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ABSTRACT:  Multistage interconnection networks are conventionally

composed of 2x2 switching elements which perform only permutation

functions.  A number of networks have been built which provide more

powerful switch functions involving replication and reduction of

information, including the NYU Ultracomputer and several copy networks.

Here we investigate these machines as a group, to see how replication and

reduction are interrelated, and what other issues they involve.
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1. Introduction

Multistage interconnection networks are composed of series of stages of regularly connectioned

switching elements (usually 2x2).  In conventional architectures, these networks support only

permutation functions in their switch elements, although several notable exceptions have

capitalized on other switch functions.  These include the reduction capability of the NYU

Ultracomputer [GotGK83] and the replication capability of copy networks [Let88] [Tu88]

[BuT89].

Here we investigate the two non-permutation functions of reduction and replication as a unified

discipline, and consider the interrelationship between the two functions, as well as the common

difficulties in their realization.  For the purposes of this discussion we consider only hardware

implementations, although some comparisons to their software analogues are noted.

The need for non-permutation functions in the switch elements of multistage networks arises

from the solutions of several independent phenomena.  Reduction networks arise from the need

to alleviate ‘hotspot’ memory contention in partitioned distributed memory systems, while

replication networks are being designed primarily to provide multicast capability in packet

switched networks.  In addition, distributed systems require multicast capabilities to support

the distributed data objects which are used to manage the operating system and provide failure

resilience [Wa82].  Further, the increased services of packet switched networks will include

multicasts for wire services, many-way multicasts for teleconferencing, and support for video

lectures, which includes both multicast and reduction requirements [Tu87b].  Although the

communication in the networks appears distinct among these two networks, there are

fundamental similarities in the methods of information collection and dissemination which unify

the approaches.

2. Definitions.

Before discussing the particulars of the networks we consider, it is important to attempt first

to unify the disparate terminology of the field, especially since many different areas - including

distributed memory, packet networks, and parallel algorithms - are involved in the analysis.

Here we consider only MIMD systems, even though many of the multistage interconnection

networks were originally designed in SIMD systems [Fl66].
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2.1. Architectures

Distributed processing systems are based on variations of Schwartz’s Paracomputer model

[Sc80].  This model assumes a central shared memory, with a number of processing elements

(PE’s) on its periphery.  The central memory supports simultaneous requests by any number

of PE’s, where write-write conflicts are resolved by simply omitting all but one memory

wri te.

Since Paracomputers are difficult to build, requiring an N-way multiport memory, a more

restricted model is used which limits the memory to a fixed, finite number of simultaneous

accesses.  This is known as the Ultracomputer, also due to Schwartz [Sc80].  In order to

support a variable number of processors, a set of these memories is used to simulate the single

memory of the Paracomputer.  This partitions the Paracomputer memory, and requires a

communication network between the memory elements and the processors (Figure 1).
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Figure 1:  Paracomputer and Ultracomputer models

There are two common ways in which the memory modules, processors, and network can be

organized.  In shared memory systems, the network separates the processors from the

memory, forming a bipartite graph.  No direct communication between the processors is

supported in this topology; all information is conveyed by shared memory locations. The

alternate to shared memory is message-passing, where each processor is directly connected

to a memory module, and the network interconnects all these pairs.  Communication between

processors is directly supported by the network, and shared data structures are maintained by

processor control of access to the structures in its memory module (Figure 2).  The number of
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memory modules and processors need not be equal in either organization.  Shared memory can be

considered message passing between memory and processors, so the distinctions are often not

obvious.  Some message passing systems include the Starlite and its descendants [HuaK84]

[LetBA88] [Tu88], the Cosmic Cube, and the BBN Butterfly [Th86] [Mel88], whereas the NYU

Ultracomputer [GotGK83] and RP3 [PfBG85] are shared memory systems.  The Starlite (and its

descendants) are actually developed as packet switched networks, but the principles of packet

switching are similar to message passing in MIMD distributed systems.
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Figure 2:  Message passing and shared memory architectures

2.2. Multistage interconnection networks

A multistage interconnection network (MIN) is a regularly connected series of columns

of switching elements, each affixed to the next by a wired permutation (Figure 3).  These switch

elements are usually square 2-input, 2-output switch blocks with very simple functionality;

the wiring permutations between the stages defines the overall function of the network.  The

design of these networks provides some of the functions of a completely-connected network (a

crosspoint), with less overall switch elements (N log(N) for most MIN’s, v.s. N2  for a

crosspoint) [DaT89] [De89] [WuF80].

There are a few canonical organizations of these networks, including recursively factored

topologies [Cl53] and self-routing organizations [Be62].  Self-routing organizations include

the Omega network, the Staran FLIP network, the binary Benes network, the hypercube, and the

b a n y a n  network (named for an African tree, the intertwined branches of which its

permutations resemble).  All of these are topologically equivalent and have log(N) stages, each

stage being composed of N/2 switch elements.  Another important organization is the Batcher
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sorting network [Ba68], which is composed of the sequential composition of increasingly longer

prefixes of a banyan network, resulting in N log2N complexity.

Figure 3:  Multistage interconnection network

It is assumed here that these networks are used in a synchronous mode, where at each time-step

a new set of packets is presented aligned at the inputs, and these packets proceed through the

network in a phase that proceeds through each stage in synchrony.  Pipelining of packets, where

the next phase of inputs is presented before the previous phase exits the network, is permitted

in most of the networks noted here as well.

These topologies have several distinguishing functional characteristics.  A network is

internally non-blocking if, given a permutation of addressed packets at its inputs, it can

route all these packets through the network without contention or collision.  The notion of

blocking originates in telephony [SuB77], and is thus restricted to the case where each input is

paired with an desired output, thus only permutations of addresses need be considered.

Contention is the event in a switch element where both input ports request routing to the same

output port;  this can be resolved by buffering one of the requests within the switch element,

known as link-based internal buffering [Tu88].  Another contention resolution scheme is

to route one of the two packets to the wrong (idle) output port, assuming it will be stored in a

shared internal buffer at some later point, and recirculated through the network via a

feedback path, as in the Starlite [HuaK84].  A collision occurs when no internal buffering is

provided, and one of the two packets is simply lost, as is done in the BBN Butterfly [Mel88].

Congestion is the event where contention causes other traffic in a network to exit more slowly
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than in the absence of such contention, regardless of whether that traffic participates directly

in the contention.

It is important to consider the other effects of buffering, including an increase in the size of the

switch elements (in link-based buffering) or the overall network (in shared buffering), and

the potential for  buffer overflow.  Some designs [Tu88] use a reverse wiring of ‘buffer-empty’

signals to permit an automatic flow-control path, from the overflow back to the source, but

most networks simply begin to lose packets when overflow occurs.  Buffering also destroys the

relative alignment of packets, which can destroy consistency requirements of some multicasts

(seen later).  This prevents ganging the inputs together, which providing a greater bandwidth

via parallel use of input lines [HuaK84].  The constant internal latency afforded by

unbuffered networks permits such grouping without requiring downstream re-alignment of a

set of grouped packets.

