# The X-Bone & its Virtual Internet Architecture 10 Years Later

Joe Touch, Greg Finn, Lars Eggert, Amy Hughes and Yu-Shun Wang

Workshop on Overlay and Network Virtualization Kassel, Germany
March 6, 2009

# Talk Outline

```
Virtual Internets

why
what
architecture highlights

related projects at ISI (time permitting...)
X-Bone, DynaBone, TetherNet
```

# History

```
X-Bone was a series of research projects at USC/ISI
X-Bone, DynaBone, TetherNet, X-Tend, NetFS, GeoNet, ...
1997-2005+
initial funding from DARPA, follow-on funding from the NSF
http://www.isi.edu/xbone/
```

### key results

an architecture (the "Virtual Internet" architecture) a deployment/management system (the "X-Bone") follow-on work using virtual nets:

DynaBone spread-spectrum virtual networks

TetherNet rent real Internet behind firewall + NAT

GeoNet geographically-routed virtual networks

### Prior & Related Work

#### new services & protocols

Cronus, M/6/Q/A-Bone

### multi/other layers

Cronus, Supranet, MorphNet, VANs

### partial solutions

VPN, VNS, RON, Detour, PPVPN, SOS

#### virtualization, revisitation, recursion

X-Bone, Spawning, Netlab/Emulab

#### OS virtualization

VMware, jails, vserver, XEN, PlanetLab

# Virtual Internet – Why

```
"network equivalent of virtual memory"

protection
    separate topology, optionally secured
    test + deploy new protocol/service

sharing
    increase utility of infrastructure

abstraction
    adapt topology to application
```

## Virtual Internet – What

network = hosts + routers + links

virtual network =

virtual host

- → packet src/sink
- + virtual router
- → packet gateway
- + virtual link
- $\rightarrow$  tunnel X over Y

virtual Internet – "network of networks" use Internet as physical media create virtual link & network layers strong L2 vs. weak L3 host model





a virtual Internet should look exactly like the real thing "if an app can know it runs in a VI, we did it wrong

## VI Architecture Feature – Recursion

virtual Internets on top of virtual Internets

#### our litmus test:

system should be able to do recursive VI-in-VI without hacks

recursion has real uses cases

e.g., allows transparent reconfiguration change outer VI w/o affecting inner fault tolerance, basis for DynaBone

also allows VI "embedding"

"router is a network inside"



# VI Architecture Feature – Concurrency

one node participates in multiple virtual Internets at the same time

basis for isolation & abstraction

bind different apps/VMs to different VIs on the same physical node

# VI Architecture Feature – Revisitation

one node participates in the same virtual Internet but multiple times allows creation of VIs larger than physical resources fully decouples virtual from physical topologies



# VI Architecture Feature – Hop-by-Hop Security

security in the Virtual Internet architecture is a virtual link property decoupled from topology transparently coexists with end-to-end security inside the VI transparently coexists with security underneath a VI

#### IPsec tunnel mode



IPIP tunnel + IPsec transport mode



IPIP tunnels + IPsec transport mode modular tunnel mode equivalent huge IETF debate around 2000 (draft-touch-ipsec-vpn-05.txt)

# The X-Bone System

deployment + management system for virtual Internets

programs → standardized API

humans → web interface

high-level virtual network description language express virtual topology + services

XML

collaborating, distributed management daemons
multicast expanding-ring discovery
distributed resource reservation
instantiate + manage virtual network

non-goals: topology optimization, non-IP VIs, ...



### X-Bone Screenshots





### X-Bone Status

current release: 3.2

mature: 10 years of open source availability

platforms: FreeBSD, Linux

unofficial: NetBSD, Cisco

widely used (by 2003):

UCL, UPenn, Aerospace, DOD Canada, Sinica Taiwan + more

# **Related Work at USC/ISI**

# DynaBone

parallel inner virtual networks = algorithmic & protocol diversity spread-spectrum multiplexer, wrapped inside outer virtual network



## **TetherNet**

issue: firewalls, NATs, clueless ISPs broken end-to-end connectivity

solution: relocate real Internet subnet

real = routable IP + DNS + no fw + ...

tunnel subnet from anchor router to tether router at remote site



## **TetherNet Features**

# true Internet behind NATs and firewalls

IPv4 + IPv6 multicast fwd/rev DNS traffic shaping 802.11b AP



secure: IPsec for traffic, X.509 for user auth web interface configuration

U.S. patent filed, talks with licensees

### TetherNet Screenshots





# Other Projects

#### X-Tend

maintain + extend X-Bone as tool for research + education

#### **GeoNet**

geographically-addressed overlays

#### **NetFS**

access control for the network stack via a pseudo file system



# **THANK YOU!**