wide Web,” Proceedings of the 2nd NLANR Web
Caching Workshop, Boulder, Colorado (June 1997),
http://www.bell-labs.com/user/zhwang/papers/
cache.html

[15] D. Wessels, K. Claffy, ICP and the Squid Web Cache
(August 13, 1997),
http://www.nlanr.net/%7ewessels/Papers/icp-squid.ps

[16] L. Zhang, S.Floyd, V. Jacobson, “Adaptive Web Caching,”
Proceedings of the 2nd NLANR Web Cache Workshop,
Boulder, Colorado (June 9-10, 1997),
http://ircache.nlanr.net/Cache/Workshop97/Papers/
Floyd/floyd.ps

	The LSAM Proxy Cache - a Multicast Distributed Virtual Cache
	Joe Touch
	USC / Information Sciences Institute touch@isi.edu
	Abstract
	The LSAM Proxy is a multicast distributed web cache that provides automated multicast push of web...
	1: Introduction
	2: The LSAM Proxy Architecture
	FIGURE 1. LSAM proxy components
	FIGURE 2. Multicast channels in the LSAM system
	FIGURE 3. First request of affinity group page
	FIGURE 4. Subsequent requests of page

	3: Self-organization
	FIGURE 5. Upstream filters join if traffic is dense
	FIGURE 6. Further upstream filters leave

	4: Implementation Issues
	FIGURE 7. Walk-through of a multicast push
	FIGURE 8. Check-and-forward vs. cut-through

	5: Finding a affinity group
	6: Prior and related work
	7: Current status
	8: Summary
	9: References
	[1] Apache HTTP Server Project, http://www.apache.or
	[2] A. Bestavros, “Speculative Data Dissemination and Service to Reduce Server Load, Network Traf...
	[3] S. Bhattacharjee, K. Calvert, E. Zegura, “Self-Organizing Wide-Area Network Caches,” Proc. In...
	[4] A. Chankunthod, P. Danzig, C. Neerdaels, M. Schwartz, K. Worrell, “A Hierarchical Internet Ob...
	[5] J. Cooperstock,., S. Kotsopoulos, “Why use a fishing line when you have a net? an Adaptive Mu...
	[6] S. Gadde, M. Rabinovich, J. Chase, “Reduce, Reuse, Recycle: An Approach to Building Large Int...
	[7] J. Gwertzman, M. Seltzer, “The Case for Geographical Push-Caching,” Proc. Fifth Annual Worksh...
	[8] A. Heddaya, S. Mirdad, D. Yates, “Diffusion Based Caching along Routing Paths,” Proceedings o...
	[9] LSAM proxy release, v0.7, March 1998 http://www.isi.edu/lsam/proxy/
	[10] NCSA, Overview of Webcast, http://wwwdoctest.ncsa.uiuc.edu/SDG/Software/XMosaic/CCI/webcast-...
	[11] NLANR global internet cache web pages, http://ircache.nlanr.net
	[12] sd tool ftp://ftp.cs.lbl.gov/
	[13] J. Touch, “Defining `High Speed' Protocols: Five Challenges & an Example That Survives the C...
	[14] Z. Wang, “Cachemesh: A Distributed Cache System for the World Wide Web,” Proceedings of the ...
	[15] D. Wessels, K. Claffy, ICP and the Squid Web Cache (August 13, 1997), http://www.nlanr.net/%...
	[16] L. Zhang, S.Floyd, V. Jacobson, “Adaptive Web Caching,” Proceedings of the 2nd NLANR Web Cac...