Internally non-blocking  networks are divided into two cases: completely non-blocking and

rearrangeably non-blocking.  Strict non-blocking implies that after a set of input/output

port pairs are in use, a new pair can be routed through the network without breaking any

existing connection.  A more relaxed constraint requires only that the new pair be connectable,

including rearrangement of existing connections; this is known as rearrangeably non-

blocking.  Since the MIN's we consider are packet or message based (as opposed to circuit-

based telephony [SuB77]), only rearrangeably non-blocking fabrics need be considered, since

new pairs are added to the only when the entire set is resupplied to the net as a result of the next

phase of arrival.

Batcher sorting fabrics are rearrangeably non-blocking for any set of inputs (otherwise they

would be of little use as sorting fabrics) and thus require no internal buffering to avoid internal

collisions, but do not actually route the sorted packets to their destinations.  Banyan self-

routing fabrics are provably rearrangeably nonblocking only for a set of addresses which is

monotonically increasing or decreasing and has no idle inputs interspersed.  Unfortunately, no

fabric whose switch elements have inputs and outputs of the same bandwidth can be completely

collision-free, since the set of addresses provided at the input can have duplicates.  These

collisions are called output port collisions (as distinguished from internal collisions,

which are avoidable), and must be considered regardless of the interconnection network used.

There are three primary methods for the design of a non-blocking switch fabric.  A Batcher

sorter can precede the banyan router, resulting in a Batcher-banyan, so that the Batcher

maintains the monotonicity and gap-free constraints required for the banyan router to be non-
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blocking, and the router delivers the sorted packets to their final destinations [Let88]

[LetBA88].  In a buffered banyan, buffers are included in the switch elements, where packets

are stored when contention occurs, and retransmitted when the desired output port is otherwise

idle.   To further reduce the potential for internal contention in a buffered banyan, a random

buffered banyan can precede the router [Tu88], resulting in a probabilistic buffered

b a n y a n .  This random network routes packets according to other deterministic or

nondeterministic criteria, the only significance of which is the ignorance of the packet source

and destination in the routing decisions.  The probabilistic buffered banyan requires only 2logN

stages (of components, and delay), whereas the Batcher-banyan requires Nlog2N stages,

although the former requires a more complicated buffered switch element to reduce blocking,

and does not guarantee non-blocking for arbitrary input sets.

Permutations

Simple broadcast

Simple reduce

Partial intermingle

Full intermingle

Idle

Partial Permutations

Figure 4:  Switch element configurations

The switch elements are composed of two input ports and two output ports each, in the

simplest case.  Normally, only permutation operations are supported in these switches -

straight-through wiring, and exchange wiring, of which there are 7 configurations (some have

idle inputs) (Figure 4).  There are other functions possible in these elements, the remainder of

which include fan-out and fan-in of information.  If the fanout is restricted to copying the data

portion of the packet, it is called a copy  (also called broadcast) [JiP85], of which there are

two configurations, upper-copy and lower-copy.  The fan-in requires the use of a mapping

function to reduce (also called a combine) the amount of information (there are similarly
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two configurations, upper- and lower-reduce), or alternately requires a doubling of the

resulting packet length.  Other more complicated patterns include the combination of a copy and

a reduce [HuaK84], of which there are four configurations (the Starlite uses only the Z and

inverse Z configurations [HuaK84]), and the two copies and two reduces resulting in a complete

intermix of information in the packets.  The lone latter configuration has never been observed

in a switch design.  Since there are 4 links in a switch element, there are 16 possible

configurations.  These latter configurations can be called ‘interminglings’.

2.3. Multicast

Broadcasting and multicasting are the dissemination of information from a single source to

multiple receivers, and are network functions made possible by copying at the switch level.  In

network broadcasting, a single source packet is replicated and copies are delivered to all

outputs;  at most one broadcast can be supported at a time, since all output ports are utilized by

a single broadcast.  Multicasting is a restricted form of network broadcasting, where only a

subset of the outputs receive copies; broadcasting is just a special case of multicasting where

the destination set covers the outputs.  These two operations support distributed objects

[Tu87d] and reduce the amount of memory accesses to retrieve global (common) information

[HaMS86].

Note that in each case the MIN can be used to perform the desired operation, provided the

replication occurs in a way which distinguishes the copies - completely identical copies would

arrive at the same output port, where multicast delivers distinct copies to distinct addresses.

So the copy function must (at least) index  the replicates such that, after all stages of

replication, no two replicates share the same index.  The term replicate can be used to denote

these differentiated copies, as distinguished from identical duplicates.

Multicasting is commonly implemented in MIN’s via a two-phase network composed of a copy

stage which replicates the packets and a conventional routing MIN [Tu88] [Let88] (Figure 5).

Both overflow and collision is possible in a two phase network, where overflow is not defined

for single-stage multicast networks.  Also, overflow loss does not necessarily reduce collision

loss, as seen here.

Multicasting can emanate from a single source to a set of destinations, or among members of a

set to each other, called m-way multicasting.  The latter can be achieved as a set of simple

one-way multicasts, so only those will be considered here.  Further, in fault tolerant contexts it

is useful to consider the atomicity of the multicast, i.e. whether a multicast is completely
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fulfilled or completely lost, contrasting a partially fulfilled request.  In the serial composition

of a copy stage and a routing stage, there are two locations where packet loss can occur,

destroying atomicity.  Copy requests may overflow the replication capacity of the copy stage,

and multicast sets may overlap, resulting in conventional output port collision in the routing

stage (also Figure 5).  Note that output port collisions occur due to the nature of a multicast

request, and not due to the factorization of the copy process, whereas overflow is a function of

the existence of a dedicated copy phase.

overflow

collision

collision

COPY ROUTEMULTICAST

Figure 5:  Multicast as serial composition of copy and route

Assuming a multicast is atomic and one-way, there are still other considerations.  A multicast

may be serial or parallel, depending on whether the set of copies is made entirely in one

phase in the network, or multiple phases are required to complete the set.  While most MIN's

accommodate parallel multicasting, there are circumstances where the entire set cannot be

completed in a single phase; in these cases, it is often useful to split the multicast into two or

more equivalent subsets, and satisfy the subsets in sequence (Figure 6).  It is important to

notice that multicasts always satisfy the collision-free property [To87] - the set of

destinations is composed of unique addresses;  this property can be called self-consistency.

The self-consistency of a multicast set means that splitting forms two smaller self-consistent

sets.  For the purposes of optimal switch utility, it is useful to maintain the largest self-

consistent set possible, to reduce the probability of collisions.

Multicasts are often accompanied by reduction operations, in order to facilitate multiway group

interaction [Tu87b], collect acknowledgements from the multicast receivers [Kat87], or

support multicast flow control [Tu88].  These reduction operations can be reduction versions of

Chang’s echo algorithm [Ch82], or a serial collection of replies [GopJ84], as well as a

hardware reduction as defined later.
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Figure 6:  Splitting a multicast request

In addition, some multicast methods provide for easy addition and deletion of members of a

multicast set, called dynamic multicasting [Tu88].  Other schemes provide such updating at a

much higher cost, or not at all (static multicast).

2.4. Reduction

Reduction  is the collection of information from multiple sources for delivery to a single

destination, and is supported in a network by the combining operations at the switch elements.

Reduction, also known as network combining, is used for reducing hotspot memory contention in

the NYU Ultracomputer [GotGK83], distributed management of locks in the RP3 [PfN85], and

eliminating serial access to distributed data structures.  The distributed processing of central

data can also benefit from the use of reduction, in a way which translates serial code into a

parallelizable equivalent [Got84].  In this way, limitations in algorithm speedup proscribed by

Amdahl’s Law* can be circumnavigated.

In order to perform a reduction, a composition function must be defined at the switch level.  In

the simplest case, the function is a selection - thus omitting one of the two packets, and

presenting the other as output.  This function is the method of reduction in some networks which

approximate the effects of contention resolution via omission [HoE89], and also used to explain

the dropping of packets which occurs in unbuffered blocking networks, like the BBN Butterfly

[Th86] .

* Amdahl’s Law states that if k% of an algorithm is serial (not parallelizeable), then the optimal

acceleration would reduce all parallel code to one time-step, increasing the algorithm speed by a

factor of 1/(k%).
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Any function which reduces the product of two packets to one output packet can be used in the

combining, but reduction is made simpler if the contents of the packets are known (and

restricted).  If we consider the shared memory organizations, packets normally contain only

read and write operations, which are more easily combined.  For example, two write operations

to the same memory location can be combined by omitting one of the write requests, such that

the memory behaves as if the two writes actually occurred in sequence, with no intervening

operations.  Note that the combining can only occur if the packets affect the same memory

location; other pairs of packets, destined for the same output port but with distinct addresses,

cannot be combined in this way.

Of the set of restricted operations which facilitate combining, there are two commonly used in

shared memory systems.  Replace-add operations are requests which replace a memory location

with a sum, and return the new value (Figure 7).  Fetch-add operations are similar, returning

the previous memory value instead.  While ‘add’ is the function describing these operations, any

associative operation (op) can be specified [GotK81].  The equivalent result of a replace-op can

be computed from the result of a fetch-op, but the reverse (computing fetch-op from the result

of a replace-op) is true only for functions with an inverse [GotK81].   For example, replace-

min can be computed from fetch-min, but fetch-min cannot be computed from replace-min,

since min has no inverse.  There are also equivalences for test-and-set primitives and simple

load and store operations in terms of either fetch-op or replace-op functions.  Some common

operations supported in fetch-op systems are add, and, or, min, max, store, swap, and store if

zero [BrMW85] [Mel88].  Combining via these primitives is especially useful in maintaining

locks in distributed systems [PfN85].  This also assumes that the memory modules in the shared

memory system support these operations with ALUs at each module.

The number of reductions which occur at a single switch element has also been studied.  If a

switch is unbuffered, only two packets can be combined, and the probability of two packets

colliding whose address matches is slim.  As a result, combining is usually considered in

buffered networks, where the possibility of matching a packet in a storage buffer is high.   This

same buffering can retard the passage of the combined packet, providing the possibility of

combining the result of a combine with another incoming packet, known as n-way combining.  It

has been shown that for reasonable systems, 3-way combining is sufficient [HoE89], even

though many systems support only 2-way combining, such as the NYU and RP3 [GotGK83]

[Tz89] [LegKK86].
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Fetch-op(address,value) = Replace-op(address,value) op-1 value

Replace-op(address,value) = Fetch-op(address,value) op value

Store(address,value) ≡   * = Fetch-∏ 2(address,value)

Load(address) ≡   value = Fetch-∏ 1(address,*)

where ∏1(x,y)=x  and ∏2(x,y)=y

Figure 7:  Definition of fetch-op and replace-op equivalences

Some reductions require no further processing, such as the combination of two stores, where

one operation can be omitted.  Another simple combine results from a store and a fetch-op.  The

store continues on to the memory element with a new value (‘storevalue op fetchvalue’), and the

fetch-op is immediately replied with the value of the store (storevalue), in a ‘short-circuit’

operation (Figure 8).  Each of these two combinations maintains the serializability of memory

operations, and reduces the number of packets reaching the memory module.

store(A,3)

store(A,5)

store(A,5)

fetch-add(A,4)

store(A,3) store(A,7)

(A=3)

S t o r e / S t o r e

S t o r e / F e t c h - o p

Figure 8:  Short circuit reductions

Other operations require intermediate storage in the switch element where  the reduction

occurs.  These include load/load and other combinations of fetch-op/fetch-op pairs (Figure 9).

Only one request continues to memory, satisfying the reduction requirement, but a local buffer

holds the destination and intermediate information of one of the source packets.  When a reply

arrives, a reverse multicast satisfies both requests in parallel.  In this way, reduction

networks often incorporate multicast capabilities in the reverse network paths [PfN85].
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A,+,3,top

fetch +(A,8)fetch +(A,3)

fetch +(A,5)

A,+,3,top

forward reduction

(A=13)

(A=10)

reverse broadcast

(A=10)

Figure 9:  Stored-intermediate reductions - ‘A’ begins as 10, ends as 18

The use of packets which provide memory functions, and are thus easily combinable, results

from the use of reduction networks for alleviating memory ‘hotspot’ contention problems.  The

contention for a memory cell is noticed by the contention of packets at switch elements in the

network, and the reduction alleviates the contention before it reaches the memory.  While other

packet contents may be reducible in other contexts, none except for the reduction functions

equivalent to omission has been suggested in the literature for contents which extend beyond

fetch-ops.

In some systems, once a hotspot has been sent a packet, no further requests to any hotspot may

occur.  This is known as limited access [YewTL87], but also called a ‘blocking request’.

Blocking requests is necessary in buffered combining networks, since otherwise requests could

combine and pass each other in a way which would not be ultimately serializable [EdGK85].

2.5. Consistency

Central to the notion of the ability to reduce or multicast packets in a network is the definition

of consistency.  Since reduction networks focus on combinations of memory requests,

consistency is defined as serializability of the set of reduced operations, as if they would have

occurred in some serial order on a single-access memory.  Note that this temporal access need

never actually have occurred;  it is sufficient that the results obtained are equivalent to some

serial interleaving of the requesting streams from the source processors.

In multicasting, consistency is related to the possible misordering of a set of multicast packets.

Two multicasts should arrive at all destinations in the same order, although there may or may

not be permitted some variation in the delay between the two arrivals.  A fixed delay is required

for many fault tolerant voting schemes, which use time-out to assume the effective loss of

communication.
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3. Canonical reduction and multicast networks

There have been several implementations of reduction and multicast networks; the NYU

Ultracomputer [GotGK83] is the original reduction network, and only two recent networks, by

Bell Communications Research (Bellcore) [Let88] and the University of Washington at St. Louis

(WashU) [Tu88] incorporate multicast facilities.

3.1. The NYU Ultracomputer reduction network

The NYU Ultracomputer [GotGK83] [Sc80] [Kr82] [GotLR83] [Got84] [EdGK85] [LegKK86] is

a shared memory link-buffered network, supporting fetch-op memory access.  The original

design is based on an implementation of Schwartz’s Ultracomputer model [Sc80].

The network combines requests of the fetch-op type.  Preliminary Ultracomputer documents

support the superiority of fetch-op to replace-op [GotK81], since replace-op is always

computable from fetch-op results, while the converse is true only for invertible ‘op’ functions,

but subsequent discussions assume use of replace-op functions [Kr82] [GotLR83], up until the

final implementation described in [GotGK83].

The switch elements are composed of a buffer on each output port, and on each input port as

well, to service reverse-flow multicast replies.  In addition, an internal waiting buffer is

provided, to record the combination of fetch-op/fetch-op requests in a way which facilitates

reverse multicasting of the reply information (Figures 9,10).  Other combinations, such as

store/store and fetch-op/store requests are combined without use of the intermediate storage,

as previously described.  While various simulations study the optimum input and output queue

lengths, no study of the wait queue lengths was described.

The output port buffers are implemented as systolic matching queues.  Requests are queued as

received, and dequeued each cycle to the output port.  In addition, as packets snake through the

buffer, they are compared against each other, and combined as indicated, where possible (Figure

11).  When a combine is specified, the packet in the left column moves into the combine column

on the right; the column shifts out with the middle column.  If the combine column is not empty,

a combine occurs when the two packets empty.  Note that the actual combination does not occur

until both packets exit the buffer, in this design.  The combination thus alleviates traffic in

subsequent stages, but the queue stores both packets as if no combining occurred.  The design of

this queue indicates a worst case where the queue is full and combining requests arrive
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immediately adjacent in the queue; in this case, combining does not occur until the packets have

traversed half the queue (Figure 12).

WAIT

Forward reduce Reverse broadcast

Storage buffer

Figure 10:  NYU switch element design

c o m p a r e

c o m p a r e

c o m p a r e

c o m p a r e

c o m p a r e

c o m b i n e

Figure 11:  Systolic queue

This design promotes queue growth when packets arrive aligned and the network is loaded,

indicating a deficiency which amplifies undesirable behavior.  The design suffices when output

packets are pipelined on each port, but does not provide the matching required for the wait

queue;  the organization of the wait queue was never described.  This design supports only 2-

way combination - once a combine occurs, it blocks subsequent combines (Figure 13).
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Figure 12:  Worst case combining

A2

A3

c o m b i n e

Time T -match

( f u l l )

( f u l l )

A1 A2

A3

c o m b i n e

Time T -move

( f u l l )

( f u l l )

A1

( f u l l ) ( f u l l ) A2
A3

c o m b i n e

Time T+1 -block

( f u l l )( f u l l )

A1

( f u l l )

Figure 13: 2-way combine blocking a third attempt

The switch relies on interfaces at the processors and memory modules that support the

reduction.  In addition to packet assembly/disassembly operations, these interfaces block

subsequent requests to a memory location if there is an outstanding request to that location,

which is a less restrictive version of the blocking access described before (only accesses to  the

unsatisfied memory request location are blocked, other memory accesses are uninhibited).  The

memory interface also provides the arithmetic facilities for supporting the fetch-op

primit ives.

Later analyses of the design attempt to reduce the complexity of the switch element and provide

extended network functions [EdGK85].  Some of the simplifications involve supporting only
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combinations that do not require intermediate storage, such as store/store and store/fetch-op

combines.  Implementing combination only at later stages in the network and restricting

combinations to pairs only (2-way combine) were also considered.  Finally, a combination of

two parallel networks was described, one which combined and one which did not.  This design

was implemented, for cost and simplicity, in the RP3.  In addition, the PE caches were suggested

to be lockup-free - non-blocking on requests, such that a cache miss and subsequent memory

fetch would not block subsequent PE access to that cache at other locations.  There were also

analyses which note that 2-way combining is not sufficient for sample problems [LegKK86],

and note that 3-way combining would suffice.

Two extensions to the design were proposed [EdGK85]: reflection and refraction (Figure 14).

Reflection uses a virtual address in a memory module and an active memory interface to

redirect a request from a PE to that module to another PE, supporting automatic forwarding of a

request.  This implements message passing among PE’s as a direct operation, and IPC

(interprocess communication) supported by the memory controller.  Refraction is a similar

redirection to a peripheral processor connected directly to the memory module.  With the

addition of these two primitives, the distinction between the original shared memory

organization and message passing blurs substantially.  These automatic forwarding of messages

are also known as mailbox operations.
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Figure 14:  Reflection and refraction

3.2. The Washington University multicast network

The Washington University at St. Louis (WashU) has a multicast network under development

[Tu88] [Tu87a,b,c,d] [KhT87] [Ro87] [BuT89] (Figure15).  The network supports packet
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message deliveries, and is not intended for direct MIMD multiprocessor use, but the principles

of the network apply to a message passing paradigm similarly. The network is a two-phase

design, using a link-buffered banyan network for copying, and a probabilistic link-buffered

banyan network for routing.  Between the two networks, the copy indices are used in

conjunction with the packet’s original channel number to determine a particular destination for

that copy, using a translator table (called the BGT, or broadcast and group translator).  The

multicast sets support dynamic addition and deletion of members, but only by a central call

processor, which broadcasts updated set table entries to the BGT’s using the network itself, as is

also required in the Bellcore switch [Let88].  Also, the use of buffering prohibits utilizing

ganging the inputs to increase the link-based throughput of the switch, since the variable

internal latency introduced by the buffers destroys alignment of the ganged packets (which it is

not trivial to reestablish).
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Figure 15: WashU copy network

The network is designed to handle both connection oriented (virtual circuit) and connectionless

(datagram) services, but only connections can be multicast, since a central call processor must

initiate the translation tables.  Datagram traffic is not translated in the BGT’s; it is assumed

that they are hierarchically routed, and thus do not require redirection provided by these

tables.  Group translations are also handled by the BGT, permitting trunk grouping, where

packets are routed to any one of a set of destinations (a trunk group), all of which are deemed

equivalent.  In this way, packet loading can be spread across a set of links dynamically, without

involving call setup/teardown.

The WashU copy network replicates packets in a buffered banyan network, using the buffering

to resolve copy contentions.  The replication occurs in a way which delays the copy operations as

long as possible in the traversing of the stages, and attempts to create copies in a balanced

binary tree.  It is observed that copying as late as possible reduces the potential for congestion.
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Note that late copying is equivalent to early reduction in the reverse of the network, i.e.

reducing as soon as possible.  It is more manifest that early reduction reduces contention (as

was its initial purpose), and since late copying is conversely equivalent, the same congestion

avoidance should also be true.  Unbalanced replication, where descendants of a multicast packet

request unequal numbers of replicates, was later considered a way to reduce the (high)

potential for contention in the later stages of the copy network (Figure 16).

Balanced Unbalanced Late Early

Figure 16:  Multicast variations

The determinism of the copy algorithm causes replicates of a multicast set to be produced along a

fixed path, determined by the number of copies requested (fanout), and the ID number of the

group (which is used to select evenly distributed routing when no copy is indicated in a stage).

As a result, the BGT’s do not need to maintain individually an entire translation table for each

multicast set; given a group ID, fanout, and output port (each of which has a unique BGT), the

copy index is completely determined.

Computation of the copy index can be performed at the BGT processors, based on the group ID

number, the number of copies in the multicast set, and the number of the output port where the

BGT is located (since this completely determines the copy index).  The algorithm outlined which

computes this index actually performs a software retracing of the multicast operation in the

tree, costing logN steps to calculate.  While this is expensive, the calculation is unnecessary,

since the copy index would be replaced by the destination address for that index, which is

determined from the ID, fanout, and output port anyway.  Other networks that do not pin the

copy destinations compute the index directly as copies are made [Let88].

The total number of BGT entries is the same as the total number of multicast set members, since

each BGT has at most one translation entry for each group.  This is in comparison to copy

methods which do not determine output ports uniquely from a single packet, such as the Bellcore

switch [Let88], where each BGT must maintain a copy of the entire translation table for each
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multicast set.  This same determinism which simplifies the BGT (and making it much smaller

and independent of the size of a multicast group), causes multicasts to collide in the copy

network [Ro87].  This contention is resolved by link-based buffering, as described before.

The WashU group suggests that the use of a probabilistic link-buffered network is superior to

that of a Batcher-banyan unbuffered network, since the Batcher sort involves “higher

topological complexity” [Tu87b].  The connectivity of a Batcher, however, is the same as that of

a banyan, requiring more stages of the same topology [HuaK84].  The switch elements in an

unbuffered network are very simple, but the WashU elements require an additional 240

Kilobits of storage per element, so the complexity gain by using buffering is not convincingly

demonstrated.  Further, the use of a probabilistic switch to reduce contention also can cause loss

of packet sequence information.  While [Tu87b] shows that priority fields in the packet headers

can help reestablish order, this same order can cause the queue designs to become very complex,

since retrieval or insertion would be a function of these priority values.

Analyses of the multicast network performed by the WashU group was not conclusive.  While

some results consider loading of the network when multicasts are broadcast only, there was no

consideration of overflow in the copy network as distinct from output port collisions arising

from overlap of the multicast sets [Tu87c].  Further, the simulations did not cascade the copy

and routing stages, and so never measured the loss of atomicity and alignment caused by the

internal buffering and loss [BuT89].

There were suggestions for extensions and alterations to the original design, which include

unequal fanout splitting at a switch element (contraindicated by [Let88]), use of splitting to

accommodate sequential copying (contraindicated by [To87]), and giving multicast packets

higher priority than other traffic.

Other multicast management considerations are outlined, including authorization to add/remove

group members, connection management, routing, security, and congestion [Tu87b].  The

congestion control mechanisms rely on a several levels of management, including connection

refusal, feedback, and a packet priority field.  Feedback utilizes an upstream reduction based on

the wiring of buffer overflow indicators to the output enable of the previous stage.  While this

performs a type of information reduction, no packets are actually reduced, although this does

emphasize the need for such a capability in multicast networks.



2 1

3.3. The Bell Communications Research multicast network

The Bell Communications Research (Bellcore) multicast switch is composed of a two-phase

unbuffered banyan copy network followed by an unbuffered Batcher-banyan routing network

[Let88] [HuiA87] [LetBA88] (Figure 17).  This switch, like the WashU switch, is a packet

network, and is not intended for direct MIMD multiprocessor systems, although the principles

are similar.  Preceding the copy network is an organization which computes offsets such that no

contention occurs in the copy stages., and between the two phases are translation tables (TNT,

trunk number translators), similar to those in the WashU design.
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Figure 17:  Bellcore switch design

The Batcher-banyan in the Bellcore switch is the basis for the routing operation, but a more

complex set of operations ensures collision avoidance.  The sequence sorts the packets by

destination; if a packet has the same destination as the packet above it (a local computation),

then that packet is tagged as a collision.  These collisions can be filtered out by a trap network,

and routed for recirculation, as in the Starlite [HuaK84].  The remaining packets (which thus

cannot collide at the output ports) can be routed with a banyan network, also as in the Starlite.

The output of the RAN can also be trapped, to prevent overflow in the copy network, by

preempting packets which cause the overflow, via a similar trap mechanism.

In this switch design, the destination of each index of a copy set depends on the other requests to

the copy network during that phase.  If the first packet requests 5 copies, and the second packet

requests 7, then the third packet of the second set appears at output #8, whereas if the first

packet requested 2 copies, that same replicate would appear at output #5.  As a result, each TNT
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must maintain the entire table of index/destination entries for each multicast set, as opposed to

the pinned copying performed by the WashU design [Tu88], which requires only one entry per

BGT per multicast set (not the whole table).  While the TNT tables are thus larger than in the

WashU design, Bellcore’s copy network is nonblocking and unbuffered;  as a result, input port

ganging [HuaK84] is possible in this network.

In order to perform the copying without contention, each multicast request is translated to a

request for a contiguous span of output ports by the Running Adder Network (RAN) and Dummy

Address Encoder.  The RAN performs a partial sum on the list of fanouts, and the DAE translates

this list into pairs of output port addresses corresponding to the span indicated (Figure 18).

While the RAN proposed in [Let88] uses N-ary electrical fanout to compute the sums in logN

time, a binary fanout cascaded sum network can compute the same partial sum in logN time as

well [To87] [HocJ86].  The RAN in the diagram shows the cascaded sum.
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Figure 18:  RAN & DAE

The address interval computed by the RAN/DAE sequence is used in the copy network to replicate

packets and split multicast requests into halves as appropriate to avoid contention [Let88].

This algorithm is named the ‘Boolean Interval Splitting Algorithm’ therein, and was first

described in SIMD multicasting systems [NaS81].  The complete sequence of operations in the

Bellcore network is similar to that performed in software in this SIMD network, as will be

described later.

The unfairness of a single, top-down RAN has also been noticed, since copy network overflow

avoidance causes requests at the bottom of the network to be omitted, while top-end requests
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always succeed (Figure 19).  A proposed solution [Let88] was to use alternating top-down and

bottom-up RANs, since the algorithm is topologically equivalent in either direction.  It was

assumed that this alternation would exactly compensate for the top-down unfairness of a single

RAN;  it was later shown that the combination is not fair [To87], since the unfairness is not

linear, and thus combining the two does not exactly cancel the effect.  In fact, the dual

alternating RAN tends to omit packets just inside from the top and bottom of the network.  A

proposal which ensures fairness in all cases with only one, top-down RAN uses a random

Batcher network to  to scramble the order of the incoming packets [To87].
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Figure 19:  Unfairness in dual RAN, loss of optimality (limit = 10)

Another difficulty in the use of the RAN/DAE involves bit order.  Self-routing networks (such

as the Batcher-banyan and copy banyan) require the most significant bit of addresses to occur

first, while the arithmetic operations (add/subtract) performed in the RAN/DAE require least-

significant-bit-first ordering.  This imposes an additional delay proportional to the size of the

address, to permit addition and routing with the same addresses.

The Bellcore group has also considered partitioning the copy network, for a simpler design

(Figure 20).  This results in less complex copy networks, and reduces overflow interference

from multicast requests outside the partition (a desirable isolation), but increases overflow

interference within the partition (no more than fairness would impose in terms of loss, for

non-pathological cases).  Since the total set of copies are delivered by the same full-size

routing network, no additional collisions are likely.  Further, since a multicast request coming

into a partition cannot cause copies to exit outside the partition, the TNT's need not have tables

for multicasts not in their partition, thus simplifying their design.

Other extensions and modifications of the network have been proposed, which include the use of

two distinct classes of traffic (reserved, connection / unreserved, connectionless), where there

are separate copy networks for each traffic type [LetBA88].  Since connection-oriented traffic

avoids copy network overflow at call setup time, its network can be simpler and faster, and can

avoid overflow loss completely.  Unreserved (connectionless) unicast traffic (point-to-point,
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conventional traffic, which can be considered a ‘multicast’ to a single address) can

circumnavigate the copy network, thus reducing its complexity as well.  This two-level scheme

was also investigated in the RP3, with a difference that the RP3 has one copy and one multicast

network.
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The WashU group noted that in the Bellcore switch, the overflow problem is similar to

binpacking (with the same NP-complexity), since the copying is floating (not pinned to a

location) [Tu87d].  This analysis considers only overflow, however; multicast scheduling is a

more complex problem, since output port contention must also be considered.  Some distributed

resource allocation algorithms may indicate whether a method for scheduling multicasts without

central call-processor scheduling is possible [To87], such as the Dining Philosopher’s

Problem solution [ChM84].

4. Related areas

There are several areas of research whose results relate to the study of reduction and multicast

networks presented here.  In addition to the obvious examples of other implementations or

reduction networks, most notably the RP3, other networks have been designed supporting

copying and reduction without explicit multistage combine/broadcast functions, such as the

Knockout switch, and the BBN Butterfly.  Two other areas, of hotspots in shared memory

systems, and software multicasting, also lend insight to the problems studied here.
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4.1. Hotspots

Reduction networks originated in response to the hotspot memory contention problem.  Once a

Paracomputer memory is partitioned into modules, there is a likelihood that some modules will

be accessed disproportionately.  Memory locations used for distributed systems locks, buffer

and network management, and interprocess communication are accessed in this way; such

memory locations are known as hotspots.

Hotspots can be global or more focused, where global hotspots are the result of all PE’s

contributing to the hotspot, and focused hotspots are accessed only by a (small) subset of the

PE’s.  Most simulation studies assume global hotspots [PfN85] [KuP86], but focused hotspots

are more common in practice [Ler85].

Hotspots can be reduced by two common means; the primary involves use of reduction networks.

Another scheme uses copies of the data which are moved out into the network, to substitute for

the hotspot.  This is used for synchronization, where counters are decremented by a fixed, static

set of PE’s.  In this case, a central counter of 10 can be split into 5 counters of 2 each.  When

each count reaches zero,. it signals the central count, and decrements it by 2 [YewTL87].

Combining fails when contention is the result of a ‘hot’ or popular memory module, not arising

from a single memory element in common [Ler85].  There are also other kinds of hotspots, such

as single source hotspot arising from file transfers from one PE to another PE, and focused

hotspots arising from locks shared among a small group of collaborating PE’s.  The simulations

of reduction networks studied did not indicate consideration of these variations, or the

implications thereof on the results obtained.

4.2. Software multicast

Software support of multicasting is directly related to the design of multicast MIN networks, yet

the current implementations at WashU [Tu88] and Bellcore [Let88] did not include any

references to this area.  Broadcasting is a facility assumed in most distributed, fault tolerant

operating system designs, and many such studies directly address the issue [Wa82].  Examples

of multicasting algorithms have been developed for SIMD architectures as well [NaS81].  Some

of these are related to Bellcore’s switch, such as [NaS81], while most others use a variation of

Chang’s ‘echo algorithm’ to distribute replicates [Ch82] [Kat87].  Software reduction has also

been studied, in its ability to move virtual copies of a memory location out into the network

[YewTL87].
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Most software multicast algorithms are based on the use of a spanning tree to send packet copies

to distinct locations in a system, without overlap of effort [Wa82].  This spanning tree is

effectively computed in the broadcast banyan networks used in both the WashU and Bellcore copy

networks [Tu88] [Let88].  The analysis of the overlap of these spanning trees for simultaneous

multicasts and broadcasts [Wa82] is similar to the Boolean Interval Splitting Algorithm of the

Bellcore switch [Let88].

In the case of software SIMD multicasting algorithms, there is correlation between the

algorithm [NaS81] and the current hardware implementation of the Bellcore copy network

[Let88] (Figure 21).  Even the Boolean Interval Splitting Algorithm is effectively described in

[NaS81], as well as the sort-tag-trap-route sequence of the Starlite network, which is also

included in the Bellcore switch.  In fact, the observed complexity of the algorithm is identical to

the hardware complexity of the Bellcore switch.  This was also the earliest reference which

notes that a banyan network performs a distribution routing on a set of sorted packets, an

observation first implemented in the Starlite [HuaK84].

Some algorithms also use variations of Chang’s echo algorithm to distribute packet replicates

[Ch82].  The echo algorithm was originally proposed as a way to provide software checkpointing

in a distributed system, where packets are broadcast in a breadth-first tree through the

network.  The parent is acknowledged when all children have returned acknowledgements, a kind

of broadcast/reduction algorithm on acknowledgements, such that broadcast atomicity is

ensured.

Other methods of multicasting are based on serial addressing and emission of packets at the

source.  Many assume multipoint connections, such as the Knockout [EnHY88], or an Ethernet

or token ring global-read bus [GopJ84].  A serial collection of acknowledgements, akin to the

echo of the echo algorithm above, provides atomicity of the broadcast.

Software algorithms for reduction have confirmed results from reduction network analyses.

Among these, the need for at least 3-way combination at the switch element and the use of

discarding as reduction have been studied in software [HoE89].  Some of these techniques do not

implement a software multicast to distribute information from replies in reverse, as the

hardware reduction schemes tend to.  This research also verified the distinction between

blocking hotspot requests (which inhibit subsequent hotspot requests), and nonblocking

requests, calling them ‘limited’ and ‘unlimited’.
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Figure 21:  Software v.s. hardware multicast

One notable exception is [YewTL87], which notes that hotspots can be reduced in cases of

synchronization variables by moving copies of the variable out into the network, and

distributing the access through the virtual copies.  The networks used therein were message

passing, where PE’s were considered processors at the nodes of a virtual shared memory

system, facilitating the software support of the virtual copies of shared variables.

In the distributed programming of multiple processors, a countdown variable is often used to

implement a join synchronization.   Instead of counting from, i.e., 10 down to 0, we can have 5

copies of variables, each initially set to 2.  Each process accesses a particular copy, such that no

variable is accessed by more than two processors, reducing memory contention.  When a

variable reaches zero, a signal is sent to the main synchronization variable.  This moves the

data value out into the network in a tree fashion, but requires prior knowledge of the

distribution of these values, and must indicate to each processor which variable copy to access.

It is not clear that this partitioning is valid for any other type of data sharing than
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synchronization of a fixed number of non-relocating processes, which is a severely restricted

case.  Note that the intermediate shared variables are in addition to the original shared variable,

where each copy is shared by 2 processes, and the original value is shared by the 5 virtual

values.  This may increase overall hotspot contention in the network by increasing the number

of hot locations, depending on the factoring of the value into ‘virtuals’.

4.3. Machines

There are several other machines which analyze reduction and replication in processor

networks.  These include the BBN Butterfly, and the IBM RP3 reduction network, the Starlite

which supports copying [HuaK84], and the Knockout [YehHA87] [EnHY88].

4.3.1. The BBN Butterfly

The BBN Butterfly is an unbuffered shared memory network [Th86] [HoE89] [Mel88].  While

there is an extension of the Butterfly, known as the Monarch, which is suspected of having

multicast capabilities, information on that system was not available in time for this report.

The Butterfly has been used to verify studies which analyze reduction networks [Th86], and its

internal omission of contending packets has been studied in terms of reduction operations.

One study disproves the phenomenon of tree saturation [PfN85].  Tree saturation was identified

as a problem in blocking networks, and shown not to occur in the Butterfly [Th86].  Tree

saturation, however, occurs only in link-buffered blocking networks, and the Butterfly is

unbuffered, so it is not surprising that the effect was not observed.

The Chrysalis operating system of the Butterfly [Mel88] supports and assumes atomic fetch-op

primitives, so extending the network to support reduction operations is also possible.

The omission which occurs due to the unbuffered blocking network design was also studied in

terms of its equivalence to reduction.  Two requests arrive at a switch, and they contend for an

output port.  In conventional shared memory reduction, these requests are combined only if they

address the same memory location, even thought they contend whenever they are destined for the

same memory module (even if to different addresses in that module).  In the studies which

address reduction as omission, packets are lost only when the specific memory locations

coincide; in the Butterfly network, packets are dropped if addressed to the same memory

module, regardless of location.  So the comparison of these techniques is not valid, although

several attempts have been made [Th86] [HoE89] [DiK89].
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4.3.2. The IBM RP3 reduction network

The IBM RP3 is a shared memory reduction network, similar to the NYU Ultracomputer in its

switch element design, but with special emphasis on the use of caches [PfN85] [PfBG85]

[BrMW85] [DiK89].

The RP3 attempts to justify the use of combining in an unique way, with respect to hotspots.

They claim that previous studies have assumed hotspots, and attempted to reduce their effect on

the processors contributing to the hotspot contention.  Here they notice a separate effect, called

‘tree saturation’, where the presence of hotspot contention in a network severely degrades the

performance of the network for all traffic, not just hotspot access.  It is for this reason, they

argue, that hotspots must be avoided; in the case where a processor is involved directly in the

hotspot traffic, that processor ‘gets what it deserves’.

Tree saturation is (incorrectly) noticed as an effect of hotspot memory contention which

requires a blocking multistage network with distributed routing, and [hotspots]” [PfN85].

This definition spurred the study of  counter-examples [Th86], which noticed that the effect

occurs only in internally blocking link-buffered networks.  It is caused by a successive backup

of queues to a hot memory module (Figure 22).  It should be noted that tree saturation is an

effect of head-of-line queue blocking and a linear composition of queues, in any topology.  Once

the last queue in a line is blocked and saturated, all queues feeding into that queue (and nowhere

else) must also block and saturate, ultimately back to the primary sources of the traffic.

The study which defines tree saturation makes other assumptions which were later called into

question.  These include an analysis of hotspot traffic percentages as if all processors contribute

equally to the hotspot.  In real traffic patterns, more local grouping of shared hotspots is evident

[Ler85].  They do notice that combining is efficient for lock management, since reduction

functions on lock access operations are easily defined [PfN85].

Another discussion on tree saturation claims that buffer management techniques can effectively

eliminate the saturation effect [DiK89].  There are two possible solutions - combine, or reject

one of the requests.  This notices that tree saturation is fundamentally a head-of-line queueing

problem, and may be avoided by software queueing restrictions.  When a buffer nears its limit,

incoming requests to a hot location are omitted, to prevent buffer backup.

The RP3 is limited to a single combine per switch element; it is not known whether this refers

to the NYU switch elements ability to combine only one pair per cycle, or the more evident
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definition that multiple combines are prohibited by the hardware design, regardless of buffer

length.

Figure 22:  Tree saturation

The RP3 also emphasizes and studies the use of caches in the PE’s.  They notices a miss rate of

1% in read-only data access (typically code), while read-write accesses miss the cache 20% of

the time.  Use of the caches can thus hinder the operation of the combining network; since non-

combined accesses stay local to the PE, the percentage of the network load which accesses

hotspots is increased.  In order to cache data, it is assumed that the status of a variable

(hot/cool) is known at load time [PfBG85].  The cache uses store-through to maintain

consistency; this increases overall network traffic, but reduces the burstiness of that traffic,

compared to copy-back schemes [BrMW85].
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The processor cache uses prefetch, and has immediate internal acknowledgement of store

requests - imitating the short circuit operation of a combining network in the presence of

multiple stores [BrMW85].  Normally, only one outstanding prefetch on shared data is

permitted (i.e. blocking requests), but the limit is enforced by a software-controllable fence

register, permitting multiple outstanding requests.  The number of outstanding requests is

limited to ensure serializability, but in many cases the limit of a single pending access is

conservative.  The fence permits adjusting the limit in cases where serializability is known to

survive more than one pending request.  In addition, local cache stores do not cause immediate

network access; only after a subsequent miss is a write-through performed.  This reduces

traffic when only local writes are performed.

Other techniques were considered to optimize the network design.  The use of a software combine

was suggested, specifically to reduce the hotspots caused by global summation operations.  The

algorithm suggested is essentially a partial sum operation [YewTL87].  The design implemented

used a two-level network, where one level performs combines (slow) and the other only routes

(fast) (Figure 23).  This assumes both that a processor knows the status of an access

(hot/cool), in order to route the request.  The partitioning of requests prevents some combines

from occurring, and also there may be cases when it is better to use a faster non-combining

network, rather than a slow network which might combine, especially in a lightly loaded

system.
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Figure 23:  Two-level RP3 design

4.3.3. The AT&T Starlite multicast network

The AT&T Starlite network is a packet network, similar to a message passing network.  It is

composed of a centrally-buffered recirculation network, the main path of which is an

unbuffered Batcher-banyan network, as was seen in the related Bellcore network [HuaK84]

(Figure 24).  The use of a shared internal buffer precludes the ability to gang the inputs in the

network if recirculation is permitted, but this is one of the first papers to state the ganging
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potential of switch fabrics that have constant internal latency (no internal link-based

buffering).
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Figure 24:  Starlite network

The Starlite performs a sequence of operations as a multicast request passes through the

network (Figure 25).  First, packets are not explicitly copied - no single packet actually

generates additional packets in the network.  Instead, extra empty packets are generated, either

by the sender of a multicast request or by the receivers of that multicast.  The sets of source and

empty packets are first sorted (sort-to-copy), where source packets head each group of empty

packets requesting copies from that source.  In the copy stage,  the contents of the source packet

are copied into each empty packet below it, until another source packet is encountered (note that

this implies that a serial copy occurs, even though faster, logarithmic copy schemes may be

possible).  The replicates need not be distinguished, as is required in other copy networks

[Let88] [Tu88], since each destination packet is pre-addressed when it is generated.  Since the

switch elements performing a copy actually input two packets (source and empty), the switch

element internal function is a special case of a reduction/broadcast function in the switch

element (Figure 26).

The resulting packets proceed through a Batcher-banyan sequence, called here ‘sort-to-

destination’ and ‘expander’, including the trap and concentrator intermediate phases, which

remove packets which would cause output port collisions.
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Figure 25:  Starlite multicast sequence

COPY FROM 3, SEND TO 5

DATA FROM 3 TO 8

DATA COPY OF 3, SEND TO 5

DATA FROM 3 TO 8

R

B

Figure 26:  Starlite switch element function - broadcast/reduce

In the design outlined, empty copy packets are generated either serially by the sender of a

multicast or by receivers of that multicast.  In implementation, neither would be simple to

design, since the former implies a serial generation, where the source might just have well

performed a serial copy of the packet data as well.  The latter requires that source and empty

packets of a multicast set arrive at a switch in the same cycle, requiring the alignment or

synchronization of communication in a multicast set.  A simpler scheme would relegate the task

of empty packet generation to a separate set of processors (such as the BGT's of [Tu88] or TNT's

of [Let88]) that are programmed at call setup time.  At a specified time, in synchronization

with the sender, they would generate a set of empty packets in parallel.

The use of copy receptors in the Starlite network is similar to the use of dummy messages in a

network proposed at Stanford [Mo79] (this was not noted in the Starlite paper).  The goal of

this network is to eliminate the output port contention problem; this is done by inputting a set

of dummy packets, one for each output (these dummies are automatically generated, or
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hardwired as input).  These dummy packets are sorted with input packets via a Batcher sorting

network.  At this point each set of destinations is led by a dummy packet, followed by the set of

input packets vying for the output port.  The top two packets are effectively exchanged, in a way

which delivers that top input packet to the output port desired, and the dummy packet is routed

back to the source that sent the input packet which was successfully delivered, as a positive

acknowledgement.  Other packets are delivered back to their input ports, for retries, as negative

acknowledgements.

SORT

MERGE SWAP ROUTE

DATA 
PACKETS

DUMMY
PACKETS

DELIVERED
DATA

ACK's &
NACK's

Figure 27:  Use of dummy packets

4.3.4. The AT&T Bell Labs Knockout multicast-capable network

The Knockout network is not a MIN network, but its design does incorporate multicast

capability, and is useful for comparison [YehHA87] [EnHY88].  The network is fully connected,

in a multiple bus configuration, and supports packet switched communication (Figure 28).

Multicast

Module

Regular

Module

Multicast

Module

Figure 28:  Knockout switch multicast modification
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The switch is composed of a set of busses, one from each PE, and a bus-collection device, a

Knockout concentrator, one into each PE.  The concentrator looks at packets on all busses, and

collects those packets for its PE’s address.  Since more than one packet can be collected in a

cycle, the concentrator must buffer or resolve contentions before the packets arrive at the PE;

this is performed by a ‘knockout’ elimination tournament in the concentrator.

There has been an extension recently suggested for the Knockout network which would support

multicast requests [EnHY88].  It is composed of multicast modules on the Knockout bus, much

like concentrators with internal processors, but without host PE’s (also Figure 28).  Broadcast

traffic is transmitted on the conventional busses, where the destination is a ‘universal donor’

(borrowing from blood-typing terminology), so all concentrators recognize that particular

address as compatible with their own hardwired address.

For multicasts, a virtual multicast set identifier replaces the usual destination address.  The

multicast modules recognize this identification, and intercept the packet.  At this point, one of

two resulting operations is possible.

In the serial multicast design, called the packet replicator, the multicast module has the entire

multicast group table in memory.  When it receives a multicast request, it reads it off the

sender’s bus, and holds the request in memory.  In the next cycles, the multicast module

replicates the packet for each destination in the multicast set table, and places the resulting

packets on its output bus.  The other concentrators behave normally, reading the multicast bus

as any other bus, and receiving the multicast replicates for their address as usual.  Note the

fundamental operation of this design:  serial multicast, where the entire multicast table is in

the multicast module, and the concentrators are unchanged.

In the parallel multicast design, called the ‘fast packet filter’, multicasts are recognized and

placed on the multicast bus, unaltered (so there is really no reason for a multicast module at all

in this design).  Here the concentrators are modified, where they include a table of virtual

multicast set identifiers and fast comparison hardware.  Packets addressed for the concentrator,

or whose virtual identifications are in the internal table, are received at the concentrator.  In

this scheme, the multicast module is nonexistent functionally, but the concentrators require

fast lookup hardware to monitor the multicast bus, and each store some virtual addresses.  No

explicit replication occurs; all concentrators read simultaneously off the same bus.

It is interesting to note that the serial packet replicator actually copies each packet and

differentiates it by an index, as in the first stage of the other copy networks by Bellcore and
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WashU [Let88] [Tu88].  The parallel fast packet filter operates similarly to the BGT’s of the

WashU network or the TNT’s of the Bellcore network.  So the MIN copy networks have both

packet replication and fast packet filters in their designs.

4.3.5. The Columbia ChoPP multicast-capable network

The Columbia ChoPP (Columbia Homogeneous Parallel Processor) is a message passing network

which introduces the concept of a multicast as a partitioned broadcast [SuB77] [SuBK77].

Multicasts are described as dynamically partitioned broadcast, and broadcast regions.  This is

notable as the earliest network implementation found which indicates the potential of multicast

capability.

4.3.6. The Louisiana combining network

The University of Southwestern Louisiana is developing a unique shared memory combining

network [Tz89] (Figure 29).  In this network, combination is distinct from routing, in a

partition akin to the copy-route partition in multicast networks.   By factoring the network into

these components, sequencing of requests can be maintained.

MUX
MUX

MUX
MUX

MUX
MUX

MUX
MUX

Figure 29:  Louisiana combining structure

The network is composed of a routing network, with a combining structure which can detour

packets from the routing network into the combine, and back into the router after combination

occurs.  All hotspot accesses are rerouted into the combine network, while other requests

proceed directly to their destination, as in the two-level RP3 implementation.  Since hotspot
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requests are moved out of the main routing path, tree saturation cannot affect non-hotspot

traff ic.

There are two types of reduction considered in the nodes of the combining network.  Systolic

combine operates with a snaking queue, as in the NYU Ultracomputer output port queues.

Simultaneous combination involves an associative table access, as is assumed the wait queue in

the NYU operates.

One of the gains claimed in this network is that only N reducing elements are required for the

combining network, while NlogN are required in most other schemes, such as the RP3 and NYU.

While this is accurate, the gain is offset by  the need for logN concentration of each input of the

combining network, in order to facilitate routing into the combining network from any stage in

the routing network.

Other difficulties in this design include the fact that combinations occur only within partitions

of powers of 2, due to the tree structure of the combining network.  In this scheme, two requests

arriving on either side of the center of the combination network would not combine until they

reach the root of the network.  Other combining networks form a tree based at any location in

the network, and reduce the pairs as quickly as possible.

4.4. Other domains

Other kinds of networks provide different multicast and reduction capabilities.  Here we

consider mostly multicast for broadcasting packet traffic, and reduction to eliminate memory

hotspot contention.  Other kinds of networks define the copy and reduce functions to facilitate the

purposes of the packets, such as join networks for database manipulations.  In these networks,

the interconnection networks are structured in a way which facilitates reductions based on

database combinations, and the switch elements perform joins internally [MenBL87].

Some reduction networks are designed specifically to perform the cascaded sum of the RAN in the

Bellcore switch, or other arithmetic tree reductions.  These networks are used in fast matrix

and vector computers.  Although these organizations are not strictly reduction networks, the

principles are identical.
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5. Observations

There are two other observations which are useful to note.  First, reduction networks are based

on the hotspot memory contention problem, and all implementations found assume sharing of

hotspots among large sets of processors, where the data locations are static.  It would be useful

to consider how hotspot combining extends to a virtual data object scheme, where the location of

the object is not explicitly known, but combining can occur at the object manipulation level.

Current reduction operations support only integer reduction facilities.  A parallel to the join

reduction in database networks (i.e. higher level reduce operation) should be investigated for

high level objects.

In multicast networks, the most difficult problem is the atomicity of multicast request

satisfaction, and the determination of multicast scheduling in a distributed fashion.  It would be

useful to consider this distributed resource allocation problem, without permitting global

knowledge or call processing facilities.
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